| [eef8dfb] | 1 | // | 
|---|
|  | 2 | // Cforall Version 1.0.0 Copyright (C) 2021 University of Waterloo | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // The contents of this file are covered under the licence agreement in the | 
|---|
|  | 5 | // file "LICENCE" distributed with Cforall. | 
|---|
|  | 6 | // | 
|---|
|  | 7 | // io/types.hfa -- | 
|---|
|  | 8 | // | 
|---|
|  | 9 | // Author           : Dimitry Kobets | 
|---|
|  | 10 | // Created On       : | 
|---|
|  | 11 | // Last Modified By : | 
|---|
|  | 12 | // Last Modified On : | 
|---|
|  | 13 | // Update Count     : | 
|---|
|  | 14 | // | 
|---|
|  | 15 |  | 
|---|
| [3376ec9] | 16 | #pragma once | 
|---|
|  | 17 |  | 
|---|
|  | 18 | #include <math.hfa> | 
|---|
|  | 19 |  | 
|---|
| [fd54fef] | 20 | trait fromint(T) { | 
|---|
| [3376ec9] | 21 | void ?{}(T&, int); | 
|---|
|  | 22 | }; | 
|---|
| [fd54fef] | 23 | trait zeroinit(T) { | 
|---|
| [3376ec9] | 24 | void ?{}(T&, zero_t); | 
|---|
|  | 25 | }; | 
|---|
| [fd54fef] | 26 | trait zero_assign(T) { | 
|---|
| [3376ec9] | 27 | T ?=?(T&, zero_t); | 
|---|
|  | 28 | }; | 
|---|
| [fd54fef] | 29 | trait subtract(T) { | 
|---|
| [3376ec9] | 30 | T ?-?(T, T); | 
|---|
|  | 31 | }; | 
|---|
| [fd54fef] | 32 | trait negate(T) { | 
|---|
| [3376ec9] | 33 | T -?(T); | 
|---|
|  | 34 | }; | 
|---|
| [fd54fef] | 35 | trait add(T) { | 
|---|
| [3376ec9] | 36 | T ?+?(T, T); | 
|---|
|  | 37 | }; | 
|---|
| [fd54fef] | 38 | trait multiply(T) { | 
|---|
| [3376ec9] | 39 | T ?*?(T, T); | 
|---|
|  | 40 | }; | 
|---|
| [fd54fef] | 41 | trait divide(T) { | 
|---|
| [3376ec9] | 42 | T ?/?(T, T); | 
|---|
|  | 43 | }; | 
|---|
| [fd54fef] | 44 | trait lessthan(T) { | 
|---|
| [3376ec9] | 45 | int ?<?(T, T); | 
|---|
|  | 46 | }; | 
|---|
| [fd54fef] | 47 | trait equality(T) { | 
|---|
| [3376ec9] | 48 | int ?==?(T, T); | 
|---|
|  | 49 | }; | 
|---|
| [fd54fef] | 50 | trait sqrt(T) { | 
|---|
| [3376ec9] | 51 | T sqrt(T); | 
|---|
|  | 52 | }; | 
|---|
|  | 53 |  | 
|---|
|  | 54 | static inline { | 
|---|
|  | 55 | // int | 
|---|
|  | 56 | int ?=?(int& n, zero_t) { return n = 0.f; } | 
|---|
| [ae3db00] | 57 | // unsigned int | 
|---|
|  | 58 | int ?=?(unsigned int& n, zero_t) { return n = 0.f; } | 
|---|
| [3376ec9] | 59 | /* float */ | 
|---|
|  | 60 | void ?{}(float& a, int b) { a = b; } | 
|---|
|  | 61 | float ?=?(float& n, zero_t) { return n = 0.f; } | 
|---|
|  | 62 | /* double */ | 
|---|
|  | 63 | void ?{}(double& a, int b) { a = b; } | 
|---|
|  | 64 | double ?=?(double& n, zero_t) { return n = 0L; } | 
|---|
|  | 65 | // long double | 
|---|
|  | 66 | void ?{}(long double& a, int b) { a = b; } | 
|---|
|  | 67 | long double ?=?(long double& n, zero_t) { return n = 0L; } | 
|---|
|  | 68 | } | 
|---|
|  | 69 |  | 
|---|
| [fd54fef] | 70 | trait dottable(V, T) { | 
|---|
| [3376ec9] | 71 | T dot(V, V); | 
|---|
|  | 72 | }; | 
|---|
|  | 73 |  | 
|---|
|  | 74 | static inline { | 
|---|
|  | 75 |  | 
|---|
| [fd54fef] | 76 | forall(T | sqrt(T), V | dottable(V, T)) | 
