source: libcfa/src/heap.cfa@ c1dafea

ADT ast-experimental enum forall-pointer-decay jacob/cs343-translation pthread-emulation qualifiedEnum
Last change on this file since c1dafea was b42d0ea, checked in by Peter A. Buhr <pabuhr@…>, 4 years ago

do not print unfreed-storage message if program exits

  • Property mode set to 100644
File size: 54.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// heap.cfa --
8//
9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Aug 9 19:03:02 2021
13// Update Count : 1040
14//
15
16#include <unistd.h> // sbrk, sysconf
17#include <stdlib.h> // EXIT_FAILURE
18#include <stdbool.h> // true, false
19#include <stdio.h> // snprintf, fileno
20#include <errno.h> // errno
21#include <string.h> // memset, memcpy
22#include <limits.h> // ULONG_MAX
23#include <malloc.h> // memalign, malloc_usable_size
24#include <sys/mman.h> // mmap, munmap
25
26#include "bits/align.hfa" // libAlign
27#include "bits/defs.hfa" // likely, unlikely
28#include "bits/locks.hfa" // __spinlock_t
29#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
30#include "math.hfa" // min
31#include "bitmanip.hfa" // is_pow2, ceiling2
32
33static bool traceHeap = false;
34
35inline bool traceHeap() { return traceHeap; }
36
37bool traceHeapOn() {
38 bool temp = traceHeap;
39 traceHeap = true;
40 return temp;
41} // traceHeapOn
42
43bool traceHeapOff() {
44 bool temp = traceHeap;
45 traceHeap = false;
46 return temp;
47} // traceHeapOff
48
49bool traceHeapTerm() { return false; }
50
51
52static bool prtFree = false;
53
54bool prtFree() {
55 return prtFree;
56} // prtFree
57
58bool prtFreeOn() {
59 bool temp = prtFree;
60 prtFree = true;
61 return temp;
62} // prtFreeOn
63
64bool prtFreeOff() {
65 bool temp = prtFree;
66 prtFree = false;
67 return temp;
68} // prtFreeOff
69
70
71enum {
72 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address,
73 // the brk address is extended by the extension amount.
74 __CFA_DEFAULT_HEAP_EXPANSION__ = (10 * 1024 * 1024),
75
76 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;
77 // values greater than or equal to this value are mmap from the operating system.
78 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),
79};
80
81size_t default_mmap_start() __attribute__(( weak )) {
82 return __CFA_DEFAULT_MMAP_START__;
83} // default_mmap_start
84
85size_t default_heap_expansion() __attribute__(( weak )) {
86 return __CFA_DEFAULT_HEAP_EXPANSION__;
87} // default_heap_expansion
88
89
90#ifdef __CFA_DEBUG__
91static size_t allocUnfreed; // running total of allocations minus frees
92
93static void prtUnfreed() {
94 if ( allocUnfreed != 0 ) {
95 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
96 char helpText[512];
97 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %zu(0x%zx) bytes of storage allocated but not freed.\n"
98 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
99 (long int)getpid(), allocUnfreed, allocUnfreed ); // always print the UNIX pid
100 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
101 } // if
102} // prtUnfreed
103
104extern int cfa_main_returned; // from bootloader.cf
105extern "C" {
106 void heapAppStart() { // called by __cfaabi_appready_startup
107 allocUnfreed = 0;
108 } // heapAppStart
109
110 void heapAppStop() { // called by __cfaabi_appready_startdown
111 fclose( stdin ); fclose( stdout );
112 if ( cfa_main_returned ) prtUnfreed(); // do not check unfreed storage if exit called
113 } // heapAppStop
114} // extern "C"
115#endif // __CFA_DEBUG__
116
117
118// statically allocated variables => zero filled.
119size_t __page_size; // architecture pagesize
120int __map_prot; // common mmap/mprotect protection
121static size_t heapExpand; // sbrk advance
122static size_t mmapStart; // cross over point for mmap
123static unsigned int maxBucketsUsed; // maximum number of buckets in use
124
125
126#define SPINLOCK 0
127#define LOCKFREE 1
128#define BUCKETLOCK SPINLOCK
129#if BUCKETLOCK == SPINLOCK
130#elif BUCKETLOCK == LOCKFREE
131#include <stackLockFree.hfa>
132#else
133 #error undefined lock type for bucket lock
134#endif // LOCKFREE
135
136// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
137// Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
138enum { NoBucketSizes = 91 }; // number of buckets sizes
139
140struct HeapManager {
141 struct Storage {
142 struct Header { // header
143 union Kind {
144 struct RealHeader {
145 union {
146 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
147 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
148 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
149 #endif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
150
151 union {
152 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
153 // 2nd low-order bit => zero filled
154 void * home; // allocated block points back to home locations (must overlay alignment)
155 size_t blockSize; // size for munmap (must overlay alignment)
156 #if BUCKETLOCK == SPINLOCK
157 Storage * next; // freed block points next freed block of same size
158 #endif // SPINLOCK
159 };
160 size_t size; // allocation size in bytes
161
162 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
163 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
164 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
165 };
166 #if BUCKETLOCK == LOCKFREE
167 Link(Storage) next; // freed block points next freed block of same size (double-wide)
168 #endif // LOCKFREE
169 };
170 } real; // RealHeader
171
172 struct FakeHeader {
173 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
174 uint32_t alignment; // 1st low-order bit => fake header & alignment
175 #endif // __ORDER_LITTLE_ENDIAN__
176
177 uint32_t offset;
178
179 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
180 uint32_t alignment; // low-order bits of home/blockSize used for tricks
181 #endif // __ORDER_BIG_ENDIAN__
182 } fake; // FakeHeader
183 } kind; // Kind
184 } header; // Header
185 char pad[libAlign() - sizeof( Header )];
186 char data[0]; // storage
187 }; // Storage
188
189 static_assert( libAlign() >= sizeof( Storage ), "libAlign() < sizeof( Storage )" );
190
191 struct FreeHeader {
192 #if BUCKETLOCK == SPINLOCK
193 __spinlock_t lock; // must be first field for alignment
194 Storage * freeList;
195 #else
196 StackLF(Storage) freeList;
197 #endif // BUCKETLOCK
198 size_t blockSize; // size of allocations on this list
199 }; // FreeHeader
200
201 // must be first fields for alignment
202 __spinlock_t extlock; // protects allocation-buffer extension
203 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
204
205 void * heapBegin; // start of heap
206 void * heapEnd; // logical end of heap
207 size_t heapRemaining; // amount of storage not allocated in the current chunk
208}; // HeapManager
209
210#if BUCKETLOCK == LOCKFREE
211static inline {
212 Link(HeapManager.Storage) * ?`next( HeapManager.Storage * this ) { return &this->header.kind.real.next; }
213 void ?{}( HeapManager.FreeHeader & ) {}
214 void ^?{}( HeapManager.FreeHeader & ) {}
215} // distribution
216#endif // LOCKFREE
217
218static inline size_t getKey( const HeapManager.FreeHeader & freeheader ) { return freeheader.blockSize; }
219
220
221#define FASTLOOKUP
222#define __STATISTICS__
223
224// Size of array must harmonize with NoBucketSizes and individual bucket sizes must be multiple of 16.
225// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
226// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
227static const unsigned int bucketSizes[] @= { // different bucket sizes
228 16 + sizeof(HeapManager.Storage), 32 + sizeof(HeapManager.Storage), 48 + sizeof(HeapManager.Storage), 64 + sizeof(HeapManager.Storage), // 4
229 96 + sizeof(HeapManager.Storage), 112 + sizeof(HeapManager.Storage), 128 + sizeof(HeapManager.Storage), // 3
230 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4
231 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4
232 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4
233 1_536, 2_048 + sizeof(HeapManager.Storage), // 2
234 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4
235 6_144, 8_192 + sizeof(HeapManager.Storage), // 2
236 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8
237 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8
238 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8
239 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8
240 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8
241 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8
242 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4
243 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8
244 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4
245};
246
247static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0] ), "size of bucket array wrong" );
248
249#ifdef FASTLOOKUP
250enum { LookupSizes = 65_536 + sizeof(HeapManager.Storage) }; // number of fast lookup sizes
251static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
252#endif // FASTLOOKUP
253
254static const off_t mmapFd = -1; // fake or actual fd for anonymous file
255#ifdef __CFA_DEBUG__
256static bool heapBoot = 0; // detect recursion during boot
257#endif // __CFA_DEBUG__
258
259// The constructor for heapManager is called explicitly in memory_startup.
260static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
261
262
263#ifdef __STATISTICS__
264// Heap statistics counters.
265static unsigned int malloc_zero_calls, malloc_calls;
266static unsigned long long int malloc_storage;
267static unsigned int aalloc_zero_calls, aalloc_calls;
268static unsigned long long int aalloc_storage;
269static unsigned int calloc_zero_calls, calloc_calls;
270static unsigned long long int calloc_storage;
271static unsigned int memalign_zero_calls, memalign_calls;
272static unsigned long long int memalign_storage;
273static unsigned int amemalign_zero_calls, amemalign_calls;
274static unsigned long long int amemalign_storage;
275static unsigned int cmemalign_zero_calls, cmemalign_calls;
276static unsigned long long int cmemalign_storage;
277static unsigned int resize_zero_calls, resize_calls;
278static unsigned long long int resize_storage;
279static unsigned int realloc_zero_calls, realloc_calls;
280static unsigned long long int realloc_storage;
281static unsigned int free_zero_calls, free_calls;
282static unsigned long long int free_storage;
283static unsigned int mmap_calls;
284static unsigned long long int mmap_storage;
285static unsigned int munmap_calls;
286static unsigned long long int munmap_storage;
287static unsigned int sbrk_calls;
288static unsigned long long int sbrk_storage;
289// Statistics file descriptor (changed by malloc_stats_fd).
290static int stats_fd = STDERR_FILENO; // default stderr
291
292// Use "write" because streams may be shutdown when calls are made.
