1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // stdlib.c --
|
---|
8 | //
|
---|
9 | // Author : Peter A. Buhr
|
---|
10 | // Created On : Thu Jan 28 17:10:29 2016
|
---|
11 | // Last Modified By : Andrew Beach
|
---|
12 | // Last Modified On : Tue Jun 2 16:46:00 2020
|
---|
13 | // Update Count : 500
|
---|
14 | //
|
---|
15 |
|
---|
16 | #include "stdlib.hfa"
|
---|
17 |
|
---|
18 | //---------------------------------------
|
---|
19 |
|
---|
20 | #define _XOPEN_SOURCE 600 // posix_memalign, *rand48
|
---|
21 | #include <string.h> // memcpy, memset
|
---|
22 | //#include <math.h> // fabsf, fabs, fabsl
|
---|
23 | #include <complex.h> // _Complex_I
|
---|
24 | #include <assert.h>
|
---|
25 |
|
---|
26 | //---------------------------------------
|
---|
27 |
|
---|
28 | forall( dtype T | sized(T) ) {
|
---|
29 | T * alloc_set( T ptr[], size_t dim, char fill ) { // realloc array with fill
|
---|
30 | size_t olen = malloc_usable_size( ptr ); // current allocation
|
---|
31 | void * nptr = (void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc
|
---|
32 | size_t nlen = malloc_usable_size( nptr ); // new allocation
|
---|
33 | if ( nlen > olen ) { // larger ?
|
---|
34 | memset( (char *)nptr + olen, (int)fill, nlen - olen ); // initialize added storage
|
---|
35 | } // if
|
---|
36 | return (T *)nptr;
|
---|
37 | } // alloc_set
|
---|
38 |
|
---|
39 | T * alloc_set( T ptr[], size_t dim, T fill ) { // realloc array with fill
|
---|
40 | size_t olen = malloc_usable_size( ptr ); // current allocation
|
---|
41 | void * nptr = (void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc
|
---|
42 | size_t nlen = malloc_usable_size( nptr ); // new allocation
|
---|
43 | if ( nlen > olen ) { // larger ?
|
---|
44 | for ( i; malloc_size( ptr ) / sizeof(T) ~ dim ) {
|
---|
45 | memcpy( &ptr[i], &fill, sizeof(T) ); // initialize with fill value
|
---|
46 | } // for
|
---|
47 | } // if
|
---|
48 | return (T *)nptr;
|
---|
49 | } // alloc_align_set
|
---|
50 |
|
---|
51 | T * alloc_align_set( T ptr[], size_t align, char fill ) { // aligned realloc with fill
|
---|
52 | size_t olen = malloc_usable_size( ptr ); // current allocation
|
---|
53 | void * nptr = (void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc
|
---|
54 | // char * nptr = alloc_align( ptr, align );
|
---|
55 | size_t nlen = malloc_usable_size( nptr ); // new allocation
|
---|
56 | if ( nlen > olen ) { // larger ?
|
---|
57 | memset( (char *)nptr + olen, (int)fill, nlen - olen ); // initialize added storage
|
---|
58 | } // if
|
---|
59 | return (T *)nptr;
|
---|
60 | } // alloc_align_set
|
---|
61 |
|
---|
62 | T * alloc_align_set( T ptr[], size_t align, size_t dim, T fill ) { // aligned realloc with fill
|
---|
63 | size_t olen = malloc_usable_size( ptr ); // current allocation
|
---|
64 | void * nptr = (void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc
|
---|
65 | // char * nptr = alloc_align( ptr, align );
|
---|
66 | size_t nlen = malloc_usable_size( nptr ); // new allocation
|
---|
67 | if ( nlen > olen ) { // larger ?
