[bb82c03] | 1 | //
|
---|
[53ba273] | 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
| 3 | //
|
---|
| 4 | // The contents of this file are covered under the licence agreement in the
|
---|
| 5 | // file "LICENCE" distributed with Cforall.
|
---|
[bb82c03] | 6 | //
|
---|
[630a82a] | 7 | // rational -- Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number)
|
---|
| 8 | // and the denominator (bottom number) are whole numbers. When creating and computing with rational numbers, results
|
---|
| 9 | // are constantly reduced to keep the numerator and denominator as small as possible.
|
---|
[bb82c03] | 10 | //
|
---|
[53ba273] | 11 | // Author : Peter A. Buhr
|
---|
| 12 | // Created On : Wed Apr 6 17:56:25 2016
|
---|
| 13 | // Last Modified By : Peter A. Buhr
|
---|
[f5e37a4] | 14 | // Last Modified On : Wed Nov 27 18:11:07 2024
|
---|
| 15 | // Update Count : 128
|
---|
[bb82c03] | 16 | //
|
---|
[f621a148] | 17 |
|
---|
[53a6c2a] | 18 | #pragma once
|
---|
[53ba273] | 19 |
|
---|
[58b6d1b] | 20 | #include "iostream.hfa"
|
---|
[541dbc09] | 21 | #include "math.trait.hfa" // arithmetic
|
---|
[561f730] | 22 |
|
---|
[f5e37a4] | 23 | // Implementation
|
---|
[561f730] | 24 |
|
---|
[44e2a5a] | 25 | forall( T ) {
|
---|
[541dbc09] | 26 | struct rational {
|
---|
[5dc4c7e] | 27 | T numerator, denominator; // invariant: denominator > 0
|
---|
[541dbc09] | 28 | }; // rational
|
---|
[44e2a5a] | 29 | }
|
---|
[53ba273] | 30 |
|
---|
[f5e37a4] | 31 | // Arithmetic, Relational
|
---|
| 32 |
|
---|
[44e2a5a] | 33 | forall( T | arithmetic( T ) ) {
|
---|
[3ce0d440] | 34 | // constructors
|
---|
[561f730] | 35 |
|
---|
[541dbc09] | 36 | void ?{}( rational(T) & r );
|
---|
| 37 | void ?{}( rational(T) & r, zero_t );
|
---|
| 38 | void ?{}( rational(T) & r, one_t );
|
---|
| 39 | void ?{}( rational(T) & r, T n );
|
---|
| 40 | void ?{}( rational(T) & r, T n, T d );
|
---|
[561f730] | 41 |
|
---|
[3ce0d440] | 42 | // numerator/denominator getter
|
---|
[561f730] | 43 |
|
---|
[541dbc09] | 44 | T numerator( rational(T) r );
|
---|
| 45 | T denominator( rational(T) r );
|
---|
[92211d9] | 46 | [ T, T ] ?=?( & [ T, T ] dst, rational(T) src );
|
---|
[561f730] | 47 |
|
---|
[3ce0d440] | 48 | // numerator/denominator setter
|
---|
[561f730] | 49 |
|
---|
[541dbc09] | 50 | T numerator( rational(T) r, T n );
|
---|
| 51 | T denominator( rational(T) r, T d );
|
---|
[630a82a] | 52 |
|
---|
[3ce0d440] | 53 | // comparison
|
---|
[561f730] | 54 |
|
---|
[541dbc09] | 55 | int ?==?( rational(T) l, rational(T) r );
|
---|
| 56 | int ?!=?( rational(T) l, rational(T) r );
|
---|
| 57 | int ?!=?( rational(T) l, zero_t ); // => !
|
---|
| 58 | int ?<?( rational(T) l, rational(T) r );
|
---|
| 59 | int ?<=?( rational(T) l, rational(T) r );
|
---|
| 60 | int ?>?( rational(T) l, rational(T) r );
|
---|
| 61 | int ?>=?( rational(T) l, rational(T) r );
|
---|
[561f730] | 62 |
|
---|
[3ce0d440] | 63 | // arithmetic
|
---|
[53a6c2a] | 64 |
|
---|
[541dbc09] | 65 | rational(T) +?( rational(T) r );
|
---|
| 66 | rational(T) -?( rational(T) r );
|
---|
| 67 | rational(T) ?+?( rational(T) l, rational(T) r );
|
---|
| 68 | rational(T) ?+=?( rational(T) & l, rational(T) r );
|
---|
| 69 | rational(T) ?+=?( rational(T) & l, one_t ); // => ++?, ?++
|
---|
| 70 | rational(T) ?-?( rational(T) l, rational(T) r );
|
---|
| 71 | rational(T) ?-=?( rational(T) & l, rational(T) r );
|
---|
| 72 | rational(T) ?-=?( rational(T) & l, one_t ); // => --?, ?--
|
---|
| 73 | rational(T) ?*?( rational(T) l, rational(T) r );
|
---|
| 74 | rational(T) ?*=?( rational(T) & l, rational(T) r );
|
---|
| 75 | rational(T) ?/?( rational(T) l, rational(T) r );
|
---|
| 76 | rational(T) ?/=?( rational(T) & l, rational(T) r );
|
---|
[71f3d45] | 77 | } // distribution
|
---|
[561f730] | 78 |
|
---|
[f5e37a4] | 79 | // I/O
|
---|
[eae8b37] | 80 | forall(T | multiplicative(T) | equality(T))
|
---|
| 81 | trait Simple {
|
---|
| 82 | int ?<?( T, T );
|
---|
| 83 | };
|
---|
[f5e37a4] | 84 |
|
---|
[71f3d45] | 85 | forall( T ) {
|
---|
[eae8b37] | 86 | forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } | Simple(T) )
|
---|
[f5e37a4] | 87 | istype & ?|?( istype &, rational(T) & );
|
---|
| 88 |
|
---|
[5dc4c7e] | 89 | forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
|
---|
[541dbc09] | 90 | ostype & ?|?( ostype &, rational(T) );
|
---|
[5454d77] | 91 | OSTYPE_VOID( rational(T) );
|
---|
[200fcb3] | 92 | } // distribution
|
---|
[3ce0d440] | 93 | } // distribution
|
---|
[630a82a] | 94 |
|
---|
[f5e37a4] | 95 | // Exponentiation
|
---|
| 96 |
|
---|
[541dbc09] | 97 | forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
|
---|
| 98 | rational(T) ?\?( rational(T) x, long int y );
|
---|
| 99 | rational(T) ?\=?( rational(T) & x, long int y );
|
---|
[5dc4c7e] | 100 | } // distribution
|
---|
[0087e0e] | 101 |
|
---|
[f5e37a4] | 102 | // Conversion
|
---|
| 103 |
|
---|
[541dbc09] | 104 | forall( T | arithmetic( T ) | { double convert( T ); } )
|
---|
| 105 | double widen( rational(T) r );
|
---|
| 106 | forall( T | arithmetic( T ) | { double convert( T ); T convert( double );} )
|
---|
| 107 | rational(T) narrow( double f, T md );
|
---|
[630a82a] | 108 |
|
---|
[53ba273] | 109 | // Local Variables: //
|
---|
| 110 | // mode: c //
|
---|
| 111 | // tab-width: 4 //
|
---|
| 112 | // End: //
|
---|