|---|
| [3376ec9] | 77 | T length(V v) { | 
|---|
|  | 78 | return sqrt(dot(v, v)); | 
|---|
|  | 79 | } | 
|---|
|  | 80 |  | 
|---|
| [fd54fef] | 81 | forall(T, V | dottable(V, T)) | 
|---|
| [3376ec9] | 82 | T length_squared(V v) { | 
|---|
|  | 83 | return dot(v, v); | 
|---|
|  | 84 | } | 
|---|
|  | 85 |  | 
|---|
| [fd54fef] | 86 | forall(T, V | { T length(V); } | subtract(V)) | 
|---|
| [3376ec9] | 87 | T distance(V v1, V v2) { | 
|---|
|  | 88 | return length(v1 - v2); | 
|---|
|  | 89 | } | 
|---|
|  | 90 |  | 
|---|
| [fd54fef] | 91 | forall(T, V | { T length(V); V ?/?(V, T); }) | 
|---|
| [3376ec9] | 92 | V normalize(V v) { | 
|---|
|  | 93 | return v / length(v); | 
|---|
|  | 94 | } | 
|---|
|  | 95 |  | 
|---|
|  | 96 | // Project vector u onto vector v | 
|---|
| [fd54fef] | 97 | forall(T, V | dottable(V, T) | { V normalize(V); V ?*?(V, T); }) | 
|---|
| [3376ec9] | 98 | V project(V u, V v) { | 
|---|
|  | 99 | V v_norm = normalize(v); | 
|---|
|  | 100 | return v_norm * dot(u, v_norm); | 
|---|
|  | 101 | } | 
|---|
|  | 102 |  | 
|---|
|  | 103 | // Reflect incident vector v with respect to surface with normal n | 
|---|
| [fd54fef] | 104 | forall(T | fromint(T), V | { V project(V, V); V ?*?(T, V); V ?-?(V,V); }) | 
|---|
| [3376ec9] | 105 | V reflect(V v, V n) { | 
|---|
|  | 106 | return v - (T){2} * project(v, n); | 
|---|
|  | 107 | } | 
|---|
|  | 108 |  | 
|---|
|  | 109 | // Refract incident vector v with respect to surface with normal n | 
|---|
|  | 110 | // eta is the ratio of indices of refraction between starting material and | 
|---|
|  | 111 | // entering material (i.e., from air to water, eta = 1/1.33) | 
|---|
|  | 112 | // v and n must already be normalized | 
|---|
| [fd54fef] | 113 | forall(T | fromint(T) | subtract(T) | multiply(T) | add(T) | lessthan(T) | sqrt(T), | 
|---|
|  | 114 | V | dottable(V, T) | { V ?*?(T, V); V ?-?(V,V); void ?{}(V&, zero_t); }) | 
|---|
| [3376ec9] | 115 | V refract(V v, V n, T eta) { | 
|---|
|  | 116 | T dotValue = dot(n, v); | 
|---|
|  | 117 | T k = (T){1} - eta * eta * ((T){1} - dotValue * dotValue); | 
|---|
|  | 118 | if (k < (T){0}) { | 
|---|
|  | 119 | return 0; | 
|---|
|  | 120 | } | 
|---|
|  | 121 | return eta * v - (eta * dotValue + sqrt(k)) * n; | 
|---|
|  | 122 | } | 
|---|
|  | 123 |  | 
|---|
|  | 124 | // Given a perturbed normal and a geometric normal, | 
|---|
|  | 125 | // flip the perturbed normal if the geometric normal is pointing away | 
|---|
|  | 126 | // from the observer. | 
|---|
|  | 127 | // n is the perturbed vector that we want to align | 
|---|
|  | 128 | // i is the incident vector | 
|---|
|  | 129 | // ng is the geometric normal of the surface | 
|---|
| [fd54fef] | 130 | forall(T | lessthan(T) | zeroinit(T), V | dottable(V, T) | negate(V)) | 
|---|
| [3376ec9] | 131 | V faceforward(V n, V i, V ng) { | 
|---|
|  | 132 | return dot(ng, i) < (T){0} ? n : -n; | 
|---|
|  | 133 | } | 
|---|
|  | 134 |  | 
|---|
|  | 135 | } // inline | 
|---|