source: libcfa/src/rational.hfa@ 5a7789f

Last change on this file since 5a7789f was 5454d77, checked in by Peter A. Buhr <pabuhr@…>, 2 years ago

update types to use new void-creation stream macros

  • Property mode set to 100644
File size: 3.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// rational -- Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number)
8// and the denominator (bottom number) are whole numbers. When creating and computing with rational numbers, results
9// are constantly reduced to keep the numerator and denominator as small as possible.
10//
11// Author : Peter A. Buhr
12// Created On : Wed Apr 6 17:56:25 2016
13// Last Modified By : Peter A. Buhr
14// Last Modified On : Tue Jul 18 11:08:24 2023
15// Update Count : 121
16//
17
18#pragma once
19
20#include "iostream.hfa"
21#include "math.trait.hfa" // arithmetic
22
23// implementation
24
25forall( T | arithmetic( T ) ) {
26 struct rational {
27 T numerator, denominator; // invariant: denominator > 0
28 }; // rational
29
30 // constructors
31
32 void ?{}( rational(T) & r );
33 void ?{}( rational(T) & r, zero_t );
34 void ?{}( rational(T) & r, one_t );
35 void ?{}( rational(T) & r, T n );
36 void ?{}( rational(T) & r, T n, T d );
37
38 // numerator/denominator getter
39
40 T numerator( rational(T) r );
41 T denominator( rational(T) r );
42 [ T, T ] ?=?( & [ T, T ] dest, rational(T) src );
43
44 // numerator/denominator setter
45
46 T numerator( rational(T) r, T n );
47 T denominator( rational(T) r, T d );
48
49 // comparison
50
51 int ?==?( rational(T) l, rational(T) r );
52 int ?!=?( rational(T) l, rational(T) r );
53 int ?!=?( rational(T) l, zero_t ); // => !
54 int ?<?( rational(T) l, rational(T) r );
55 int ?<=?( rational(T) l, rational(T) r );
56 int ?>?( rational(T) l, rational(T) r );
57 int ?>=?( rational(T) l, rational(T) r );
58
59 // arithmetic
60
61 rational(T) +?( rational(T) r );
62 rational(T) -?( rational(T) r );
63 rational(T) ?+?( rational(T) l, rational(T) r );
64 rational(T) ?+=?( rational(T) & l, rational(T) r );
65 rational(T) ?+=?( rational(T) & l, one_t ); // => ++?, ?++
66 rational(T) ?-?( rational(T) l, rational(T) r );
67 rational(T) ?-=?( rational(T) & l, rational(T) r );
68 rational(T) ?-=?( rational(T) & l, one_t ); // => --?, ?--
69 rational(T) ?*?( rational(T) l, rational(T) r );
70 rational(T) ?*=?( rational(T) & l, rational(T) r );
71 rational(T) ?/?( rational(T) l, rational(T) r );
72 rational(T) ?/=?( rational(T) & l, rational(T) r );
73
74 // I/O
75 forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } )
76 istype & ?|?( istype &, rational(T) & );
77
78 forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
79 ostype & ?|?( ostype &, rational(T) );
80 OSTYPE_VOID( rational(T) );
81 } // distribution
82} // distribution
83
84forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
85 rational(T) ?\?( rational(T) x, long int y );
86 rational(T) ?\=?( rational(T) & x, long int y );
87} // distribution
88
89// conversion
90forall( T | arithmetic( T ) | { double convert( T ); } )
91double widen( rational(T) r );
92forall( T | arithmetic( T ) | { double convert( T ); T convert( double );} )
93rational(T) narrow( double f, T md );
94
95// Local Variables: //
96// mode: c //
97// tab-width: 4 //
98// End: //
Note: See TracBrowser for help on using the repository browser.