| [eef8dfb] | 1 | // | 
|---|
|  | 2 | // Cforall Version 1.0.0 Copyright (C) 2021 University of Waterloo | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // The contents of this file are covered under the licence agreement in the | 
|---|
|  | 5 | // file "LICENCE" distributed with Cforall. | 
|---|
|  | 6 | // | 
|---|
|  | 7 | // io/types.hfa -- | 
|---|
|  | 8 | // | 
|---|
|  | 9 | // Author           : Dimitry Kobets | 
|---|
|  | 10 | // Created On       : | 
|---|
|  | 11 | // Last Modified By : | 
|---|
|  | 12 | // Last Modified On : | 
|---|
|  | 13 | // Update Count     : | 
|---|
|  | 14 | // | 
|---|
|  | 15 |  | 
|---|
| [3376ec9] | 16 | #pragma once | 
|---|
|  | 17 |  | 
|---|
|  | 18 | #include <math.hfa> | 
|---|
|  | 19 |  | 
|---|
| [dd3576b] | 20 | forall(T) | 
|---|
|  | 21 | trait fromint { | 
|---|
| [3376ec9] | 22 | void ?{}(T&, int); | 
|---|
|  | 23 | }; | 
|---|
| [dd3576b] | 24 | forall(T) | 
|---|
|  | 25 | trait zeroinit { | 
|---|
| [3376ec9] | 26 | void ?{}(T&, zero_t); | 
|---|
|  | 27 | }; | 
|---|
| [dd3576b] | 28 | forall(T) | 
|---|
|  | 29 | trait zero_assign { | 
|---|
| [3376ec9] | 30 | T ?=?(T&, zero_t); | 
|---|
|  | 31 | }; | 
|---|
| [dd3576b] | 32 | forall(T) | 
|---|
|  | 33 | trait subtract { | 
|---|
| [3376ec9] | 34 | T ?-?(T, T); | 
|---|
|  | 35 | }; | 
|---|
| [dd3576b] | 36 | forall(T) | 
|---|
|  | 37 | trait negate { | 
|---|
| [3376ec9] | 38 | T -?(T); | 
|---|
|  | 39 | }; | 
|---|
| [dd3576b] | 40 | forall(T) | 
|---|
|  | 41 | trait add { | 
|---|
| [3376ec9] | 42 | T ?+?(T, T); | 
|---|
|  | 43 | }; | 
|---|
| [dd3576b] | 44 | forall(T) | 
|---|
|  | 45 | trait multiply { | 
|---|
| [3376ec9] | 46 | T ?*?(T, T); | 
|---|
|  | 47 | }; | 
|---|
| [dd3576b] | 48 | forall(T) | 
|---|
|  | 49 | trait divide { | 
|---|
| [3376ec9] | 50 | T ?/?(T, T); | 
|---|
|  | 51 | }; | 
|---|
| [dd3576b] | 52 | forall(T) | 
|---|
|  | 53 | trait lessthan { | 
|---|
| [3376ec9] | 54 | int ?<?(T, T); | 
|---|
|  | 55 | }; | 
|---|
| [dd3576b] | 56 | forall(T) | 
|---|
|  | 57 | trait equality { | 
|---|
| [3376ec9] | 58 | int ?==?(T, T); | 
|---|
|  | 59 | }; | 
|---|
| [dd3576b] | 60 | forall(T) | 
|---|
|  | 61 | trait sqrt { | 
|---|
| [3376ec9] | 62 | T sqrt(T); | 
|---|
|  | 63 | }; | 
|---|
|  | 64 |  | 
|---|
|  | 65 | static inline { | 
|---|
|  | 66 | // int | 
|---|
|  | 67 | int ?=?(int& n, zero_t) { return n = 0.f; } | 
|---|
| [ae3db00] | 68 | // unsigned int | 
|---|
|  | 69 | int ?=?(unsigned int& n, zero_t) { return n = 0.f; } | 
|---|
| [3376ec9] | 70 | /* float */ | 
|---|
|  | 71 | void ?{}(float& a, int b) { a = b; } | 
|---|
|  | 72 | float ?=?(float& n, zero_t) { return n = 0.f; } | 
|---|
|  | 73 | /* double */ | 
|---|
|  | 74 | void ?{}(double& a, int b) { a = b; } | 
|---|
|  | 75 | double ?=?(double& n, zero_t) { return n = 0L; } | 
|---|
|  | 76 | // long double | 
|---|
|  | 77 | void ?{}(long double& a, int b) { a = b; } | 
|---|
|  | 78 | long double ?=?(long double& n, zero_t) { return n = 0L; } | 
|---|
|  | 79 | } | 
|---|
|  | 80 |  | 
|---|
| [7882c58] | 81 | forall(V, T) | 
|---|
|  | 82 | trait dottable { | 
|---|
| [3376ec9] | 83 | T dot(V, V); | 