293static void printStats() {
294 char helpText[1024];
295 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
296 "\nHeap statistics:\n"
297 " malloc 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
298 " aalloc 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
299 " calloc 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
300 " memalign 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
301 " amemalign 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
302 " cmemalign 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
303 " resize 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
304 " realloc 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
305 " free 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
306 " mmap calls %'u; storage %'llu bytes\n"
307 " munmap calls %'u; storage %'llu bytes\n"
308 " sbrk calls %'u; storage %'llu bytes\n",
309 malloc_zero_calls, malloc_calls, malloc_storage,
310 aalloc_zero_calls, aalloc_calls, aalloc_storage,
311 calloc_zero_calls, calloc_calls, calloc_storage,
312 memalign_zero_calls, memalign_calls, memalign_storage,
313 amemalign_zero_calls, amemalign_calls, amemalign_storage,
314 cmemalign_zero_calls, cmemalign_calls, cmemalign_storage,
315 resize_zero_calls, resize_calls, resize_storage,
316 realloc_zero_calls, realloc_calls, realloc_storage,
317 free_zero_calls, free_calls, free_storage,
318 mmap_calls, mmap_storage,
319 munmap_calls, munmap_storage,
320 sbrk_calls, sbrk_storage
321 );
322} // printStats
323
324static int printStatsXML( FILE * stream ) { // see malloc_info
325 char helpText[1024];
326 int len = snprintf( helpText, sizeof(helpText),
327 "<malloc version=\"1\">\n"
328 "<heap nr=\"0\">\n"
329 "<sizes>\n"
330 "</sizes>\n"
331 "<total type=\"malloc\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
332 "<total type=\"aalloc\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
333 "<total type=\"calloc\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
334 "<total type=\"memalign\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
335 "<total type=\"amemalign\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
336 "<total type=\"cmemalign\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
337 "<total type=\"resize\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
338 "<total type=\"realloc\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
339 "<total type=\"free\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
340 "<total type=\"mmap\" count=\"%'u;\" size=\"%'llu\"/> bytes\n"
341 "<total type=\"munmap\" count=\"%'u;\" size=\"%'llu\"/> bytes\n"
342 "<total type=\"sbrk\" count=\"%'u;\" size=\"%'llu\"/> bytes\n"
343 "</malloc>",
344 malloc_zero_calls, malloc_calls, malloc_storage,
345 aalloc_zero_calls, aalloc_calls, aalloc_storage,
346 calloc_zero_calls, calloc_calls, calloc_storage,
347 memalign_zero_calls, memalign_calls, memalign_storage,
348 amemalign_zero_calls, amemalign_calls, amemalign_storage,
349 cmemalign_zero_calls, cmemalign_calls, cmemalign_storage,
350 resize_zero_calls, resize_calls, resize_storage,
351 realloc_zero_calls, realloc_calls, realloc_storage,
352 free_zero_calls, free_calls, free_storage,
353 mmap_calls, mmap_storage,
354 munmap_calls, munmap_storage,
355 sbrk_calls, sbrk_storage
356 );
357 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit
358 return len;
359} // printStatsXML
360#endif // __STATISTICS__
361
362
363// thunk problem
364size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
365 size_t l = 0, m, h = dim;
366 while ( l < h ) {
367 m = (l + h) / 2;
368 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
369 l = m + 1;
370 } else {
371 h = m;
372 } // if
373 } // while
374 return l;
375} // Bsearchl
376
377
378static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
379 if ( value < __page_size || bucketSizes[NoBucketSizes - 1] < value ) return false;
380 mmapStart = value; // set global
381
382 // find the closest bucket size less than or equal to the mmapStart size
383 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
384 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
385 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
386 return true;
387} // setMmapStart
388
389
390// <-------+----------------------------------------------------> bsize (bucket size)
391// |header |addr
392//==================================================================================
393// align/offset |
394// <-----------------<------------+-----------------------------> bsize (bucket size)
395// |fake-header | addr
396#define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))
397#define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset))
398
399// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
400// |header |addr
401//==================================================================================
402// align/offset |
403// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
404// |fake-header |addr
405#define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
406
407
408static inline void checkAlign( size_t alignment ) {
409 if ( alignment < libAlign() || ! is_pow2( alignment ) ) {
410 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
411 } // if
412} // checkAlign
413
414
415static inline void checkHeader( bool check, const char name[], void * addr ) {
416 if ( unlikely( check ) ) { // bad address ?
417 abort( "Attempt to %s storage %p with address outside the heap.\n"
418 "Possible cause is duplicate free on same block or overwriting of memory.",
419 name, addr );
420 } // if
421} // checkHeader
422
423
424static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {
425 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?
426 alignment = header->kind.fake.alignment & -2; // remove flag from value
427 #ifdef __CFA_DEBUG__
428 checkAlign( alignment ); // check alignment
429 #endif // __CFA_DEBUG__
430 header = realHeader( header ); // backup from fake to real header
431 } else {
432 alignment = libAlign(); // => no fake header
433 } // if
434} // fakeHeader
435
436
437static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem,
438 size_t & size, size_t & alignment ) with( heapManager ) {
439 header = headerAddr( addr );
440
441 if ( unlikely( addr < heapBegin || heapEnd < addr ) ) { // mmapped ?
442 fakeHeader( header, alignment );
443 size = header->kind.real.blockSize & -3; // mmap size
444 return true;
445 } // if
446
447 #ifdef __CFA_DEBUG__
448 checkHeader( header < (HeapManager.Storage.Header *)heapBegin, name, addr ); // bad low address ?
449 #endif // __CFA_DEBUG__
450
451 // header may be safe to dereference
452 fakeHeader( header, alignment );
453 #ifdef __CFA_DEBUG__
454 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
455 #endif // __CFA_DEBUG__
456
457 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);
458 #ifdef __CFA_DEBUG__
459 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {
460 abort( "Attempt to %s storage %p with corrupted header.\n"
461 "Possible cause is duplicate free on same block or overwriting of header information.",
462 name, addr );
463 } // if
464 #endif // __CFA_DEBUG__
465 size = freeElem->blockSize;
466 return false;
467} // headers
468
469// #ifdef __CFA_DEBUG__
470// #if __SIZEOF_POINTER__ == 4
471// #define MASK 0xdeadbeef
472// #else
473// #define MASK 0xdeadbeefdeadbeef
474// #endif
475// #define STRIDE size_t
476
477// static void * Memset( void * addr, STRIDE size ) { // debug only
478// if ( size % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, size %zd not multiple of %zd.", size, sizeof(STRIDE) );
479// if ( (STRIDE)addr % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, addr %p not multiple of %zd.", addr, sizeof(STRIDE) );
480
481// STRIDE * end = (STRIDE *)addr + size / sizeof(STRIDE);
482// for ( STRIDE * p = (STRIDE *)addr; p < end; p += 1 ) *p = MASK;
483// return addr;
484// } // Memset
485// #endif // __CFA_DEBUG__
486
487
488#define NO_MEMORY_MSG "insufficient heap memory available for allocating %zd new bytes."