|
---|
68 | for ( i; dim ) { memcpy( &ptr[i], &fill, sizeof(T) ); } // initialize with fill value
|
---|
69 | } // if
|
---|
70 | return (T *)nptr;
|
---|
71 | } // alloc_align_set
|
---|
72 | } // distribution
|
---|
73 |
|
---|
74 | // allocation/deallocation and constructor/destructor, non-array types
|
---|
75 | forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } )
|
---|
76 | T * new( Params p ) {
|
---|
77 | return &(*malloc()){ p }; // run constructor
|
---|
78 | } // new
|
---|
79 |
|
---|
80 | forall( dtype T | { void ^?{}( T & ); } )
|
---|
81 | void delete( T * ptr ) {
|
---|
82 | if ( ptr ) { // ignore null
|
---|
83 | ^(*ptr){}; // run destructor
|
---|
84 | free( ptr );
|
---|
85 | } // if
|
---|
86 | } // delete
|
---|
87 |
|
---|
88 | forall( dtype T, ttype Params | { void ^?{}( T & ); void delete( Params ); } )
|
---|
89 | void delete( T * ptr, Params rest ) {
|
---|
90 | delete( ptr );
|
---|
91 | delete( rest );
|
---|
92 | } // delete
|
---|
93 |
|
---|
94 |
|
---|
95 | // allocation/deallocation and constructor/destructor, array types
|
---|
96 | forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } )
|
---|
97 | T * anew( size_t dim, Params p ) {
|
---|
98 | T * arr = alloc( dim );
|
---|
99 | for ( unsigned int i = 0; i < dim; i += 1 ) {
|
---|
100 | (arr[i]){ p }; // run constructor
|
---|
101 | } // for
|
---|
102 | return arr;
|
---|
103 | } // anew
|
---|
104 |
|
---|
105 | forall( dtype T | sized(T) | { void ^?{}( T & ); } )
|
---|
106 | void adelete( size_t dim, T arr[] ) {
|
---|
107 | if ( arr ) { // ignore null
|
---|
108 | for ( int i = dim - 1; i >= 0; i -= 1 ) { // reverse allocation order, must be unsigned
|
---|
109 | ^(arr[i]){}; // run destructor
|
---|
110 | } // for
|
---|
111 | free( arr );
|
---|
112 | } // if
|
---|
113 | } // adelete
|
---|
114 |
|
---|
115 | forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } )
|
---|
116 | void adelete( size_t dim, T arr[], Params rest ) {
|
---|
117 | if ( arr ) { // ignore null
|
---|
118 | for ( int i = dim - 1; i >= 0; i -= 1 ) { // reverse allocation order, must be unsigned
|
---|
119 | ^(arr[i]){}; // run destructor
|
---|
120 | } // for
|
---|
121 | free( arr );
|
---|
122 | } // if
|
---|
123 | adelete( rest );
|
---|
124 | } // adelete
|
---|
125 |
|
---|
126 | //---------------------------------------
|
---|
127 |
|
---|
128 | float _Complex strto( const char sptr[], char ** eptr ) {
|
---|
129 | float re, im;
|
---|
130 | char * eeptr;
|
---|
131 | re = strtof( sptr, &eeptr );
|
---|
132 | if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }
|
---|
133 | im = strtof( eeptr, &eeptr );
|
---|
134 | if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }
|
---|
135 | if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }
|
---|
136 | return re + im * _Complex_I;
|
---|
137 | } // strto
|
---|
138 |
|
---|
139 | double _Complex strto( const char sptr[], char ** eptr ) {
|
---|
140 | double re, im;
|
---|
141 | char * eeptr;
|
---|
142 | re = strtod( sptr, &eeptr );
|
---|
143 | if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }
|
---|
144 | im = strtod( eeptr, &eeptr );
|
---|
145 | if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }
|
---|
146 | if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }
|
---|
147 | return re + im * _Complex_I;
|
---|
148 | } // strto
|
---|
149 |
|
---|
150 | long double _Complex strto( const char sptr[], char ** eptr ) {
|
---|
151 | long double re, im;
|
---|
152 | char * eeptr;
|
---|
153 | re = strtold( sptr, &eeptr );
|
---|
154 | if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }
|
---|
155 | im = strtold( eeptr, &eeptr );
|
---|
156 | if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }
|
---|
157 | if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }
|
---|
158 | return re + im * _Complex_I;
|
---|
159 | } // strto
|
---|
160 |
|
---|
161 | //---------------------------------------
|
---|
162 |
|
---|
163 | forall( otype E | { int ?<?( E, E ); } ) {
|
---|
164 | E * bsearch( E key, const E * vals, size_t dim ) {
|
---|
165 | int cmp( const void * t1, const void * t2 ) {
|
---|
166 | return *(E *)t1 < *(E *)t2 ? -1 : *(E *)t2 < *(E *)t1 ? 1 : 0;
|
---|
167 | } // cmp
|
---|
168 | return (E *)bsearch( &key, vals, dim, sizeof(E), cmp );
|
---|
169 | } // bsearch
|
---|
170 |
|
---|
171 | size_t bsearch( E key, const E * vals, size_t dim ) {
|
---|
172 | E * result = bsearch( key, vals, dim );
|
---|
173 | return result ? result - vals : dim; // pointer subtraction includes sizeof(E)
|
---|
174 | } // bsearch
|
---|
175 |
|
---|
