source: libcfa/src/stdlib.cfa@ d34575b

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since d34575b was aabb846, checked in by Andrew Beach <ajbeach@…>, 5 years ago

Added a first draft of the memory management library module.

  • Property mode set to 100644
File size: 9.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib.c --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:10:29 2016
11// Last Modified By : Andrew Beach
12// Last Modified On : Tue Jun 2 16:46:00 2020
13// Update Count : 500
14//
15
16#include "stdlib.hfa"
17
18//---------------------------------------
19
20#define _XOPEN_SOURCE 600 // posix_memalign, *rand48
21#include <string.h> // memcpy, memset
22//#include <math.h> // fabsf, fabs, fabsl
23#include <complex.h> // _Complex_I
24#include <assert.h>
25
26//---------------------------------------
27
28forall( dtype T | sized(T) ) {
29 T * alloc_set( T ptr[], size_t dim, char fill ) { // realloc array with fill
30 size_t olen = malloc_usable_size( ptr ); // current allocation
31 void * nptr = (void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc
32 size_t nlen = malloc_usable_size( nptr ); // new allocation
33 if ( nlen > olen ) { // larger ?
34 memset( (char *)nptr + olen, (int)fill, nlen - olen ); // initialize added storage
35 } // if
36 return (T *)nptr;
37 } // alloc_set
38
39 T * alloc_set( T ptr[], size_t dim, T fill ) { // realloc array with fill
40 size_t olen = malloc_usable_size( ptr ); // current allocation
41 void * nptr = (void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc
42 size_t nlen = malloc_usable_size( nptr ); // new allocation
43 if ( nlen > olen ) { // larger ?
44 for ( i; malloc_size( ptr ) / sizeof(T) ~ dim ) {
45 memcpy( &ptr[i], &fill, sizeof(T) ); // initialize with fill value
46 } // for
47 } // if
48 return (T *)nptr;
49 } // alloc_align_set
50
51 T * alloc_align_set( T ptr[], size_t align, char fill ) { // aligned realloc with fill
52 size_t olen = malloc_usable_size( ptr ); // current allocation
53 void * nptr = (void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc
54 // char * nptr = alloc_align( ptr, align );
55 size_t nlen = malloc_usable_size( nptr ); // new allocation
56 if ( nlen > olen ) { // larger ?
57 memset( (char *)nptr + olen, (int)fill, nlen - olen ); // initialize added storage
58 } // if
59 return (T *)nptr;
60 } // alloc_align_set
61
62 T * alloc_align_set( T ptr[], size_t align, size_t dim, T fill ) { // aligned realloc with fill
63 size_t olen = malloc_usable_size( ptr ); // current allocation
64 void * nptr = (void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc
65 // char * nptr = alloc_align( ptr, align );
66 size_t nlen = malloc_usable_size( nptr ); // new allocation
67 if ( nlen > olen ) { // larger ?
68 for ( i; dim ) { memcpy( &ptr[i], &fill, sizeof(T) ); } // initialize with fill value
69 } // if
70 return (T *)nptr;
71 } // alloc_align_set
72} // distribution
73
74// allocation/deallocation and constructor/destructor, non-array types
75forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } )
76T * new( Params p ) {
77 return &(*malloc()){ p }; // run constructor
78} // new
79
80forall( dtype T | { void ^?{}( T & ); } )
81void delete( T * ptr ) {
82 if ( ptr ) { // ignore null
83 ^(*ptr){}; // run destructor
84 free( ptr );
85 } // if
86} // delete
87
88forall( dtype T, ttype Params | { void ^?{}( T & ); void delete( Params ); } )
89void delete( T * ptr, Params rest ) {
90 delete( ptr );
91 delete( rest );
92} // delete
93
94
95// allocation/deallocation and constructor/destructor, array types
96forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } )
97T * anew( size_t dim, Params p ) {
98 T * arr = alloc( dim );
99 for ( unsigned int i = 0; i < dim; i += 1 ) {
100 (arr[i]){ p }; // run constructor
101 } // for
102 return arr;
103} // anew
104
105forall( dtype T | sized(T) | { void ^?{}( T & ); } )
106void adelete( size_t dim, T arr[] ) {
107 if ( arr ) { // ignore null
108 for ( int i = dim - 1; i >= 0; i -= 1 ) { // reverse allocation order, must be unsigned
109 ^(arr[i]){}; // run destructor
110 } // for
111 free( arr );
112 } // if
113} // adelete
114
115forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } )
116void adelete( size_t dim, T arr[], Params rest ) {
117 if ( arr ) { // ignore null
118 for ( int i = dim - 1; i >= 0; i -= 1 ) { // reverse allocation order, must be unsigned
119 ^(arr[i]){}; // run destructor
120 } // for
121 free( arr );
122 } // if
123 adelete( rest );
124} // adelete
125
126//---------------------------------------
127
128float _Complex strto( const char sptr[], char ** eptr ) {
129 float re, im;
130 char * eeptr;
131 re = strtof( sptr, &eeptr );
132 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }
133 im = strtof( eeptr, &eeptr );
134 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }
135 if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }
136 return re + im * _Complex_I;
137} // strto
138
