| [eef8dfb] | 1 | //
 | 
|---|
 | 2 | // Cforall Version 1.0.0 Copyright (C) 2021 University of Waterloo
 | 
|---|
 | 3 | //
 | 
|---|
 | 4 | // The contents of this file are covered under the licence agreement in the
 | 
|---|
 | 5 | // file "LICENCE" distributed with Cforall.
 | 
|---|
 | 6 | //
 | 
|---|
 | 7 | // io/types.hfa --
 | 
|---|
 | 8 | //
 | 
|---|
 | 9 | // Author           : Dimitry Kobets
 | 
|---|
 | 10 | // Created On       :
 | 
|---|
 | 11 | // Last Modified By :
 | 
|---|
 | 12 | // Last Modified On :
 | 
|---|
 | 13 | // Update Count     :
 | 
|---|
 | 14 | //
 | 
|---|
 | 15 | 
 | 
|---|
| [3376ec9] | 16 | #pragma once
 | 
|---|
 | 17 | 
 | 
|---|
 | 18 | #include <math.hfa>
 | 
|---|
 | 19 | 
 | 
|---|
| [fd54fef] | 20 | trait fromint(T) {
 | 
|---|
| [3376ec9] | 21 |     void ?{}(T&, int);
 | 
|---|
 | 22 | };
 | 
|---|
| [fd54fef] | 23 | trait zeroinit(T) {
 | 
|---|
| [3376ec9] | 24 |     void ?{}(T&, zero_t);
 | 
|---|
 | 25 | };
 | 
|---|
| [fd54fef] | 26 | trait zero_assign(T) {
 | 
|---|
| [3376ec9] | 27 |     T ?=?(T&, zero_t);
 | 
|---|
 | 28 | };
 | 
|---|
| [fd54fef] | 29 | trait subtract(T) {
 | 
|---|
| [3376ec9] | 30 |     T ?-?(T, T);
 | 
|---|
 | 31 | };
 | 
|---|
| [fd54fef] | 32 | trait negate(T) {
 | 
|---|
| [3376ec9] | 33 |     T -?(T);
 | 
|---|
 | 34 | };
 | 
|---|
| [fd54fef] | 35 | trait add(T) {
 | 
|---|
| [3376ec9] | 36 |     T ?+?(T, T);
 | 
|---|
 | 37 | };
 | 
|---|
| [fd54fef] | 38 | trait multiply(T) {
 | 
|---|
| [3376ec9] | 39 |     T ?*?(T, T);
 | 
|---|
 | 40 | };
 | 
|---|
| [fd54fef] | 41 | trait divide(T) {
 | 
|---|
| [3376ec9] | 42 |     T ?/?(T, T);
 | 
|---|
 | 43 | };
 | 
|---|
| [fd54fef] | 44 | trait lessthan(T) {
 | 
|---|
| [3376ec9] | 45 |     int ?<?(T, T);
 | 
|---|
 | 46 | };
 | 
|---|
| [fd54fef] | 47 | trait equality(T) {
 | 
|---|
| [3376ec9] | 48 |     int ?==?(T, T);
 | 
|---|
 | 49 | };
 | 
|---|
| [fd54fef] | 50 | trait sqrt(T) {
 | 
|---|
| [3376ec9] | 51 |     T sqrt(T);
 | 
|---|
 | 52 | };
 | 
|---|
 | 53 | 
 | 
|---|
 | 54 | static inline {
 | 
|---|
 | 55 | // int
 | 
|---|
 | 56 | int ?=?(int& n, zero_t) { return n = 0.f; }
 | 
|---|
| [ae3db00] | 57 | // unsigned int
 | 
|---|
 | 58 | int ?=?(unsigned int& n, zero_t) { return n = 0.f; }
 | 
|---|
| [3376ec9] | 59 | /* float */
 | 
|---|
 | 60 | void ?{}(float& a, int b) { a = b; }
 | 
|---|
 | 61 | float ?=?(float& n, zero_t) { return n = 0.f; }
 | 
|---|
 | 62 | /* double */
 | 
|---|
 | 63 | void ?{}(double& a, int b) { a = b; }
 | 
|---|
 | 64 | double ?=?(double& n, zero_t) { return n = 0L; }
 | 
|---|
 | 65 | // long double
 | 
|---|
 | 66 | void ?{}(long double& a, int b) { a = b; }
 | 
|---|
 | 67 | long double ?=?(long double& n, zero_t) { return n = 0L; }
 | 
|---|
 | 68 | }
 | 
|---|
 | 69 | 
 | 
|---|
| [fd54fef] | 70 | trait dottable(V, T) {
 | 
|---|
| [3376ec9] | 71 |     T dot(V, V);
 | 
|---|
 | 72 | };
 | 
|---|
 | 73 | 
 | 
|---|
 | 74 | static inline {
 | 
|---|
 | 75 | 
 | 
|---|
| [fd54fef] | 76 | forall(T | sqrt(T), V | dottable(V, T))
