source: libcfa/src/stdlib.cfa@ c20ba169

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since c20ba169 was cfbc703d, checked in by Peter A. Buhr <pabuhr@…>, 5 years ago

add resize and more "alloc" routines

  • Property mode set to 100644
File size: 9.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib.c --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:10:29 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Mar 31 13:26:46 2020
13// Update Count : 495
14//
15
16#include "stdlib.hfa"
17
18//---------------------------------------
19
20#define _XOPEN_SOURCE 600 // posix_memalign, *rand48
21#include <string.h> // memcpy, memset
22//#include <math.h> // fabsf, fabs, fabsl
23#include <complex.h> // _Complex_I
24#include <assert.h>
25
26//---------------------------------------
27
28forall( dtype T | sized(T) ) {
29 T * alloc_set( T ptr[], size_t dim, char fill ) { // realloc array with fill
30 size_t olen = malloc_usable_size( ptr ); // current allocation
31 void * nptr = (void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc
32 size_t nlen = malloc_usable_size( nptr ); // new allocation
33 if ( nlen > olen ) { // larger ?
34 memset( (char *)nptr + olen, (int)fill, nlen - olen ); // initialize added storage
35 } // if
36 return (T *)nptr;
37 } // alloc_set
38
39 T * alloc_set( T ptr[], size_t dim, T fill ) { // realloc array with fill
40 size_t olen = malloc_usable_size( ptr ); // current allocation
41 void * nptr = (void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc
42 size_t nlen = malloc_usable_size( nptr ); // new allocation
43 if ( nlen > olen ) { // larger ?
44 for ( i; dim ) { memcpy( &ptr[i], &fill, sizeof(T) ); } // initialize with fill value
45 } // if
46 return (T *)nptr;
47 } // alloc_align_set
48
49 T * alloc_align_set( T ptr[], size_t align, char fill ) { // aligned realloc with fill
50 size_t olen = malloc_usable_size( ptr ); // current allocation
51 void * nptr = (void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc
52 // char * nptr = alloc_align( ptr, align );
53 size_t nlen = malloc_usable_size( nptr ); // new allocation
54 if ( nlen > olen ) { // larger ?
55 memset( (char *)nptr + olen, (int)fill, nlen - olen ); // initialize added storage
56 } // if
57 return (T *)nptr;
58 } // alloc_align_set
59
60 T * alloc_align_set( T ptr[], size_t align, size_t dim, T fill ) { // aligned realloc with fill
61 size_t olen = malloc_usable_size( ptr ); // current allocation
62 void * nptr = (void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc
63 // char * nptr = alloc_align( ptr, align );
64 size_t nlen = malloc_usable_size( nptr ); // new allocation
65 if ( nlen > olen ) { // larger ?
66 for ( i; dim ) { memcpy( &ptr[i], &fill, sizeof(T) ); } // initialize with fill value
67 } // if
68 return (T *)nptr;
69 } // alloc_align_set
70} // distribution
71
72// allocation/deallocation and constructor/destructor, non-array types
73forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } )
74T * new( Params p ) {
75 return &(*malloc()){ p }; // run constructor
76} // new
77
78forall( dtype T | sized(T) | { void ^?{}( T & ); } )
79void delete( T * ptr ) {
80 if ( ptr ) { // ignore null
81 ^(*ptr){}; // run destructor
82 free( ptr );
83 } // if
84} // delete
85
86forall( dtype T, ttype Params | sized(T) | { void ^?{}( T & ); void delete( Params ); } )
87void delete( T * ptr, Params rest ) {
88 if ( ptr ) { // ignore null
89 ^(*ptr){}; // run destructor
90 free( ptr );
91 } // if
92 delete( rest );
93} // delete
94
95
96// allocation/deallocation and constructor/destructor, array types
97forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } )
98T * anew( size_t dim, Params p ) {
99 T * arr = alloc( dim );
100 for ( unsigned int i = 0; i < dim; i += 1 ) {
101 (arr[i]){ p }; // run constructor
102 } // for
103 return arr;
104} // anew
105
106forall( dtype T | sized(T) | { void ^?{}( T & ); } )
107void adelete( size_t dim, T arr[] ) {
108 if ( arr ) { // ignore null
109 for ( int i = dim - 1; i >= 0; i -= 1 ) { // reverse allocation order, must be unsigned
110 ^(arr[i]){}; // run destructor
111 } // for
112 free( arr );
113 } // if
114} // adelete
115
116forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } )
117void adelete( size_t dim, T arr[], Params rest ) {
118 if ( arr ) { // ignore null
119 for ( int i = dim - 1; i >= 0; i -= 1 ) { // reverse allocation order, must be unsigned
120 ^(arr[i]){}; // run destructor
121 } // for
122 free( arr );
123 } // if
124 adelete( rest );
125} // adelete
126
127//---------------------------------------
128
129float _Complex strto( const char sptr[], char ** eptr ) {
130 float re, im;
131 char * eeptr;
132 re = strtof( sptr, &eeptr );
133 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }
134 im = strtof( eeptr, &eeptr );
135 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }
136 if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }
137 return re + im * _Complex_I;