|---|
|  | 84 | }; | 
|---|
|  | 85 |  | 
|---|
|  | 86 | static inline { | 
|---|
|  | 87 |  | 
|---|
| [fd54fef] | 88 | forall(T | sqrt(T), V | dottable(V, T)) | 
|---|
| [3376ec9] | 89 | T length(V v) { | 
|---|
|  | 90 | return sqrt(dot(v, v)); | 
|---|
|  | 91 | } | 
|---|
|  | 92 |  | 
|---|
| [fd54fef] | 93 | forall(T, V | dottable(V, T)) | 
|---|
| [3376ec9] | 94 | T length_squared(V v) { | 
|---|
|  | 95 | return dot(v, v); | 
|---|
|  | 96 | } | 
|---|
|  | 97 |  | 
|---|
| [fd54fef] | 98 | forall(T, V | { T length(V); } | subtract(V)) | 
|---|
| [3376ec9] | 99 | T distance(V v1, V v2) { | 
|---|
|  | 100 | return length(v1 - v2); | 
|---|
|  | 101 | } | 
|---|
|  | 102 |  | 
|---|
| [fd54fef] | 103 | forall(T, V | { T length(V); V ?/?(V, T); }) | 
|---|
| [3376ec9] | 104 | V normalize(V v) { | 
|---|
|  | 105 | return v / length(v); | 
|---|
|  | 106 | } | 
|---|
|  | 107 |  | 
|---|
|  | 108 | // Project vector u onto vector v | 
|---|
| [fd54fef] | 109 | forall(T, V | dottable(V, T) | { V normalize(V); V ?*?(V, T); }) | 
|---|
| [3376ec9] | 110 | V project(V u, V v) { | 
|---|
|  | 111 | V v_norm = normalize(v); | 
|---|
|  | 112 | return v_norm * dot(u, v_norm); | 
|---|
|  | 113 | } | 
|---|
|  | 114 |  | 
|---|
|  | 115 | // Reflect incident vector v with respect to surface with normal n | 
|---|
| [fd54fef] | 116 | forall(T | fromint(T), V | { V project(V, V); V ?*?(T, V); V ?-?(V,V); }) | 
|---|
| [3376ec9] | 117 | V reflect(V v, V n) { | 
|---|
|  | 118 | return v - (T){2} * project(v, n); | 
|---|
|  | 119 | } | 
|---|
|  | 120 |  | 
|---|
|  | 121 | // Refract incident vector v with respect to surface with normal n | 
|---|
|  | 122 | // eta is the ratio of indices of refraction between starting material and | 
|---|
|  | 123 | // entering material (i.e., from air to water, eta = 1/1.33) | 
|---|
|  | 124 | // v and n must already be normalized | 
|---|
| [fd54fef] | 125 | forall(T | fromint(T) | subtract(T) | multiply(T) | add(T) | lessthan(T) | sqrt(T), | 
|---|
|  | 126 | V | dottable(V, T) | { V ?*?(T, V); V ?-?(V,V); void ?{}(V&, zero_t); }) | 
|---|
| [3376ec9] | 127 | V refract(V v, V n, T eta) { | 
|---|
|  | 128 | T dotValue = dot(n, v); | 
|---|
|  | 129 | T k = (T){1} - eta * eta * ((T){1} - dotValue * dotValue); | 
|---|
|  | 130 | if (k < (T){0}) { | 
|---|
|  | 131 | return 0; | 
|---|
|  | 132 | } | 
|---|
|  | 133 | return eta * v - (eta * dotValue + sqrt(k)) * n; | 
|---|
|  | 134 | } | 
|---|
|  | 135 |  | 
|---|
|  | 136 | // Given a perturbed normal and a geometric normal, | 
|---|
|  | 137 | // flip the perturbed normal if the geometric normal is pointing away | 
|---|
|  | 138 | // from the observer. | 
|---|
|  | 139 | // n is the perturbed vector that we want to align | 
|---|
|  | 140 | // i is the incident vector | 
|---|
|  | 141 | // ng is the geometric normal of the surface | 
|---|
| [fd54fef] | 142 | forall(T | lessthan(T) | zeroinit(T), V | dottable(V, T) | negate(V)) | 
|---|
| [3376ec9] | 143 | V faceforward(V n, V i, V ng) { | 
|---|
|  | 144 | return dot(ng, i) < (T){0} ? n : -n; | 
|---|
|  | 145 | } | 
|---|
|  | 146 |  | 
|---|
|  | 147 | } // inline | 
|---|