 | 
|---|
| [3376ec9] | 77 | T length(V v) {
 | 
|---|
 | 78 |    return sqrt(dot(v, v));
 | 
|---|
 | 79 | }
 | 
|---|
 | 80 | 
 | 
|---|
| [fd54fef] | 81 | forall(T, V | dottable(V, T))
 | 
|---|
| [3376ec9] | 82 | T length_squared(V v) {
 | 
|---|
 | 83 |    return dot(v, v);
 | 
|---|
 | 84 | }
 | 
|---|
 | 85 | 
 | 
|---|
| [fd54fef] | 86 | forall(T, V | { T length(V); } | subtract(V))
 | 
|---|
| [3376ec9] | 87 | T distance(V v1, V v2) {
 | 
|---|
 | 88 |     return length(v1 - v2);
 | 
|---|
 | 89 | }
 | 
|---|
 | 90 | 
 | 
|---|
| [fd54fef] | 91 | forall(T, V | { T length(V); V ?/?(V, T); })
 | 
|---|
| [3376ec9] | 92 | V normalize(V v) {
 | 
|---|
 | 93 |     return v / length(v);
 | 
|---|
 | 94 | }
 | 
|---|
 | 95 | 
 | 
|---|
 | 96 | // Project vector u onto vector v
 | 
|---|
| [fd54fef] | 97 | forall(T, V | dottable(V, T) | { V normalize(V); V ?*?(V, T); })
 | 
|---|
| [3376ec9] | 98 | V project(V u, V v) {
 | 
|---|
 | 99 |     V v_norm = normalize(v);
 | 
|---|
 | 100 |     return v_norm * dot(u, v_norm);
 | 
|---|
 | 101 | }
 | 
|---|
 | 102 | 
 | 
|---|
 | 103 | // Reflect incident vector v with respect to surface with normal n
 | 
|---|
| [fd54fef] | 104 | forall(T | fromint(T), V | { V project(V, V); V ?*?(T, V); V ?-?(V,V); })
 | 
|---|
| [3376ec9] | 105 | V reflect(V v, V n) {
 | 
|---|
 | 106 |     return v - (T){2} * project(v, n);
 | 
|---|
 | 107 | }
 | 
|---|
 | 108 | 
 | 
|---|
 | 109 | // Refract incident vector v with respect to surface with normal n
 | 
|---|
 | 110 | // eta is the ratio of indices of refraction between starting material and
 | 
|---|
 | 111 | // entering material (i.e., from air to water, eta = 1/1.33)
 | 
|---|
 | 112 | // v and n must already be normalized
 | 
|---|
| [fd54fef] | 113 | forall(T | fromint(T) | subtract(T) | multiply(T) | add(T) | lessthan(T) | sqrt(T),
 | 
|---|
 | 114 |        V | dottable(V, T) | { V ?*?(T, V); V ?-?(V,V); void ?{}(V&, zero_t); })
 | 
|---|
| [3376ec9] | 115 | V refract(V v, V n, T eta) {
 | 
|---|
 | 116 |     T dotValue = dot(n, v);
 | 
|---|
 | 117 |     T k = (T){1} - eta * eta * ((T){1} - dotValue * dotValue);
 | 
|---|
 | 118 |     if (k < (T){0}) {
 | 
|---|
 | 119 |         return 0;
 | 
|---|
 | 120 |     }
 | 
|---|
 | 121 |     return eta * v - (eta * dotValue + sqrt(k)) * n;
 | 
|---|
 | 122 | }
 | 
|---|
 | 123 | 
 | 
|---|
 | 124 | // Given a perturbed normal and a geometric normal,
 | 
|---|
 | 125 | // flip the perturbed normal if the geometric normal is pointing away
 | 
|---|
 | 126 | // from the observer.
 | 
|---|
 | 127 | // n is the perturbed vector that we want to align
 | 
|---|
 | 128 | // i is the incident vector
 | 
|---|
 | 129 | // ng is the geometric normal of the surface
 | 
|---|
| [fd54fef] | 130 | forall(T | lessthan(T) | zeroinit(T), V | dottable(V, T) | negate(V))
 | 
|---|
| [3376ec9] | 131 | V faceforward(V n, V i, V ng) {
 | 
|---|
 | 132 |     return dot(ng, i) < (T){0} ? n : -n;
 | 
|---|
 | 133 | }
 | 
|---|
 | 134 | 
 | 
|---|
 | 135 | } // inline
 | 
|---|