| [bb82c03] | 1 | // | 
|---|
| [53ba273] | 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // The contents of this file are covered under the licence agreement in the | 
|---|
|  | 5 | // file "LICENCE" distributed with Cforall. | 
|---|
| [bb82c03] | 6 | // | 
|---|
| [630a82a] | 7 | // rational -- Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number) | 
|---|
|  | 8 | //     and the denominator (bottom number) are whole numbers. When creating and computing with rational numbers, results | 
|---|
|  | 9 | //     are constantly reduced to keep the numerator and denominator as small as possible. | 
|---|
| [bb82c03] | 10 | // | 
|---|
| [53ba273] | 11 | // Author           : Peter A. Buhr | 
|---|
|  | 12 | // Created On       : Wed Apr  6 17:56:25 2016 | 
|---|
|  | 13 | // Last Modified By : Peter A. Buhr | 
|---|
| [92211d9] | 14 | // Last Modified On : Fri Oct  6 07:52:20 2023 | 
|---|
|  | 15 | // Update Count     : 122 | 
|---|
| [bb82c03] | 16 | // | 
|---|
| [f621a148] | 17 |  | 
|---|
| [53a6c2a] | 18 | #pragma once | 
|---|
| [53ba273] | 19 |  | 
|---|
| [58b6d1b] | 20 | #include "iostream.hfa" | 
|---|
| [541dbc09] | 21 | #include "math.trait.hfa"                                                               // arithmetic | 
|---|
| [561f730] | 22 |  | 
|---|
| [630a82a] | 23 | // implementation | 
|---|
| [561f730] | 24 |  | 
|---|
| [541dbc09] | 25 | forall( T | arithmetic( T ) ) { | 
|---|
|  | 26 | struct rational { | 
|---|
| [5dc4c7e] | 27 | T numerator, denominator;                                               // invariant: denominator > 0 | 
|---|
| [541dbc09] | 28 | }; // rational | 
|---|
| [53ba273] | 29 |  | 
|---|
| [3ce0d440] | 30 | // constructors | 
|---|
| [561f730] | 31 |  | 
|---|
| [541dbc09] | 32 | void ?{}( rational(T) & r ); | 
|---|
|  | 33 | void ?{}( rational(T) & r, zero_t ); | 
|---|
|  | 34 | void ?{}( rational(T) & r, one_t ); | 
|---|
|  | 35 | void ?{}( rational(T) & r, T n ); | 
|---|
|  | 36 | void ?{}( rational(T) & r, T n, T d ); | 
|---|
| [561f730] | 37 |  | 
|---|
| [3ce0d440] | 38 | // numerator/denominator getter | 
|---|
| [561f730] | 39 |  | 
|---|
| [541dbc09] | 40 | T numerator( rational(T) r ); | 
|---|
|  | 41 | T denominator( rational(T) r ); | 
|---|
| [92211d9] | 42 | [ T, T ] ?=?( & [ T, T ] dst, rational(T) src ); | 
|---|
| [561f730] | 43 |  | 
|---|
| [3ce0d440] | 44 | // numerator/denominator setter | 
|---|
| [561f730] | 45 |  | 
|---|
| [541dbc09] | 46 | T numerator( rational(T) r, T n ); | 
|---|
|  | 47 | T denominator( rational(T) r, T d ); | 
|---|
| [630a82a] | 48 |  | 
|---|
| [3ce0d440] | 49 | // comparison | 
|---|
| [561f730] | 50 |  | 
|---|
| [541dbc09] | 51 | int ?==?( rational(T) l, rational(T) r ); | 
|---|
|  | 52 | int ?!=?( rational(T) l, rational(T) r ); | 
|---|
|  | 53 | int ?!=?( rational(T) l, zero_t );                                      // => ! | 
|---|
|  | 54 | int ?<?( rational(T) l, rational(T) r ); | 
|---|
|  | 55 | int ?<=?( rational(T) l, rational(T) r ); | 
|---|
|  | 56 | int ?>?( rational(T) l, rational(T) r ); | 
|---|
|  | 57 | int ?>=?( rational(T) l, rational(T) r ); | 
|---|
| [561f730] | 58 |  | 
|---|
| [3ce0d440] | 59 | // arithmetic | 
|---|
| [53a6c2a] | 60 |  | 
|---|
| [541dbc09] | 61 | rational(T) +?( rational(T) r ); | 
|---|
|  | 62 | rational(T) -?( rational(T) r ); | 
|---|
|  | 63 | rational(T) ?+?( rational(T) l, rational(T) r ); | 
|---|
|  | 64 | rational(T) ?+=?( rational(T) & l, rational(T) r ); | 
|---|
|  | 65 | rational(T) ?+=?( rational(T) & l, one_t );                     // => ++?, ?++ | 
|---|
|  | 66 | rational(T) ?-?( rational(T) l, rational(T) r ); | 
|---|
|  | 67 | rational(T) ?-=?( rational(T) & l, rational(T) r ); | 
|---|
|  | 68 | rational(T) ?-=?( rational(T) & l, one_t );                     // => --?, ?-- | 
|---|
|  | 69 | rational(T) ?*?( rational(T) l, rational(T) r ); | 
|---|
|  | 70 | rational(T) ?*=?( rational(T) & l, rational(T) r ); | 
|---|
|  | 71 | rational(T) ?/?( rational(T) l, rational(T) r ); | 
|---|
|  | 72 | rational(T) ?/=?( rational(T) & l, rational(T) r ); | 
|---|
| [561f730] | 73 |  | 
|---|
| [3ce0d440] | 74 | // I/O | 
|---|
| [5dc4c7e] | 75 | forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } ) | 
|---|
| [541dbc09] | 76 | istype & ?|?( istype &, rational(T) & ); | 
|---|
| [561f730] | 77 |  | 
|---|
| [5dc4c7e] | 78 | forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) { | 
|---|
| [541dbc09] | 79 | ostype & ?|?( ostype &, rational(T) ); | 
|---|
| [5454d77] | 80 | OSTYPE_VOID( rational(T) ); | 
|---|
| [200fcb3] | 81 | } // distribution | 
|---|
| [3ce0d440] | 82 | } // distribution | 
|---|
| [630a82a] | 83 |  | 
|---|
| [541dbc09] | 84 | forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) { | 
|---|
|  | 85 | rational(T) ?\?( rational(T) x, long int y ); | 
|---|
|  | 86 | rational(T) ?\=?( rational(T) & x, long int y ); | 
|---|
| [5dc4c7e] | 87 | } // distribution | 
|---|
| [0087e0e] | 88 |  | 
|---|
| [630a82a] | 89 | // conversion | 
|---|
| [541dbc09] | 90 | forall( T | arithmetic( T ) | { double convert( T ); } ) | 
|---|
|  | 91 | double widen( rational(T) r ); | 
|---|
|  | 92 | forall( T | arithmetic( T ) | { double convert( T );  T convert( double );} ) | 
|---|
|  | 93 | rational(T) narrow( double f, T md ); | 
|---|
| [630a82a] | 94 |  | 
|---|
| [53ba273] | 95 | // Local Variables: // | 
|---|
|  | 96 | // mode: c // | 
|---|
|  | 97 | // tab-width: 4 // | 
|---|
|  | 98 | // End: // | 
|---|