[bb82c03] | 1 | // |
---|
[53ba273] | 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo |
---|
| 3 | // |
---|
| 4 | // The contents of this file are covered under the licence agreement in the |
---|
| 5 | // file "LICENCE" distributed with Cforall. |
---|
[bb82c03] | 6 | // |
---|
[630a82a] | 7 | // rational -- Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number) |
---|
| 8 | // and the denominator (bottom number) are whole numbers. When creating and computing with rational numbers, results |
---|
| 9 | // are constantly reduced to keep the numerator and denominator as small as possible. |
---|
[bb82c03] | 10 | // |
---|
[53ba273] | 11 | // Author : Peter A. Buhr |
---|
| 12 | // Created On : Wed Apr 6 17:56:25 2016 |
---|
| 13 | // Last Modified By : Peter A. Buhr |
---|
[0087e0e] | 14 | // Last Modified On : Tue Mar 26 23:16:10 2019 |
---|
| 15 | // Update Count : 109 |
---|
[bb82c03] | 16 | // |
---|
[f621a148] | 17 | |
---|
[53a6c2a] | 18 | #pragma once |
---|
[53ba273] | 19 | |
---|
[58b6d1b] | 20 | #include "iostream.hfa" |
---|
[53ba273] | 21 | |
---|
[fd54fef] | 22 | trait scalar( T ) { |
---|
[561f730] | 23 | }; |
---|
| 24 | |
---|
[fd54fef] | 25 | trait arithmetic( T | scalar( T ) ) { |
---|
[561f730] | 26 | int !?( T ); |
---|
| 27 | int ?==?( T, T ); |
---|
| 28 | int ?!=?( T, T ); |
---|
| 29 | int ?<?( T, T ); |
---|
| 30 | int ?<=?( T, T ); |
---|
| 31 | int ?>?( T, T ); |
---|
| 32 | int ?>=?( T, T ); |
---|
[a493682] | 33 | void ?{}( T &, zero_t ); |
---|
| 34 | void ?{}( T &, one_t ); |
---|
[561f730] | 35 | T +?( T ); |
---|
| 36 | T -?( T ); |
---|
| 37 | T ?+?( T, T ); |
---|
| 38 | T ?-?( T, T ); |
---|
| 39 | T ?*?( T, T ); |
---|
| 40 | T ?/?( T, T ); |
---|
| 41 | T ?%?( T, T ); |
---|
[53a8e68] | 42 | T ?/=?( T &, T ); |
---|
[561f730] | 43 | T abs( T ); |
---|
| 44 | }; |
---|
| 45 | |
---|
[630a82a] | 46 | // implementation |
---|
[561f730] | 47 | |
---|
[fd54fef] | 48 | forall( RationalImpl | arithmetic( RationalImpl ) ) { |
---|
[3ce0d440] | 49 | struct Rational { |
---|
| 50 | RationalImpl numerator, denominator; // invariant: denominator > 0 |
---|
| 51 | }; // Rational |
---|
[53ba273] | 52 | |
---|
[3ce0d440] | 53 | // constructors |
---|
[561f730] | 54 | |
---|
[3ce0d440] | 55 | void ?{}( Rational(RationalImpl) & r ); |
---|
| 56 | void ?{}( Rational(RationalImpl) & r, RationalImpl n ); |
---|
| 57 | void ?{}( Rational(RationalImpl) & r, RationalImpl n, RationalImpl d ); |
---|
| 58 | void ?{}( Rational(RationalImpl) & r, zero_t ); |
---|
| 59 | void ?{}( Rational(RationalImpl) & r, one_t ); |
---|
[561f730] | 60 | |
---|
[3ce0d440] | 61 | // numerator/denominator getter |
---|
[561f730] | 62 | |
---|
[3ce0d440] | 63 | RationalImpl numerator( Rational(RationalImpl) r ); |
---|
| 64 | RationalImpl denominator( Rational(RationalImpl) r ); |
---|
| 65 | [ RationalImpl, RationalImpl ] ?=?( & [ RationalImpl, RationalImpl ] dest, Rational(RationalImpl) src ); |