489
490static inline void * extend( size_t size ) with( heapManager ) {
491 lock( extlock __cfaabi_dbg_ctx2 );
492 ptrdiff_t rem = heapRemaining - size;
493 if ( rem < 0 ) {
494 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
495
496 size_t increase = ceiling2( size > heapExpand ? size : heapExpand, __page_size );
497 // Do not call abort or strerror( errno ) as they may call malloc.
498 if ( sbrk( increase ) == (void *)-1 ) { // failed, no memory ?
499 unlock( extlock );
500 __cfaabi_bits_print_nolock( STDERR_FILENO, NO_MEMORY_MSG, size );
501 _exit( EXIT_FAILURE ); // give up
502 } // if
503 // Make storage executable for thunks.
504 if ( mprotect( (char *)heapEnd + heapRemaining, increase, __map_prot ) ) {
505 unlock( extlock );
506 __cfaabi_bits_print_nolock( STDERR_FILENO, "extend() : internal error, mprotect failure, heapEnd:%p size:%zd, errno:%d.\n", heapEnd, increase, errno );
507 _exit( EXIT_FAILURE );
508 } // if
509 #ifdef __STATISTICS__
510 sbrk_calls += 1;
511 sbrk_storage += increase;
512 #endif // __STATISTICS__
513 #ifdef __CFA_DEBUG__
514 // Set new memory to garbage so subsequent uninitialized usages might fail.
515 memset( (char *)heapEnd + heapRemaining, '\xde', increase );
516 //Memset( (char *)heapEnd + heapRemaining, increase );
517 #endif // __CFA_DEBUG__
518 rem = heapRemaining + increase - size;
519 } // if
520
521 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;
522 heapRemaining = rem;
523 heapEnd = (char *)heapEnd + size;
524 unlock( extlock );
525 return block;
526} // extend
527
528
529static inline void * doMalloc( size_t size ) with( heapManager ) {
530 HeapManager.Storage * block; // pointer to new block of storage
531
532 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
533 // along with the block and is a multiple of the alignment size.
534
535 if ( unlikely( size > ULONG_MAX - sizeof(HeapManager.Storage) ) ) return 0p;
536 size_t tsize = size + sizeof(HeapManager.Storage);
537 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
538 size_t posn;
539 #ifdef FASTLOOKUP
540 if ( tsize < LookupSizes ) posn = lookup[tsize];
541 else
542 #endif // FASTLOOKUP
543 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
544 HeapManager.FreeHeader * freeElem = &freeLists[posn];
545 verify( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
546 verify( tsize <= freeElem->blockSize ); // search failure ?
547 tsize = freeElem->blockSize; // total space needed for request
548
549 // Spin until the lock is acquired for this particular size of block.
550
551 #if BUCKETLOCK == SPINLOCK
552 lock( freeElem->lock __cfaabi_dbg_ctx2 );
553 block = freeElem->freeList; // remove node from stack
554 #else
555 block = pop( freeElem->freeList );
556 #endif // BUCKETLOCK
557 if ( unlikely( block == 0p ) ) { // no free block ?
558 #if BUCKETLOCK == SPINLOCK
559 unlock( freeElem->lock );
560 #endif // BUCKETLOCK
561
562 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
563 // and then carve it off.
564
565 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call
566 #if BUCKETLOCK == SPINLOCK
567 } else {
568 freeElem->freeList = block->header.kind.real.next;
569 unlock( freeElem->lock );
570 #endif // BUCKETLOCK
571 } // if
572
573 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
574 } else { // large size => mmap
575 if ( unlikely( size > ULONG_MAX - __page_size ) ) return 0p;
576 tsize = ceiling2( tsize, __page_size ); // must be multiple of page size
577 #ifdef __STATISTICS__
578 __atomic_add_fetch( &mmap_calls, 1, __ATOMIC_SEQ_CST );
579 __atomic_add_fetch( &mmap_storage, tsize, __ATOMIC_SEQ_CST );
580 #endif // __STATISTICS__
581
582 block = (HeapManager.Storage *)mmap( 0, tsize, __map_prot, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
583 if ( block == (HeapManager.Storage *)MAP_FAILED ) { // failed ?
584 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize ); // no memory
585 // Do not call strerror( errno ) as it may call malloc.
586 abort( "(HeapManager &)0x%p.doMalloc() : internal error, mmap failure, size:%zu errno:%d.", &heapManager, tsize, errno );
587 } //if
588 #ifdef __CFA_DEBUG__
589 // Set new memory to garbage so subsequent uninitialized usages might fail.
590 memset( block, '\xde', tsize );
591 //Memset( block, tsize );
592 #endif // __CFA_DEBUG__
593 block->header.kind.real.blockSize = tsize; // storage size for munmap
594 } // if
595
596 block->header.kind.real.size = size; // store allocation size
597 void * addr = &(block->data); // adjust off header to user bytes
598 verify( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
599
600 #ifdef __CFA_DEBUG__
601 __atomic_add_fetch( &allocUnfreed, tsize, __ATOMIC_SEQ_CST );
602 if ( traceHeap() ) {
603 enum { BufferSize = 64 };
604 char helpText[BufferSize];
605 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize );
606 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
607 } // if
608 #endif // __CFA_DEBUG__
609
610 return addr;
611} // doMalloc
612
613
614static inline void doFree( void * addr ) with( heapManager ) {
615 #ifdef __CFA_DEBUG__
616 if ( unlikely( heapManager.heapBegin == 0p ) ) {
617 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
618 } // if
619 #endif // __CFA_DEBUG__
620
621 HeapManager.Storage.Header * header;
622 HeapManager.FreeHeader * freeElem;
623 size_t size, alignment; // not used (see realloc)
624
625 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
626 #ifdef __STATISTICS__
627 __atomic_add_fetch( &munmap_calls, 1, __ATOMIC_SEQ_CST );
628 __atomic_add_fetch( &munmap_storage, size, __ATOMIC_SEQ_CST );
629 #endif // __STATISTICS__
630 if ( munmap( header, size ) == -1 ) {
631 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
632 "Possible cause is invalid pointer.",
633 addr );
634 } // if
635 } else {
636 #ifdef __CFA_DEBUG__
637 // Set free memory to garbage so subsequent usages might fail.