176 | size_t bsearchl( E key, const E * vals, size_t dim ) {
|
---|
177 | size_t l = 0, m, h = dim;
|
---|
178 | while ( l < h ) {
|
---|
179 | m = (l + h) / 2;
|
---|
180 | if ( (E &)(vals[m]) < key ) { // cast away const
|
---|
181 | l = m + 1;
|
---|
182 | } else {
|
---|
183 | h = m;
|
---|
184 | } // if
|
---|
185 | } // while
|
---|
186 | return l;
|
---|
187 | } // bsearchl
|
---|
188 |
|
---|
189 | E * bsearchl( E key, const E * vals, size_t dim ) {
|
---|
190 | size_t posn = bsearchl( key, vals, dim );
|
---|
191 | return (E *)(&vals[posn]); // cast away const
|
---|
192 | } // bsearchl
|
---|
193 |
|
---|
194 | size_t bsearchu( E key, const E * vals, size_t dim ) {
|
---|
195 | size_t l = 0, m, h = dim;
|
---|
196 | while ( l < h ) {
|
---|
197 | m = (l + h) / 2;
|
---|
198 | if ( ! ( key < (E &)(vals[m]) ) ) { // cast away const
|
---|
199 | l = m + 1;
|
---|
200 | } else {
|
---|
201 | h = m;
|
---|
202 | } // if
|
---|
203 | } // while
|
---|
204 | return l;
|
---|
205 | } // bsearchu
|
---|
206 |
|
---|
207 | E * bsearchu( E key, const E * vals, size_t dim ) {
|
---|
208 | size_t posn = bsearchu( key, vals, dim );
|
---|
209 | return (E *)(&vals[posn]);
|
---|
210 | } // bsearchu
|
---|
211 |
|
---|
212 |
|
---|
213 | void qsort( E * vals, size_t dim ) {
|
---|
214 | int cmp( const void * t1, const void * t2 ) {
|
---|
215 | return *(E *)t1 < *(E *)t2 ? -1 : *(E *)t2 < *(E *)t1 ? 1 : 0;
|
---|
216 | } // cmp
|
---|
217 | qsort( vals, dim, sizeof(E), cmp );
|
---|
218 | } // qsort
|
---|
219 | } // distribution
|
---|
220 |
|
---|
221 |
|
---|
222 | forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
|
---|
223 | E * bsearch( K key, const E * vals, size_t dim ) {
|
---|
224 | int cmp( const void * t1, const void * t2 ) {
|
---|
225 | return *(K *)t1 < getKey( *(E *)t2 ) ? -1 : getKey( *(E *)t2 ) < *(K *)t1 ? 1 : 0;
|
---|
226 | } // cmp
|
---|
227 | return (E *)bsearch( &key, vals, dim, sizeof(E), cmp );
|
---|
228 | } // bsearch
|
---|
229 |
|
---|
230 | size_t bsearch( K key, const E * vals, size_t dim ) {
|
---|
231 | E * result = bsearch( key, vals, dim );
|
---|
232 | return result ? result - vals : dim; // pointer subtraction includes sizeof(E)
|
---|
233 | } // bsearch
|
---|
234 |
|
---|
235 | size_t bsearchl( K key, const E * vals, size_t dim ) {
|
---|
236 | size_t l = 0, m, h = dim;
|
---|
237 | while ( l < h ) {
|
---|
238 | m = (l + h) / 2;
|
---|
239 | if ( getKey( vals[m] ) < key ) {
|
---|
240 | l = m + 1;
|
---|
241 | } else {
|
---|
242 | h = m;
|
---|
243 | } // if
|
---|
244 | } // while
|
---|
245 | return l;
|
---|
246 | } // bsearchl
|
---|
247 |
|
---|
248 | E * bsearchl( K key, const E * vals, size_t dim ) {
|
---|
249 | size_t posn = bsearchl( key, vals, dim );
|
---|
250 | return (E *)(&vals[posn]); // cast away const
|
---|
251 | } // bsearchl
|
---|
252 |
|
---|
253 | size_t bsearchu( K key, const E * vals, size_t dim ) {
|
---|
254 | size_t l = 0, m, h = dim;
|
---|
255 | while ( l < h ) {
|
---|
256 | m = (l + h) / 2;
|
---|
257 | if ( ! ( key < getKey( vals[m] ) ) ) {
|
---|
258 | l = m + 1;
|
---|
259 | } else {
|
---|
260 | h = m;
|
---|
261 | } // if
|
---|
262 | } // while
|
---|
263 | return l;
|
---|
264 | } // bsearchu
|
---|
265 |
|
---|
266 | E * bsearchu( K key, const E * vals, size_t dim ) {
|
---|
267 | size_t posn = bsearchu( key, vals, dim );
|
---|
268 | return (E *)(&vals[posn]);
|
---|
269 | } // bsearchu
|
---|
270 | } // distribution
|
---|
271 |
|
---|
272 | //---------------------------------------
|
---|
273 |
|
---|
274 | extern "C" { // override C version
|
---|
275 | void srandom( unsigned int seed ) { srand48( (long int)seed ); }
|
---|
276 | long int random( void ) { return mrand48(); } // GENERATES POSITIVE AND NEGATIVE VALUES
|
---|
277 | } // extern "C"
|
---|
278 |
|
---|
279 | float random( void ) { return (float)drand48(); } // cast otherwise float uses lrand48
|
---|
280 | double random( void ) { return drand48(); }
|
---|
281 | float _Complex random( void ) { return (float)drand48() + (float _Complex)(drand48() * _Complex_I); }
|
---|
282 | double _Complex random( void ) { return drand48() + (double _Complex)(drand48() * _Complex_I); }
|
---|
283 | long double _Complex random( void ) { return (long double)drand48() + (long double _Complex)(drand48() * _Complex_I); }
|
---|
284 |
|
---|
285 | //---------------------------------------
|
---|
286 |
|
---|
287 | bool threading_enabled(void) __attribute__((weak)) {
|
---|
288 | return false;
|
---|
289 | }
|
---|
290 |
|
---|
291 | // Local Variables: //
|
---|
292 | // tab-width: 4 //
|
---|
293 | // End: //
|
---|