---|
[561f730] | 66 | |
---|
[3ce0d440] | 67 | // numerator/denominator setter |
---|
[561f730] | 68 | |
---|
[3ce0d440] | 69 | RationalImpl numerator( Rational(RationalImpl) r, RationalImpl n ); |
---|
| 70 | RationalImpl denominator( Rational(RationalImpl) r, RationalImpl d ); |
---|
[630a82a] | 71 | |
---|
[3ce0d440] | 72 | // comparison |
---|
[561f730] | 73 | |
---|
[3ce0d440] | 74 | int ?==?( Rational(RationalImpl) l, Rational(RationalImpl) r ); |
---|
| 75 | int ?!=?( Rational(RationalImpl) l, Rational(RationalImpl) r ); |
---|
| 76 | int ?<?( Rational(RationalImpl) l, Rational(RationalImpl) r ); |
---|
| 77 | int ?<=?( Rational(RationalImpl) l, Rational(RationalImpl) r ); |
---|
| 78 | int ?>?( Rational(RationalImpl) l, Rational(RationalImpl) r ); |
---|
| 79 | int ?>=?( Rational(RationalImpl) l, Rational(RationalImpl) r ); |
---|
[561f730] | 80 | |
---|
[3ce0d440] | 81 | // arithmetic |
---|
[53a6c2a] | 82 | |
---|
[3ce0d440] | 83 | Rational(RationalImpl) +?( Rational(RationalImpl) r ); |
---|
| 84 | Rational(RationalImpl) -?( Rational(RationalImpl) r ); |
---|
| 85 | Rational(RationalImpl) ?+?( Rational(RationalImpl) l, Rational(RationalImpl) r ); |
---|
| 86 | Rational(RationalImpl) ?-?( Rational(RationalImpl) l, Rational(RationalImpl) r ); |
---|
| 87 | Rational(RationalImpl) ?*?( Rational(RationalImpl) l, Rational(RationalImpl) r ); |
---|
| 88 | Rational(RationalImpl) ?/?( Rational(RationalImpl) l, Rational(RationalImpl) r ); |
---|
[561f730] | 89 | |
---|
[3ce0d440] | 90 | // I/O |
---|
[fd54fef] | 91 | forall( istype & | istream( istype ) | { istype & ?|?( istype &, RationalImpl & ); } ) |
---|
[3ce0d440] | 92 | istype & ?|?( istype &, Rational(RationalImpl) & ); |
---|
[561f730] | 93 | |
---|
[fd54fef] | 94 | forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, RationalImpl ); } ) { |
---|
[200fcb3] | 95 | ostype & ?|?( ostype &, Rational(RationalImpl) ); |
---|
| 96 | void ?|?( ostype &, Rational(RationalImpl) ); |
---|
| 97 | } // distribution |
---|
[3ce0d440] | 98 | } // distribution |
---|
[630a82a] | 99 | |
---|
[fd54fef] | 100 | forall( RationalImpl | arithmetic( RationalImpl ) |{RationalImpl ?\?( RationalImpl, unsigned long );} ) |
---|
[0087e0e] | 101 | Rational(RationalImpl) ?\?( Rational(RationalImpl) x, long int y ); |
---|
| 102 | |
---|
[630a82a] | 103 | // conversion |
---|
[fd54fef] | 104 | forall( RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); } ) |
---|
[6c6455f] | 105 | double widen( Rational(RationalImpl) r ); |
---|
[fd54fef] | 106 | forall( RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); RationalImpl convert( double );} ) |
---|
[6c6455f] | 107 | Rational(RationalImpl) narrow( double f, RationalImpl md ); |
---|
[630a82a] | 108 | |
---|
[53ba273] | 109 | // Local Variables: // |
---|
| 110 | // mode: c // |
---|
| 111 | // tab-width: 4 // |
---|
| 112 | // End: // |
---|