source: libcfa/src/vec/vec2.hfa@ 5a7789f

Last change on this file since 5a7789f was 5454d77, checked in by Peter A. Buhr <pabuhr@…>, 2 years ago

update types to use new void-creation stream macros

  • Property mode set to 100644
File size: 5.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2021 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io/types.hfa --
8//
9// Author : Dimitry Kobets
10// Created On :
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#pragma once
17
18#include <iostream.hfa>
19#include "vec.hfa"
20
21forall (T) {
22 struct vec2 {
23 T x, y;
24 };
25}
26
27forall (T) {
28 static inline {
29
30 void ?{}(vec2(T)& v, T x, T y) {
31 v.[x, y] = [x, y];
32 }
33
34 forall(| zero_assign(T))
35 void ?{}(vec2(T)& vec, zero_t) with (vec) {
36 x = y = 0;
37 }
38
39 void ?{}(vec2(T)& vec, T val) with (vec) {
40 x = y = val;
41 }
42
43 void ?{}(vec2(T)& vec, vec2(T) other) with (vec) {
44 [x,y] = other.[x,y];
45 }
46
47 void ?=?(vec2(T)& vec, vec2(T) other) with (vec) {
48 [x,y] = other.[x,y];
49 }
50 forall(| zero_assign(T))
51 void ?=?(vec2(T)& vec, zero_t) with (vec) {
52 x = y = 0;
53 }
54
55 // Primitive mathematical operations
56
57 // -
58 forall(| subtract(T)) {
59 vec2(T) ?-?(vec2(T) u, vec2(T) v) {
60 return [u.x - v.x, u.y - v.y];
61 }
62 vec2(T)& ?-=?(vec2(T)& u, vec2(T) v) {
63 u = u - v;
64 return u;
65 }
66 }
67 forall(| negate(T))
68 vec2(T) -?(vec2(T) v) with (v) {
69 return [-x, -y];
70 }
71
72 forall(| { T --?(T&); }) {
73 vec2(T)& --?(vec2(T)& v) {
74 --v.x;
75 --v.y;
76 return v;
77 }
78 vec2(T) ?--(vec2(T)& v) {
79 vec2(T) copy = v;
80 --v;
81 return copy;
82 }
83 }
84
85 // +
86 forall(| add(T)) {
87 vec2(T) ?+?(vec2(T) u, vec2(T) v) {
88 return [u.x + v.x, u.y + v.y];
89 }
90 vec2(T)& ?+=?(vec2(T)& u, vec2(T) v) {
91 u = u + v;
92 return u;
93 }
94 }
95
96 forall(| { T ++?(T&); }) {
97 vec2(T)& ++?(vec2(T)& v) {
98 ++v.x;
99 ++v.y;
100 return v;
101 }
102 vec2(T) ?++(vec2(T)& v) {
103 vec2(T) copy = v;
104 ++v;
105 return copy;
106 }
107 }
108
109 // *
110 forall(| multiply(T)) {
111 vec2(T) ?*?(vec2(T) v, T scalar) with (v) {
112 return [x * scalar, y * scalar];
113 }
114 vec2(T) ?*?(T scalar, vec2(T) v) {
115 return v * scalar;
116 }
117 vec2(T) ?*?(vec2(T) u, vec2(T) v) {
118 return [u.x * v.x, u.y * v.y];
119 }
120 vec2(T)& ?*=?(vec2(T)& v, T scalar) {
121 v = v * scalar;
122 return v;
123 }
124 vec2(T) ?*=?(vec2(T)& u, vec2(T) v) {
125 u = u * v;
126 return u;
127 }
128 }
129
130 // /
131 forall(| divide(T)) {
132 vec2(T) ?/?(vec2(T) v, T scalar) with (v) {
133 return [x / scalar, y / scalar];
134 }
135 vec2(T) ?/?(vec2(T) u, vec2(T) v) {
136 return [u.x / v.x, u.y / v.y];
137 }
138 vec2(T)& ?/=?(vec2(T)& v, T scalar) {
139 v = v / scalar;
140 return v;
141 }
142 vec2(T) ?/=?(vec2(T)& u, vec2(T) v) {
143 u = u / v;
144 return u;
145 }
146 }
147
148 // %
149 forall(| { T ?%?(T,T); }) {
150 vec2(T) ?%?(vec2(T) v, T scalar) with (v) {
