| 1 | //
 | 
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
 | 
|---|
| 5 | // file "LICENCE" distributed with Cforall.
 | 
|---|
| 6 | //
 | 
|---|
| 7 | // rational -- Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number)
 | 
|---|
| 8 | //     and the denominator (bottom number) are whole numbers. When creating and computing with rational numbers, results
 | 
|---|
| 9 | //     are constantly reduced to keep the numerator and denominator as small as possible.
 | 
|---|
| 10 | //
 | 
|---|
| 11 | // Author           : Peter A. Buhr
 | 
|---|
| 12 | // Created On       : Wed Apr  6 17:56:25 2016
 | 
|---|
| 13 | // Last Modified By : Peter A. Buhr
 | 
|---|
| 14 | // Last Modified On : Wed Nov 27 18:11:07 2024
 | 
|---|
| 15 | // Update Count     : 128
 | 
|---|
| 16 | //
 | 
|---|
| 17 | 
 | 
|---|
| 18 | #pragma once
 | 
|---|
| 19 | 
 | 
|---|
| 20 | #include "iostream.hfa"
 | 
|---|
| 21 | #include "math.trait.hfa"                                                               // arithmetic
 | 
|---|
| 22 | 
 | 
|---|
| 23 | // Implementation
 | 
|---|
| 24 | 
 | 
|---|
| 25 | forall( T ) {
 | 
|---|
| 26 |         struct rational {
 | 
|---|
| 27 |                 T numerator, denominator;                                               // invariant: denominator > 0
 | 
|---|
| 28 |         }; // rational
 | 
|---|
| 29 | }
 | 
|---|
| 30 | 
 | 
|---|
| 31 | // Arithmetic, Relational
 | 
|---|
| 32 | 
 | 
|---|
| 33 | forall( T | arithmetic( T ) ) {
 | 
|---|
| 34 |         // constructors
 | 
|---|
| 35 | 
 | 
|---|
| 36 |         void ?{}( rational(T) & r );
 | 
|---|
| 37 |         void ?{}( rational(T) & r, zero_t );
 | 
|---|
| 38 |         void ?{}( rational(T) & r, one_t );
 | 
|---|
| 39 |         void ?{}( rational(T) & r, T n );
 | 
|---|
| 40 |         void ?{}( rational(T) & r, T n, T d );
 | 
|---|
| 41 | 
 | 
|---|
| 42 |         // numerator/denominator getter
 | 
|---|
| 43 | 
 | 
|---|
| 44 |         T numerator( rational(T) r );
 | 
|---|
| 45 |         T denominator( rational(T) r );
 | 
|---|
| 46 |         [ T, T ] ?=?( & [ T, T ] dst, rational(T) src );
 | 
|---|
| 47 | 
 | 
|---|
| 48 |         // numerator/denominator setter
 | 
|---|
| 49 | 
 | 
|---|
| 50 |         T numerator( rational(T) r, T n );
 | 
|---|
| 51 |         T denominator( rational(T) r, T d );
 | 
|---|
| 52 | 
 | 
|---|
| 53 |         // comparison
 | 
|---|
| 54 | 
 | 
|---|
| 55 |         int ?==?( rational(T) l, rational(T) r );
 | 
|---|
| 56 |         int ?!=?( rational(T) l, rational(T) r );
 | 
|---|
| 57 |         int ?!=?( rational(T) l, zero_t );                                      // => !
 | 
|---|
| 58 |         int ?<?( rational(T) l, rational(T) r );
 | 
|---|
| 59 |         int ?<=?( rational(T) l, rational(T) r );
 | 
|---|
| 60 |         int ?>?( rational(T) l, rational(T) r );
 | 
|---|
| 61 |         int ?>=?( rational(T) l, rational(T) r );
 | 
|---|
| 62 | 
 | 
|---|
| 63 |         // arithmetic
 | 
|---|
| 64 | 
 | 
|---|
| 65 |         rational(T) +?( rational(T) r );
 | 
|---|
| 66 |         rational(T) -?( rational(T) r );
 | 
|---|
| 67 |         rational(T) ?+?( rational(T) l, rational(T) r );
 | 
|---|
| 68 |         rational(T) ?+=?( rational(T) & l, rational(T) r );
 | 
|---|
| 69 |         rational(T) ?+=?( rational(T) & l, one_t );                     // => ++?, ?++
 | 
|---|
| 70 |         rational(T) ?-?( rational(T) l, rational(T) r );
 | 
|---|
| 71 |         rational(T) ?-=?( rational(T) & l, rational(T) r );
 | 
|---|
| 72 |         rational(T) ?-=?( rational(T) & l, one_t );                     // => --?, ?--
 | 
|---|
| 73 |         rational(T) ?*?( rational(T) l, rational(T) r );
 | 
|---|
| 74 |         rational(T) ?*=?( rational(T) & l, rational(T) r );
 | 
|---|
| 75 |         rational(T) ?/?( rational(T) l, rational(T) r );
 | 
|---|
| 76 |         rational(T) ?/=?( rational(T) & l, rational(T) r );
 | 
|---|
| 77 | } // distribution
 | 
|---|
| 78 | 
 | 
|---|
| 79 | // I/O
 | 
|---|
| 80 | forall(T | multiplicative(T) | equality(T))
 | 
|---|
| 81 | trait Simple {
 | 
|---|
| 82 |         int ?<?( T, T );
 | 
|---|
| 83 | };
 | 
|---|
| 84 | 
 | 
|---|
| 85 | forall( T ) {
 | 
|---|
| 86 |         forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } | Simple(T) )
 | 
|---|
| 87 |         istype & ?|?( istype &, rational(T) & );
 | 
|---|
| 88 | 
 | 
|---|
| 89 |         forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
 | 
|---|
| 90 |                 ostype & ?|?( ostype &, rational(T) );
 | 
|---|
| 91 |                 OSTYPE_VOID( rational(T) );
 | 
|---|
| 92 |         } // distribution
 | 
|---|
| 93 | } // distribution
 | 
|---|
| 94 | 
 | 
|---|
| 95 | // Exponentiation
 | 
|---|
| 96 | 
 | 
|---|
| 97 | forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
 | 
|---|
| 98 |         rational(T) ?\?( rational(T) x, long int y );
 | 
|---|
| 99 |         rational(T) ?\=?( rational(T) & x, long int y );
 | 
|---|
| 100 | } // distribution
 | 
|---|
| 101 | 
 | 
|---|
| 102 | // Conversion
 | 
|---|
| 103 | 
 | 
|---|
| 104 | forall( T | arithmetic( T ) | { double convert( T ); } )
 | 
|---|
| 105 | double widen( rational(T) r );
 | 
|---|
| 106 | forall( T | arithmetic( T ) | { double convert( T );  T convert( double );} )
 | 
|---|
| 107 | rational(T) narrow( double f, T md );
 | 
|---|
| 108 | 
 | 
|---|
| 109 | // Local Variables: //
 | 
|---|
| 110 | // mode: c //
 | 
|---|
| 111 | // tab-width: 4 //
 | 
|---|
| 112 | // End: //
 | 
|---|