1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2021 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // io/types.hfa --
|
---|
8 | //
|
---|
9 | // Author : Dimitry Kobets
|
---|
10 | // Created On :
|
---|
11 | // Last Modified By :
|
---|
12 | // Last Modified On :
|
---|
13 | // Update Count :
|
---|
14 | //
|
---|
15 |
|
---|
16 | #pragma once
|
---|
17 |
|
---|
18 | #include <math.hfa>
|
---|
19 |
|
---|
20 | trait fromint(T) {
|
---|
21 | void ?{}(T&, int);
|
---|
22 | };
|
---|
23 | trait zeroinit(T) {
|
---|
24 | void ?{}(T&, zero_t);
|
---|
25 | };
|
---|
26 | trait zero_assign(T) {
|
---|
27 | T ?=?(T&, zero_t);
|
---|
28 | };
|
---|
29 | trait subtract(T) {
|
---|
30 | T ?-?(T, T);
|
---|
31 | };
|
---|
32 | trait negate(T) {
|
---|
33 | T -?(T);
|
---|
34 | };
|
---|
35 | trait add(T) {
|
---|
36 | T ?+?(T, T);
|
---|
37 | };
|
---|
38 | trait multiply(T) {
|
---|
39 | T ?*?(T, T);
|
---|
40 | };
|
---|
41 | trait divide(T) {
|
---|
42 | T ?/?(T, T);
|
---|
43 | };
|
---|
44 | trait lessthan(T) {
|
---|
45 | int ?<?(T, T);
|
---|
46 | };
|
---|
47 | trait equality(T) {
|
---|
48 | int ?==?(T, T);
|
---|
49 | };
|
---|
50 | trait sqrt(T) {
|
---|
51 | T sqrt(T);
|
---|
52 | };
|
---|
53 |
|
---|
54 | static inline {
|
---|
55 | // int
|
---|
56 | int ?=?(int& n, zero_t) { return n = 0.f; }
|
---|
57 | // unsigned int
|
---|
58 | int ?=?(unsigned int& n, zero_t) { return n = 0.f; }
|
---|
59 | /* float */
|
---|
60 | void ?{}(float& a, int b) { a = b; }
|
---|
61 | float ?=?(float& n, zero_t) { return n = 0.f; }
|
---|
62 | /* double */
|
---|
63 | void ?{}(double& a, int b) { a = b; }
|
---|
64 | double ?=?(double& n, zero_t) { return n = 0L; }
|
---|
65 | // long double
|
---|
66 | void ?{}(long double& a, int b) { a = b; }
|
---|
67 | long double ?=?(long double& n, zero_t) { return n = 0L; }
|
---|
68 | }
|
---|
69 |
|
---|
70 | trait dottable(V, T) {
|
---|
71 | T dot(V, V);
|
---|
72 | };
|
---|
73 |
|
---|
74 | static inline {
|
---|
75 |
|
---|
76 | forall(T | sqrt(T), V | dottable(V, T))
|
---|
77 | T length(V v) {
|
---|
78 | return sqrt(dot(v, v));
|
---|
79 | }
|
---|
80 |
|
---|
81 | forall(T, V | dottable(V, T))
|
---|
82 | T length_squared(V v) {
|
---|
83 | return dot(v, v);
|
---|
84 | }
|
---|
85 |
|
---|
86 | forall(T, V | { T length(V); } | subtract(V))
|
---|
87 | T distance(V v1, V v2) {
|
---|
88 | return length(v1 - v2);
|
---|
89 | }
|
---|
90 |
|
---|
91 | forall(T, V | { T length(V); V ?/?(V, T); })
|
---|
92 | V normalize(V v) {
|
---|
93 | return v / length(v);
|
---|
94 | }
|
---|
95 |
|
---|
96 | // Project vector u onto vector v
|
---|
97 | forall(T, V | dottable(V, T) | { V normalize(V); V ?*?(V, T); })
|
---|
98 | V project(V u, V v) {
|
---|
99 | V v_norm = normalize(v);
|
---|
100 | return v_norm * dot(u, v_norm);
|
---|
101 | }
|
---|
102 |
|
---|
103 | // Reflect incident vector v with respect to surface with normal n
|
---|
104 | forall(T | fromint(T), V | { V project(V, V); V ?*?(T, V); V ?-?(V,V); })
|
---|
105 | V reflect(V v, V n) {
|
---|
106 | return v - (T){2} * project(v, n);
|
---|
107 | }
|
---|
108 |
|
---|
109 | // Refract incident vector v with respect to surface with normal n
|
---|
110 | // eta is the ratio of indices of refraction between starting material and
|
---|
111 | // entering material (i.e., from air to water, eta = 1/1.33)
|
---|
112 | // v and n must already be normalized
|
---|
113 | forall(T | fromint(T) | subtract(T) | multiply(T) | add(T) | lessthan(T) | sqrt(T),
|
---|
114 | V | dottable(V, T) | { V ?*?(T, V); V ?-?(V,V); void ?{}(V&, zero_t); })
|
---|
115 | V refract(V v, V n, T eta) {
|
---|
116 | T dotValue = dot(n, v);
|
---|
117 | T k = (T){1} - eta * eta * ((T){1} - dotValue * dotValue);
|
---|
118 | if (k < (T){0}) {
|
---|
119 | return 0;
|
---|
120 | }
|
---|
121 | return eta * v - (eta * dotValue + sqrt(k)) * n;
|
---|
122 | }
|
---|
123 |
|
---|
124 | // Given a perturbed normal and a geometric normal,
|
---|
125 | // flip the perturbed normal if the geometric normal is pointing away
|
---|
126 | // from the observer.
|
---|
127 | // n is the perturbed vector that we want to align
|
---|
128 | // i is the incident vector
|
---|
129 | // ng is the geometric normal of the surface
|
---|
130 | forall(T | lessthan(T) | zeroinit(T), V | dottable(V, T) | negate(V))
|
---|
131 | V faceforward(V n, V i, V ng) {
|
---|
132 | return dot(ng, i) < (T){0} ? n : -n;
|
---|
133 | }
|
---|
134 |
|
---|
135 | } // inline
|
---|