638 memset( ((HeapManager.Storage *)header)->data, '\xde', freeElem->blockSize - sizeof( HeapManager.Storage ) );
639 //Memset( ((HeapManager.Storage *)header)->data, freeElem->blockSize - sizeof( HeapManager.Storage ) );
640 #endif // __CFA_DEBUG__
641
642 #ifdef __STATISTICS__
643 __atomic_add_fetch( &free_calls, 1, __ATOMIC_SEQ_CST );
644 __atomic_add_fetch( &free_storage, size, __ATOMIC_SEQ_CST );
645 #endif // __STATISTICS__
646
647 #if BUCKETLOCK == SPINLOCK
648 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
649 header->kind.real.next = freeElem->freeList; // push on stack
650 freeElem->freeList = (HeapManager.Storage *)header;
651 unlock( freeElem->lock ); // release spin lock
652 #else
653 push( freeElem->freeList, *(HeapManager.Storage *)header );
654 #endif // BUCKETLOCK
655 } // if
656
657 #ifdef __CFA_DEBUG__
658 __atomic_add_fetch( &allocUnfreed, -size, __ATOMIC_SEQ_CST );
659 if ( traceHeap() ) {
660 char helpText[64];
661 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size );
662 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
663 } // if
664 #endif // __CFA_DEBUG__
665} // doFree
666
667
668size_t prtFree( HeapManager & manager ) with( manager ) {
669 size_t total = 0;
670 #ifdef __STATISTICS__
671 __cfaabi_bits_acquire();
672 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
673 #endif // __STATISTICS__
674 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
675 size_t size = freeLists[i].blockSize;
676 #ifdef __STATISTICS__
677 unsigned int N = 0;
678 #endif // __STATISTICS__
679
680 #if BUCKETLOCK == SPINLOCK
681 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
682 #else
683 for(;;) {
684// for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; p = (p)`next->top ) {
685// for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; /* p = getNext( p )->top */) {
686// HeapManager.Storage * temp = p->header.kind.real.next.top; // FIX ME: direct assignent fails, initialization works`
687// typeof(p) temp = (( p )`next)->top; // FIX ME: direct assignent fails, initialization works`
688// p = temp;
689 #endif // BUCKETLOCK
690 total += size;
691 #ifdef __STATISTICS__
692 N += 1;
693 #endif // __STATISTICS__
694 } // for
695
696 #ifdef __STATISTICS__
697 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
698 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
699 #endif // __STATISTICS__
700 } // for
701 #ifdef __STATISTICS__
702 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
703 __cfaabi_bits_release();
704 #endif // __STATISTICS__
705 return (char *)heapEnd - (char *)heapBegin - total;
706} // prtFree
707
708
709static void ?{}( HeapManager & manager ) with( manager ) {
710 __page_size = sysconf( _SC_PAGESIZE );
711 __map_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
712
713 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
714 freeLists[i].blockSize = bucketSizes[i];
715 } // for
716
717 #ifdef FASTLOOKUP
718 unsigned int idx = 0;
719 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
720 if ( i > bucketSizes[idx] ) idx += 1;
721 lookup[i] = idx;
722 } // for
723 #endif // FASTLOOKUP
724
725 if ( ! setMmapStart( default_mmap_start() ) ) {
726 abort( "HeapManager : internal error, mmap start initialization failure." );
727 } // if
728 heapExpand = default_heap_expansion();
729
730 char * end = (char *)sbrk( 0 );
731 heapBegin = heapEnd = sbrk( (char *)ceiling2( (long unsigned int)end, __page_size ) - end ); // move start of heap to multiple of alignment
732} // HeapManager
733
734
735static void ^?{}( HeapManager & ) {
736 #ifdef __STATISTICS__
737 if ( traceHeapTerm() ) {
738 printStats();
739 // prtUnfreed() called in heapAppStop()
740 } // if
741 #endif // __STATISTICS__
742} // ~HeapManager
743
744
745static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
746void memory_startup( void ) {
747 #ifdef __CFA_DEBUG__
748 if ( heapBoot ) { // check for recursion during system boot
749 abort( "boot() : internal error, recursively invoked during system boot." );
750 } // if
751 heapBoot = true;
752 #endif // __CFA_DEBUG__
753
754 //verify( heapManager.heapBegin != 0 );
755 //heapManager{};
756 if ( heapManager.heapBegin == 0p ) heapManager{}; // sanity check
757} // memory_startup
758
759static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
760void memory_shutdown( void ) {
761 ^heapManager{};
762} // memory_shutdown
763
764
765static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
766 verify( heapManager.heapBegin != 0p ); // called before memory_startup ?
