| [bb82c03] | 1 | //
 | 
|---|
| [53ba273] | 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
 | 
|---|
 | 3 | //
 | 
|---|
 | 4 | // The contents of this file are covered under the licence agreement in the
 | 
|---|
 | 5 | // file "LICENCE" distributed with Cforall.
 | 
|---|
| [bb82c03] | 6 | //
 | 
|---|
| [630a82a] | 7 | // rational -- Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number)
 | 
|---|
 | 8 | //     and the denominator (bottom number) are whole numbers. When creating and computing with rational numbers, results
 | 
|---|
 | 9 | //     are constantly reduced to keep the numerator and denominator as small as possible.
 | 
|---|
| [bb82c03] | 10 | //
 | 
|---|
| [53ba273] | 11 | // Author           : Peter A. Buhr
 | 
|---|
 | 12 | // Created On       : Wed Apr  6 17:56:25 2016
 | 
|---|
 | 13 | // Last Modified By : Peter A. Buhr
 | 
|---|
| [5454d77] | 14 | // Last Modified On : Tue Jul 18 11:08:24 2023
 | 
|---|
 | 15 | // Update Count     : 121
 | 
|---|
| [bb82c03] | 16 | //
 | 
|---|
| [f621a148] | 17 | 
 | 
|---|
| [53a6c2a] | 18 | #pragma once
 | 
|---|
| [53ba273] | 19 | 
 | 
|---|
| [58b6d1b] | 20 | #include "iostream.hfa"
 | 
|---|
| [541dbc09] | 21 | #include "math.trait.hfa"                                                               // arithmetic
 | 
|---|
| [561f730] | 22 | 
 | 
|---|
| [630a82a] | 23 | // implementation
 | 
|---|
| [561f730] | 24 | 
 | 
|---|
| [541dbc09] | 25 | forall( T | arithmetic( T ) ) {
 | 
|---|
 | 26 |         struct rational {
 | 
|---|
| [5dc4c7e] | 27 |                 T numerator, denominator;                                               // invariant: denominator > 0
 | 
|---|
| [541dbc09] | 28 |         }; // rational
 | 
|---|
| [53ba273] | 29 | 
 | 
|---|
| [3ce0d440] | 30 |         // constructors
 | 
|---|
| [561f730] | 31 | 
 | 
|---|
| [541dbc09] | 32 |         void ?{}( rational(T) & r );
 | 
|---|
 | 33 |         void ?{}( rational(T) & r, zero_t );
 | 
|---|
 | 34 |         void ?{}( rational(T) & r, one_t );
 | 
|---|
 | 35 |         void ?{}( rational(T) & r, T n );
 | 
|---|
 | 36 |         void ?{}( rational(T) & r, T n, T d );
 | 
|---|
| [561f730] | 37 | 
 | 
|---|
| [3ce0d440] | 38 |         // numerator/denominator getter
 | 
|---|
| [561f730] | 39 | 
 | 
|---|
| [541dbc09] | 40 |         T numerator( rational(T) r );
 | 
|---|
 | 41 |         T denominator( rational(T) r );
 | 
|---|
 | 42 |         [ T, T ] ?=?( & [ T, T ] dest, rational(T) src );
 | 
|---|
| [561f730] | 43 | 
 | 
|---|
| [3ce0d440] | 44 |         // numerator/denominator setter
 | 
|---|
| [561f730] | 45 | 
 | 
|---|
| [541dbc09] | 46 |         T numerator( rational(T) r, T n );
 | 
|---|
 | 47 |         T denominator( rational(T) r, T d );
 | 
|---|
| [630a82a] | 48 | 
 | 
|---|
| [3ce0d440] | 49 |         // comparison
 | 
|---|
| [561f730] | 50 | 
 | 
|---|
| [541dbc09] | 51 |         int ?==?( rational(T) l, rational(T) r );
 | 
|---|
 | 52 |         int ?!=?( rational(T) l, rational(T) r );
 | 
|---|
 | 53 |         int ?!=?( rational(T) l, zero_t );                                      // => !