138} // strto
139
140double _Complex strto( const char sptr[], char ** eptr ) {
141 double re, im;
142 char * eeptr;
143 re = strtod( sptr, &eeptr );
144 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }
145 im = strtod( eeptr, &eeptr );
146 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }
147 if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }
148 return re + im * _Complex_I;
149} // strto
150
151long double _Complex strto( const char sptr[], char ** eptr ) {
152 long double re, im;
153 char * eeptr;
154 re = strtold( sptr, &eeptr );
155 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }
156 im = strtold( eeptr, &eeptr );
157 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }
158 if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }
159 return re + im * _Complex_I;
160} // strto
161
162//---------------------------------------
163
164forall( otype E | { int ?<?( E, E ); } ) {
165 E * bsearch( E key, const E * vals, size_t dim ) {
166 int cmp( const void * t1, const void * t2 ) {
167 return *(E *)t1 < *(E *)t2 ? -1 : *(E *)t2 < *(E *)t1 ? 1 : 0;
168 } // cmp
169 return (E *)bsearch( &key, vals, dim, sizeof(E), cmp );
170 } // bsearch
171
172 size_t bsearch( E key, const E * vals, size_t dim ) {
173 E * result = bsearch( key, vals, dim );
174 return result ? result - vals : dim; // pointer subtraction includes sizeof(E)
175 } // bsearch
176
177 size_t bsearchl( E key, const E * vals, size_t dim ) {
178 size_t l = 0, m, h = dim;
179 while ( l < h ) {
180 m = (l + h) / 2;
181 if ( (E &)(vals[m]) < key ) { // cast away const
182 l = m + 1;
183 } else {
184 h = m;
185 } // if
186 } // while
187 return l;
188 } // bsearchl
189
190 E * bsearchl( E key, const E * vals, size_t dim ) {
191 size_t posn = bsearchl( key, vals, dim );
192 return (E *)(&vals[posn]); // cast away const
193 } // bsearchl
194
195 size_t bsearchu( E key, const E * vals, size_t dim ) {
196 size_t l = 0, m, h = dim;
197 while ( l < h ) {
198 m = (l + h) / 2;
199 if ( ! ( key < (E &)(vals[m]) ) ) { // cast away const
200 l = m + 1;
201 } else {
202 h = m;
203 } // if
204 } // while
205 return l;
206 } // bsearchu
207
208 E * bsearchu( E key, const E * vals, size_t dim ) {
209 size_t posn = bsearchu( key, vals, dim );
210 return (E *)(&vals[posn]);
211 } // bsearchu
212
213
214 void qsort( E * vals, size_t dim ) {
215 int cmp( const void * t1, const void * t2 ) {
216 return *(E *)t1 < *(E *)t2 ? -1 : *(E *)t2 < *(E *)t1 ? 1 : 0;
217 } // cmp
218 qsort( vals, dim, sizeof(E), cmp );
219 } // qsort
220} // distribution
221
222
223forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
224 E * bsearch( K key, const E * vals, size_t dim ) {
225 int cmp( const void * t1, const void * t2 ) {
226 return *(K *)t1 < getKey( *(E *)t2 ) ? -1 : getKey( *(E *)t2 ) < *(K *)t1 ? 1 : 0;
227 } // cmp
228 return (E *)bsearch( &key, vals, dim, sizeof(E), cmp );
229 } // bsearch
230
231 size_t bsearch( K key, const E * vals, size_t dim ) {
232 E * result = bsearch( key, vals, dim );
233 return result ? result - vals : dim; // pointer subtraction includes sizeof(E)
234 } // bsearch
235
236 size_t bsearchl( K key, const E * vals, size_t dim ) {
237 size_t l = 0, m, h = dim;
238 while ( l < h ) {
239 m = (l + h) / 2;
240 if ( getKey( vals[m] ) < key ) {
241 l = m + 1;
242 } else {
243 h = m;
244 } // if
245 } // while
246 return l;
247 } // bsearchl
248
249 E * bsearchl( K key, const E * vals, size_t dim ) {
250 size_t posn = bsearchl( key, vals, dim );
251 return (E *)(&vals[posn]); // cast away const
252 } // bsearchl
253
254 size_t bsearchu( K key, const E * vals, size_t dim ) {
255 size_t l = 0, m, h = dim;
256 while ( l < h ) {
257 m = (l + h) / 2;
258 if ( ! ( key < getKey( vals[m] ) ) ) {
259 l = m + 1;
260 } else {
261 h = m;
262 } // if
263 } // while
264 return l;
265 } // bsearchu
266
267 E * bsearchu( K key, const E * vals, size_t dim ) {
268 size_t posn = bsearchu( key, vals, dim );
269 return (E *)(&vals[posn]);
270 } // bsearchu
271} // distribution
272
273//---------------------------------------
274
275extern "C" { // override C version
276 void srandom( unsigned int seed ) { srand48( (long int)seed ); }
277 long int random( void ) { return mrand48(); }
278} // extern "C"
279
280float random( void ) { return (float)drand48(); } // cast otherwise float uses lrand48
281double random( void ) { return drand48(); }
282float _Complex random( void ) { return (float)drand48() + (float _Complex)(drand48() * _Complex_I); }
283double _Complex random( void ) { return drand48() + (double _Complex)(drand48() * _Complex_I); }
284long double _Complex random( void ) { return (long double)drand48() + (long double _Complex)(drand48() * _Complex_I); }
285
286//---------------------------------------
287
288bool threading_enabled(void) __attribute__((weak)) {
289 return false;
290}
291
292// Local Variables: //
293// tab-width: 4 //
294// End: //
Note: See TracBrowser for help on using the repository browser.