767 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
768
769#if __SIZEOF_POINTER__ == 8
770 verify( size < ((typeof(size_t))1 << 48) );
771#endif // __SIZEOF_POINTER__ == 8
772 return doMalloc( size );
773} // mallocNoStats
774
775
776static inline void * memalignNoStats( size_t alignment, size_t size ) {
777 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
778
779 #ifdef __CFA_DEBUG__
780 checkAlign( alignment ); // check alignment
781 #endif // __CFA_DEBUG__
782
783 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
784 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
785
786 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
787 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
788 // .-------------v-----------------v----------------v----------,
789 // | Real Header | ... padding ... | Fake Header | data ... |
790 // `-------------^-----------------^-+--------------^----------'
791 // |<--------------------------------' offset/align |<-- alignment boundary
792
793 // subtract libAlign() because it is already the minimum alignment
794 // add sizeof(Storage) for fake header
795 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) );
796
797 // address in the block of the "next" alignment address
798 char * user = (char *)ceiling2( (uintptr_t)(addr + sizeof(HeapManager.Storage)), alignment );
799
800 // address of header from malloc
801 HeapManager.Storage.Header * realHeader = headerAddr( addr );
802 realHeader->kind.real.size = size; // correct size to eliminate above alignment offset
803 // address of fake header * before* the alignment location
804 HeapManager.Storage.Header * fakeHeader = headerAddr( user );
805 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
806 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
807 // SKULLDUGGERY: odd alignment imples fake header
808 fakeHeader->kind.fake.alignment = alignment | 1;
809
810 return user;
811} // memalignNoStats
812
813
814extern "C" {
815 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
816 // then malloc() returns a unique pointer value that can later be successfully passed to free().
817 void * malloc( size_t size ) {
818 #ifdef __STATISTICS__
819 if ( likely( size > 0 ) ) {
820 __atomic_add_fetch( &malloc_calls, 1, __ATOMIC_SEQ_CST );
821 __atomic_add_fetch( &malloc_storage, size, __ATOMIC_SEQ_CST );
822 } else {
823 __atomic_add_fetch( &malloc_zero_calls, 1, __ATOMIC_SEQ_CST );
824 } // if
825 #endif // __STATISTICS__
826
827 return mallocNoStats( size );
828 } // malloc
829
830
831 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
832 void * aalloc( size_t dim, size_t elemSize ) {
833 size_t size = dim * elemSize;
834 #ifdef __STATISTICS__
835 if ( likely( size > 0 ) ) {
836 __atomic_add_fetch( &aalloc_calls, 1, __ATOMIC_SEQ_CST );
837 __atomic_add_fetch( &aalloc_storage, size, __ATOMIC_SEQ_CST );
838 } else {
839 __atomic_add_fetch( &aalloc_zero_calls, 1, __ATOMIC_SEQ_CST );
840 } // if
841 #endif // __STATISTICS__
842
843 return mallocNoStats( size );
844 } // aalloc
845
846
847 // Same as aalloc() with memory set to zero.
848 void * calloc( size_t dim, size_t elemSize ) {
849 size_t size = dim * elemSize;
850 if ( unlikely( size ) == 0 ) { // 0 BYTE ALLOCATION RETURNS NULL POINTER
851 #ifdef __STATISTICS__
852 __atomic_add_fetch( &calloc_zero_calls, 1, __ATOMIC_SEQ_CST );
853 #endif // __STATISTICS__
854 return 0p;
855 } // if
856 #ifdef __STATISTICS__
857 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST );
858 __atomic_add_fetch( &calloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
859 #endif // __STATISTICS__
860
861 char * addr = (char *)mallocNoStats( size );
862
863 HeapManager.Storage.Header * header;
864 HeapManager.FreeHeader * freeElem;
865 size_t bsize, alignment;
866
867 #ifndef __CFA_DEBUG__
868 bool mapped =
869 #endif // __CFA_DEBUG__
870 headers( "calloc", addr, header, freeElem, bsize, alignment );
871
872 #ifndef __CFA_DEBUG__
873 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
874 if ( ! mapped )
875 #endif // __CFA_DEBUG__
876 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
877 // `-header`-addr `-size
878 memset( addr, '\0', size ); // set to zeros
879
880 header->kind.real.blockSize |= 2; // mark as zero filled
881 return addr;
882 } // calloc
883
884
885 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
886 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
887 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
888 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
889 void * resize( void * oaddr, size_t size ) {
890 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
891 if ( unlikely( size == 0 ) ) { // special cases
892 #ifdef __STATISTICS__
893 __atomic_add_fetch( &resize_zero_calls, 1, __ATOMIC_SEQ_CST );
894 #endif // __STATISTICS__
895 free( oaddr );
896 return 0p;
897 } // if
898 #ifdef __STATISTICS__
899 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
900 #endif // __STATISTICS__
901
902 if ( unlikely( oaddr == 0p ) ) {
903 #ifdef __STATISTICS__
904 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
905 #endif // __STATISTICS__
906 return mallocNoStats( size );
907 } // if
908
909 HeapManager.Storage.Header * header;
910 HeapManager.FreeHeader * freeElem;
911 size_t bsize, oalign;
912 headers( "resize", oaddr, header, freeElem, bsize, oalign );
913
914 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
915 // same size, DO NOT preserve STICKY PROPERTIES.
916 if ( oalign == libAlign() && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
917 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill
918 header->kind.real.size = size; // reset allocation size
919 return oaddr;
920 } // if
921
922 #ifdef __STATISTICS__
923 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
924 #endif // __STATISTICS__
925
926 // change size, DO NOT preserve STICKY PROPERTIES.
927 free( oaddr );
928 return mallocNoStats( size ); // create new area
929 } // resize
930
931
932 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
933 // the old and new sizes.