139double _Complex strto( const char sptr[], char ** eptr ) {
140 double re, im;
141 char * eeptr;
142 re = strtod( sptr, &eeptr );
143 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }
144 im = strtod( eeptr, &eeptr );
145 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }
146 if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }
147 return re + im * _Complex_I;
148} // strto
149
150long double _Complex strto( const char sptr[], char ** eptr ) {
151 long double re, im;
152 char * eeptr;
153 re = strtold( sptr, &eeptr );
154 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }
155 im = strtold( eeptr, &eeptr );
156 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }
157 if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }
158 return re + im * _Complex_I;
159} // strto
160
161//---------------------------------------
162
163forall( otype E | { int ?<?( E, E ); } ) {
164 E * bsearch( E key, const E * vals, size_t dim ) {
165 int cmp( const void * t1, const void * t2 ) {
166 return *(E *)t1 < *(E *)t2 ? -1 : *(E *)t2 < *(E *)t1 ? 1 : 0;
167 } // cmp
168 return (E *)bsearch( &key, vals, dim, sizeof(E), cmp );
169 } // bsearch
170
171 size_t bsearch( E key, const E * vals, size_t dim ) {
172 E * result = bsearch( key, vals, dim );
173 return result ? result - vals : dim; // pointer subtraction includes sizeof(E)
174 } // bsearch
175
176 size_t bsearchl( E key, const E * vals, size_t dim ) {
177 size_t l = 0, m, h = dim;
178 while ( l < h ) {
179 m = (l + h) / 2;
180 if ( (E &)(vals[m]) < key ) { // cast away const
181 l = m + 1;
182 } else {
183 h = m;
184 } // if
185 } // while
186 return l;
187 } // bsearchl
188
189 E * bsearchl( E key, const E * vals, size_t dim ) {
190 size_t posn = bsearchl( key, vals, dim );
191 return (E *)(&vals[posn]); // cast away const
192 } // bsearchl
193
194 size_t bsearchu( E key, const E * vals, size_t dim ) {
195 size_t l = 0, m, h = dim;
196 while ( l < h ) {
197 m = (l + h) / 2;
198 if ( ! ( key < (E &)(vals[m]) ) ) { // cast away const
199 l = m + 1;
200 } else {
201 h = m;
202 } // if
203 } // while
204 return l;
205 } // bsearchu
206
207 E * bsearchu( E key, const E * vals, size_t dim ) {
208 size_t posn = bsearchu( key, vals, dim );
209 return (E *)(&vals[posn]);
210 } // bsearchu
211
212
213 void qsort( E * vals, size_t dim ) {
214 int cmp( const void * t1, const void * t2 ) {
215 return *(E *)t1 < *(E *)t2 ? -1 : *(E *)t2 < *(E *)t1 ? 1 : 0;
216 } // cmp
217 qsort( vals, dim, sizeof(E), cmp );
218 } // qsort
219} // distribution
220
221
222forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
223 E * bsearch( K key, const E * vals, size_t dim ) {
224 int cmp( const void * t1, const void * t2 ) {
225 return *(K *)t1 < getKey( *(E *)t2 ) ? -1 : getKey( *(E *)t2 ) < *(K *)t1 ? 1 : 0;
226 } // cmp
227 return (E *)bsearch( &key, vals, dim, sizeof(E), cmp );
228 } // bsearch
229
230 size_t bsearch( K key, const E * vals, size_t dim ) {
231 E * result = bsearch( key, vals, dim );
232 return result ? result - vals : dim; // pointer subtraction includes sizeof(E)
233 } // bsearch
234
235 size_t bsearchl( K key, const E * vals, size_t dim ) {
236 size_t l = 0, m, h = dim;
237 while ( l < h ) {
238 m = (l + h) / 2;
239 if ( getKey( vals[m] ) < key ) {
240 l = m + 1;
241 } else {
242 h = m;
243 } // if
244 } // while
245 return l;
246 } // bsearchl
247
248 E * bsearchl( K key, const E * vals, size_t dim ) {
249 size_t posn = bsearchl( key, vals, dim );
250 return (E *)(&vals[posn]); // cast away const
251 } // bsearchl
252
253 size_t bsearchu( K key, const E * vals, size_t dim ) {
254 size_t l = 0, m, h = dim;
255 while ( l < h ) {
256 m = (l + h) / 2;
257 if ( ! ( key < getKey( vals[m] ) ) ) {
258 l = m + 1;
259 } else {
260 h = m;
261 } // if
262 } // while
263 return l;
264 } // bsearchu
265
266 E * bsearchu( K key, const E * vals, size_t dim ) {
267 size_t posn = bsearchu( key, vals, dim );
268 return (E *)(&vals[posn]);
269 } // bsearchu
270} // distribution
271
272//---------------------------------------
273
274extern "C" { // override C version
275 void srandom( unsigned int seed ) { srand48( (long int)seed ); }
276 long int random( void ) { return mrand48(); } // GENERATES POSITIVE AND NEGATIVE VALUES
277} // extern "C"
278
279float random( void ) { return (float)drand48(); } // cast otherwise float uses lrand48
280double random( void ) { return drand48(); }
281float _Complex random( void ) { return (float)drand48() + (float _Complex)(drand48() * _Complex_I); }
282double _Complex random( void ) { return drand48() + (double _Complex)(drand48() * _Complex_I); }
283long double _Complex random( void ) { return (long double)drand48() + (long double _Complex)(drand48() * _Complex_I); }
284
285//---------------------------------------
286
287bool threading_enabled(void) __attribute__((weak)) {
288 return false;
289}
290
291// Local Variables: //
292// tab-width: 4 //
293// End: //
Note: See TracBrowser for help on using the repository browser.