 | 
|---|
 | 54 |         int ?<?( rational(T) l, rational(T) r );
 | 
|---|
 | 55 |         int ?<=?( rational(T) l, rational(T) r );
 | 
|---|
 | 56 |         int ?>?( rational(T) l, rational(T) r );
 | 
|---|
 | 57 |         int ?>=?( rational(T) l, rational(T) r );
 | 
|---|
| [561f730] | 58 | 
 | 
|---|
| [3ce0d440] | 59 |         // arithmetic
 | 
|---|
| [53a6c2a] | 60 | 
 | 
|---|
| [541dbc09] | 61 |         rational(T) +?( rational(T) r );
 | 
|---|
 | 62 |         rational(T) -?( rational(T) r );
 | 
|---|
 | 63 |         rational(T) ?+?( rational(T) l, rational(T) r );
 | 
|---|
 | 64 |         rational(T) ?+=?( rational(T) & l, rational(T) r );
 | 
|---|
 | 65 |         rational(T) ?+=?( rational(T) & l, one_t );                     // => ++?, ?++
 | 
|---|
 | 66 |         rational(T) ?-?( rational(T) l, rational(T) r );
 | 
|---|
 | 67 |         rational(T) ?-=?( rational(T) & l, rational(T) r );
 | 
|---|
 | 68 |         rational(T) ?-=?( rational(T) & l, one_t );                     // => --?, ?--
 | 
|---|
 | 69 |         rational(T) ?*?( rational(T) l, rational(T) r );
 | 
|---|
 | 70 |         rational(T) ?*=?( rational(T) & l, rational(T) r );
 | 
|---|
 | 71 |         rational(T) ?/?( rational(T) l, rational(T) r );
 | 
|---|
 | 72 |         rational(T) ?/=?( rational(T) & l, rational(T) r );
 | 
|---|
| [561f730] | 73 | 
 | 
|---|
| [3ce0d440] | 74 |         // I/O
 | 
|---|
| [5dc4c7e] | 75 |         forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } )
 | 
|---|
| [541dbc09] | 76 |         istype & ?|?( istype &, rational(T) & );
 | 
|---|
| [561f730] | 77 | 
 | 
|---|
| [5dc4c7e] | 78 |         forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
 | 
|---|
| [541dbc09] | 79 |                 ostype & ?|?( ostype &, rational(T) );
 | 
|---|
| [5454d77] | 80 |                 OSTYPE_VOID( rational(T) );
 | 
|---|
| [200fcb3] | 81 |         } // distribution
 | 
|---|
| [3ce0d440] | 82 | } // distribution
 | 
|---|
| [630a82a] | 83 | 
 | 
|---|
| [541dbc09] | 84 | forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
 | 
|---|
 | 85 |         rational(T) ?\?( rational(T) x, long int y );
 | 
|---|
 | 86 |         rational(T) ?\=?( rational(T) & x, long int y );
 | 
|---|
| [5dc4c7e] | 87 | } // distribution
 | 
|---|
| [0087e0e] | 88 | 
 | 
|---|
| [630a82a] | 89 | // conversion
 | 
|---|
| [541dbc09] | 90 | forall( T | arithmetic( T ) | { double convert( T ); } )
 | 
|---|
 | 91 | double widen( rational(T) r );
 | 
|---|
 | 92 | forall( T | arithmetic( T ) | { double convert( T );  T convert( double );} )
 | 
|---|
 | 93 | rational(T) narrow( double f, T md );
 | 
|---|
| [630a82a] | 94 | 
 | 
|---|
| [53ba273] | 95 | // Local Variables: //
 | 
|---|
 | 96 | // mode: c //
 | 
|---|
 | 97 | // tab-width: 4 //
 | 
|---|
 | 98 | // End: //
 | 
|---|