934 void * realloc( void * oaddr, size_t size ) {
935 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
936 if ( unlikely( size == 0 ) ) { // special cases
937 #ifdef __STATISTICS__
938 __atomic_add_fetch( &realloc_zero_calls, 1, __ATOMIC_SEQ_CST );
939 #endif // __STATISTICS__
940 free( oaddr );
941 return 0p;
942 } // if
943 #ifdef __STATISTICS__
944 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
945 #endif // __STATISTICS__
946
947 if ( unlikely( oaddr == 0p ) ) {
948 #ifdef __STATISTICS__
949 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
950 #endif // __STATISTICS__
951 return mallocNoStats( size );
952 } // if
953
954 HeapManager.Storage.Header * header;
955 HeapManager.FreeHeader * freeElem;
956 size_t bsize, oalign;
957 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
958
959 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
960 size_t osize = header->kind.real.size; // old allocation size
961 bool ozfill = (header->kind.real.blockSize & 2); // old allocation zero filled
962 if ( unlikely( size <= odsize ) && odsize <= size * 2 ) { // allow up to 50% wasted storage
963 header->kind.real.size = size; // reset allocation size
964 if ( unlikely( ozfill ) && size > osize ) { // previous request zero fill and larger ?
965 memset( (char *)oaddr + osize, '\0', size - osize ); // initialize added storage
966 } // if
967 return oaddr;
968 } // if
969
970 #ifdef __STATISTICS__
971 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
972 #endif // __STATISTICS__
973
974 // change size and copy old content to new storage
975
976 void * naddr;
977 if ( likely( oalign == libAlign() ) ) { // previous request not aligned ?
978 naddr = mallocNoStats( size ); // create new area
979 } else {
980 naddr = memalignNoStats( oalign, size ); // create new aligned area
981 } // if
982
983 headers( "realloc", naddr, header, freeElem, bsize, oalign );
984 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
985 free( oaddr );
986
987 if ( unlikely( ozfill ) ) { // previous request zero fill ?
988 header->kind.real.blockSize |= 2; // mark new request as zero filled
989 if ( size > osize ) { // previous request larger ?
990 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
991 } // if
992 } // if
993 return naddr;
994 } // realloc
995
996
997 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
998 void * memalign( size_t alignment, size_t size ) {
999 #ifdef __STATISTICS__
1000 if ( likely( size > 0 ) ) {
1001 __atomic_add_fetch( &memalign_calls, 1, __ATOMIC_SEQ_CST );
1002 __atomic_add_fetch( &memalign_storage, size, __ATOMIC_SEQ_CST );
1003 } else {
1004 __atomic_add_fetch( &memalign_zero_calls, 1, __ATOMIC_SEQ_CST );
1005 } // if
1006 #endif // __STATISTICS__
1007
1008 return memalignNoStats( alignment, size );
1009 } // memalign
1010
1011
1012 // Same as aalloc() with memory alignment.
1013 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) {
1014 size_t size = dim * elemSize;
1015 #ifdef __STATISTICS__
1016 if ( likely( size > 0 ) ) {
1017 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
1018 __atomic_add_fetch( &cmemalign_storage, size, __ATOMIC_SEQ_CST );
1019 } else {
1020 __atomic_add_fetch( &cmemalign_zero_calls, 1, __ATOMIC_SEQ_CST );
1021 } // if
1022 #endif // __STATISTICS__
1023
1024 return memalignNoStats( alignment, size );
1025 } // amemalign
1026
1027
1028 // Same as calloc() with memory alignment.
1029 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) {
1030 size_t size = dim * elemSize;
1031 if ( unlikely( size ) == 0 ) { // 0 BYTE ALLOCATION RETURNS NULL POINTER
1032 #ifdef __STATISTICS__
1033 __atomic_add_fetch( &cmemalign_zero_calls, 1, __ATOMIC_SEQ_CST );
1034 #endif // __STATISTICS__
1035 return 0p;
1036 } // if
1037 #ifdef __STATISTICS__
1038 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
1039 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
1040 #endif // __STATISTICS__
1041
1042 char * addr = (char *)memalignNoStats( alignment, size );
1043
1044 HeapManager.Storage.Header * header;
1045 HeapManager.FreeHeader * freeElem;
1046 size_t bsize;
1047
1048 #ifndef __CFA_DEBUG__
1049 bool mapped =
1050 #endif // __CFA_DEBUG__
1051 headers( "cmemalign", addr, header, freeElem, bsize, alignment );
1052
1053 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
1054 #ifndef __CFA_DEBUG__
1055 if ( ! mapped )
1056 #endif // __CFA_DEBUG__
1057 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1058 // `-header`-addr `-size
1059 memset( addr, '\0', size ); // set to zeros
1060
1061 header->kind.real.blockSize |= 2; // mark as zero filled
1062 return addr;
1063 } // cmemalign
1064
1065
1066 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
1067 // of alignment. This requirement is universally ignored.
1068 void * aligned_alloc( size_t alignment, size_t size ) {
1069 return memalign( alignment, size );
1070 } // aligned_alloc
1071
1072
1073 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1074 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1075 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1076 // free(3).
1077 int posix_memalign( void ** memptr, size_t alignment, size_t size ) {
1078 if ( alignment < libAlign() || ! is_pow2( alignment ) ) return EINVAL; // check alignment
1079 * memptr = memalign( alignment, size );
1080 return 0;
1081 } // posix_memalign
1082
1083
1084 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1085 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
1086 void * valloc( size_t size ) {
1087 return memalign( __page_size, size );
1088 } // valloc
1089
1090
1091 // Same as valloc but rounds size to multiple of page size.
1092 void * pvalloc( size_t size ) {
1093 return memalign( __page_size, ceiling2( size, __page_size ) );
1094 } // pvalloc
1095
1096
1097 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
1098 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
1099 // 0p, no operation is performed.