151 return [x % scalar, y % scalar];
152 }
153 vec2(T)& ?%=?(vec2(T)& u, T scalar) {
154 u = u % scalar;
155 return u;
156 }
157 vec2(T) ?%?(vec2(T) u, vec2(T) v) {
158 return [u.x % v.x, u.y % v.y];
159 }
160 vec2(T)& ?%=?(vec2(T)& u, vec2(T) v) {
161 u = u % v;
162 return u;
163 }
164 }
165
166 // &
167 forall(| { T ?&?(T,T); }) {
168 vec2(T) ?&?(vec2(T) v, T scalar) with (v) {
169 return [x & scalar, y & scalar];
170 }
171 vec2(T)& ?&=?(vec2(T)& u, T scalar) {
172 u = u & scalar;
173 return u;
174 }
175 vec2(T) ?&?(vec2(T) u, vec2(T) v) {
176 return [u.x & v.x, u.y & v.y];
177 }
178 vec2(T)& ?&=?(vec2(T)& u, vec2(T) v) {
179 u = u & v;
180 return u;
181 }
182 }
183
184 // |
185 forall(| { T ?|?(T,T); }) {
186 vec2(T) ?|?(vec2(T) v, T scalar) with (v) {
187 return [x | scalar, y | scalar];
188 }
189 vec2(T)& ?|=?(vec2(T)& u, T scalar) {
190 u = u | scalar;
191 return u;
192 }
193 vec2(T) ?|?(vec2(T) u, vec2(T) v) {
194 return [u.x | v.x, u.y | v.y];
195 }
196 vec2(T)& ?|=?(vec2(T)& u, vec2(T) v) {
197 u = u | v;
198 return u;
199 }
200 }
201
202 // ^
203 forall(| { T ?^?(T,T); }) {
204 vec2(T) ?^?(vec2(T) v, T scalar) with (v) {
205 return [x ^ scalar, y ^ scalar];
206 }
207 vec2(T)& ?^=?(vec2(T)& u, T scalar) {
208 u = u ^ scalar;
209 return u;
210 }
211 vec2(T) ?^?(vec2(T) u, vec2(T) v) {
212 return [u.x ^ v.x, u.y ^ v.y];
213 }
214 vec2(T)& ?^=?(vec2(T)& u, vec2(T) v) {
215 u = u ^ v;
216 return u;
217 }
218 }
219
220 // <<
221 forall(| { T ?<<?(T,T); }) {
222 vec2(T) ?<<?(vec2(T) v, T scalar) with (v) {
223 return [x << scalar, y << scalar];
224 }
225 vec2(T)& ?<<=?(vec2(T)& u, T scalar) {
226 u = u << scalar;
227 return u;
228 }
229 vec2(T) ?<<?(vec2(T) u, vec2(T) v) {
230 return [u.x << v.x, u.y << v.y];
231 }
232 vec2(T)& ?<<=?(vec2(T)& u, vec2(T) v) {
233 u = u << v;
234 return u;
235 }
236 }
237
238 // >>
239 forall(| { T ?>>?(T,T); }) {
240 vec2(T) ?>>?(vec2(T) v, T scalar) with (v) {
241 return [x >> scalar, y >> scalar];
242 }
243 vec2(T)& ?>>=?(vec2(T)& u, T scalar) {
244 u = u >> scalar;
245 return u;
246 }
247 vec2(T) ?>>?(vec2(T) u, vec2(T) v) {
248 return [u.x >> v.x, u.y >> v.y];
249 }
250 vec2(T)& ?>>=?(vec2(T)& u, vec2(T) v) {
251 u = u >> v;
252 return u;
253 }
254 }
255
256 // ~
257 forall(| { T ~?(T); })
258 vec2(T) ~?(vec2(T) v) with (v) {
259 return [~v.x, ~v.y];
260 }
261
262 // relational
263 forall(| equality(T)) {
264 bool ?==?(vec2(T) u, vec2(T) v) with (u) {
265 return x == v.x && y == v.y;
266 }
267 bool ?!=?(vec2(T) u, vec2(T) v) {
268 return !(u == v);
269 }
270 }
271
272 // Geometric functions
273 forall(| add(T) | multiply(T))
274 T dot(vec2(T) u, vec2(T) v) {
275 return u.x * v.x + u.y * v.y;
276 }
277
278 } // static inline
279}
280
281forall(ostype &, T | writeable(T, ostype)) {
282 ostype & ?|?(ostype & os, vec2(T) v) with (v) {
283 return os | '<' | x | ',' | y | '>';
284 }
285 OSTYPE_VOID_IMPL( vec2(T) )
286}
Note: See TracBrowser for help on using the repository browser.