1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // rational -- Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number) |
---|
8 | // and the denominator (bottom number) are whole numbers. When creating and computing with rational numbers, results |
---|
9 | // are constantly reduced to keep the numerator and denominator as small as possible. |
---|
10 | // |
---|
11 | // Author : Peter A. Buhr |
---|
12 | // Created On : Wed Apr 6 17:56:25 2016 |
---|
13 | // Last Modified By : Peter A. Buhr |
---|
14 | // Last Modified On : Wed Nov 27 18:11:07 2024 |
---|
15 | // Update Count : 128 |
---|
16 | // |
---|
17 | |
---|
18 | #pragma once |
---|
19 | |
---|
20 | #include "iostream.hfa" |
---|
21 | #include "math.trait.hfa" // arithmetic |
---|
22 | |
---|
23 | // Implementation |
---|
24 | |
---|
25 | forall( T ) { |
---|
26 | struct rational { |
---|
27 | T numerator, denominator; // invariant: denominator > 0 |
---|
28 | }; // rational |
---|
29 | } |
---|
30 | |
---|
31 | // Arithmetic, Relational |
---|
32 | |
---|
33 | forall( T | arithmetic( T ) ) { |
---|
34 | // constructors |
---|
35 | |
---|
36 | void ?{}( rational(T) & r ); |
---|
37 | void ?{}( rational(T) & r, zero_t ); |
---|
38 | void ?{}( rational(T) & r, one_t ); |
---|
39 | void ?{}( rational(T) & r, T n ); |
---|
40 | void ?{}( rational(T) & r, T n, T d ); |
---|
41 | |
---|
42 | // numerator/denominator getter |
---|
43 | |
---|
44 | T numerator( rational(T) r ); |
---|
45 | T denominator( rational(T) r ); |
---|
46 | [ T, T ] ?=?( & [ T, T ] dst, rational(T) src ); |
---|
47 | |
---|
48 | // numerator/denominator setter |
---|
49 | |
---|
50 | T numerator( rational(T) r, T n ); |
---|
51 | T denominator( rational(T) r, T d ); |
---|
52 | |
---|
53 | // comparison |
---|
54 | |
---|
55 | int ?==?( rational(T) l, rational(T) r ); |
---|
56 | int ?!=?( rational(T) l, rational(T) r ); |
---|
57 | int ?!=?( rational(T) l, zero_t ); // => ! |
---|
58 | int ?<?( rational(T) l, rational(T) r ); |
---|
59 | int ?<=?( rational(T) l, rational(T) r ); |
---|
60 | int ?>?( rational(T) l, rational(T) r ); |
---|
61 | int ?>=?( rational(T) l, rational(T) r ); |
---|
62 | |
---|
63 | // arithmetic |
---|
64 | |
---|
65 | rational(T) +?( rational(T) r ); |
---|
66 | rational(T) -?( rational(T) r ); |
---|
67 | rational(T) ?+?( rational(T) l, rational(T) r ); |
---|
68 | rational(T) ?+=?( rational(T) & l, rational(T) r ); |
---|
69 | rational(T) ?+=?( rational(T) & l, one_t ); // => ++?, ?++ |
---|
70 | rational(T) ?-?( rational(T) l, rational(T) r ); |
---|
71 | rational(T) ?-=?( rational(T) & l, rational(T) r ); |
---|
72 | rational(T) ?-=?( rational(T) & l, one_t ); // => --?, ?-- |
---|
73 | rational(T) ?*?( rational(T) l, rational(T) r ); |
---|
74 | rational(T) ?*=?( rational(T) & l, rational(T) r ); |
---|
75 | rational(T) ?/?( rational(T) l, rational(T) r ); |
---|
76 | rational(T) ?/=?( rational(T) & l, rational(T) r ); |
---|
77 | } // distribution |
---|
78 | |
---|
79 | // I/O |
---|
80 | |
---|
81 | forall( T ) { |
---|
82 | forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } | arithmetic( T ) ) |
---|
83 | istype & ?|?( istype &, rational(T) & ); |
---|
84 | |
---|
85 | forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) { |
---|
86 | ostype & ?|?( ostype &, rational(T) ); |
---|
87 | OSTYPE_VOID( rational(T) ); |
---|
88 | } // distribution |
---|
89 | } // distribution |
---|
90 | |
---|
91 | // Exponentiation |
---|
92 | |
---|
93 | forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) { |
---|
94 | rational(T) ?\?( rational(T) x, long int y ); |
---|
95 | rational(T) ?\=?( rational(T) & x, long int y ); |
---|
96 | } // distribution |
---|
97 | |
---|
98 | // Conversion |
---|
99 | |
---|
100 | forall( T | arithmetic( T ) | { double convert( T ); } ) |
---|
101 | double widen( rational(T) r ); |
---|
102 | forall( T | arithmetic( T ) | { double convert( T ); T convert( double );} ) |
---|
103 | rational(T) narrow( double f, T md ); |
---|
104 | |
---|
105 | // Local Variables: // |
---|
106 | // mode: c // |
---|
107 | // tab-width: 4 // |
---|
108 | // End: // |
---|