1100 void free( void * addr ) {
1101 if ( unlikely( addr == 0p ) ) { // special case
1102 #ifdef __STATISTICS__
1103 __atomic_add_fetch( &free_zero_calls, 1, __ATOMIC_SEQ_CST );
1104 #endif // __STATISTICS__
1105
1106 // #ifdef __CFA_DEBUG__
1107 // if ( traceHeap() ) {
1108 // #define nullmsg "Free( 0x0 ) size:0\n"
1109 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
1110 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
1111 // } // if
1112 // #endif // __CFA_DEBUG__
1113 return;
1114 } // exit
1115
1116 doFree( addr );
1117 } // free
1118
1119
1120 // Returns the alignment of an allocation.
1121 size_t malloc_alignment( void * addr ) {
1122 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1123 HeapManager.Storage.Header * header = headerAddr( addr );
1124 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1125 return header->kind.fake.alignment & -2; // remove flag from value
1126 } else {
1127 return libAlign(); // minimum alignment
1128 } // if
1129 } // malloc_alignment
1130
1131
1132 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment.
1133 size_t malloc_alignment_set$( void * addr, size_t alignment ) {
1134 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1135 size_t ret;
1136 HeapManager.Storage.Header * header = headerAddr( addr );
1137 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1138 ret = header->kind.fake.alignment & -2; // remove flag from old value
1139 header->kind.fake.alignment = alignment | 1; // add flag to new value
1140 } else {
1141 ret = 0; // => no alignment to change
1142 } // if
1143 return ret;
1144 } // malloc_alignment_set$
1145
1146
1147 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
1148 bool malloc_zero_fill( void * addr ) {
1149 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1150 HeapManager.Storage.Header * header = headerAddr( addr );
1151 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1152 header = realHeader( header ); // backup from fake to real header
1153 } // if
1154 return (header->kind.real.blockSize & 2) != 0; // zero filled ?
1155 } // malloc_zero_fill
1156
1157 // Set allocation is zero filled and return previous zero filled.
1158 bool malloc_zero_fill_set$( void * addr ) {
1159 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1160 HeapManager.Storage.Header * header = headerAddr( addr );
1161 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1162 header = realHeader( header ); // backup from fake to real header
1163 } // if
1164 bool ret = (header->kind.real.blockSize & 2) != 0; // zero filled ?
1165 header->kind.real.blockSize |= 2; // mark as zero filled
1166 return ret;
1167 } // malloc_zero_fill_set$
1168
1169
1170 // Returns original total allocation size (not bucket size) => array size is dimension * sizeif(T).
1171 size_t malloc_size( void * addr ) {
1172 if ( unlikely( addr == 0p ) ) return 0; // null allocation has zero size
1173 HeapManager.Storage.Header * header = headerAddr( addr );
1174 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1175 header = realHeader( header ); // backup from fake to real header
1176 } // if
1177 return header->kind.real.size;
1178 } // malloc_size
1179
1180 // Set allocation size and return previous size.
1181 size_t malloc_size_set$( void * addr, size_t size ) {
1182 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1183 HeapManager.Storage.Header * header = headerAddr( addr );
1184 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1185 header = realHeader( header ); // backup from fake to real header
1186 } // if
1187 size_t ret = header->kind.real.size;
1188 header->kind.real.size = size;
1189 return ret;
1190 } // malloc_size_set$
1191
1192
1193 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1194 // malloc or a related function.
1195 size_t malloc_usable_size( void * addr ) {
1196 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1197 HeapManager.Storage.Header * header;
1198 HeapManager.FreeHeader * freeElem;
1199 size_t bsize, alignment;
1200
1201 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
1202 return dataStorage( bsize, addr, header ); // data storage in bucket
1203 } // malloc_usable_size
1204
1205
1206 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
1207 void malloc_stats( void ) {
1208 #ifdef __STATISTICS__
1209 printStats();
1210 if ( prtFree() ) prtFree( heapManager );
1211 #endif // __STATISTICS__
1212 } // malloc_stats
1213
1214
1215 // Changes the file descripter where malloc_stats() writes statistics.
1216 int malloc_stats_fd( int fd __attribute__(( unused )) ) {
1217 #ifdef __STATISTICS__
1218 int temp = stats_fd;
1219 stats_fd = fd;
1220 return temp;
1221 #else
1222 return -1;
1223 #endif // __STATISTICS__
1224 } // malloc_stats_fd
1225
1226
1227 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
1228 // specifies the parameter to be modified, and value specifies the new value for that parameter.
1229 int mallopt( int option, int value ) {
1230 choose( option ) {
1231 case M_TOP_PAD:
1232 heapExpand = ceiling2( value, __page_size ); return 1;
1233 case M_MMAP_THRESHOLD:
1234 if ( setMmapStart( value ) ) return 1;
1235 break;
1236 } // switch
1237 return 0; // error, unsupported
1238 } // mallopt
1239
1240
1241 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
1242 int malloc_trim( size_t ) {
1243 return 0; // => impossible to release memory
1244 } // malloc_trim
1245
1246
1247 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller.
1248 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1249 // malloc).
1250 int malloc_info( int options, FILE * stream __attribute__(( unused )) ) {
1251 if ( options != 0 ) { errno = EINVAL; return -1; }
1252 #ifdef __STATISTICS__
1253 return printStatsXML( stream );
1254 #else
1255 return 0; // unsupported
1256 #endif // __STATISTICS__
1257 } // malloc_info
1258
1259
1260 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1261 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1262 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1263 // result. (The caller must free this memory.)
1264 void * malloc_get_state( void ) {
1265 return 0p; // unsupported
1266 } // malloc_get_state
1267
1268
1269 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1270 // structure pointed to by state.
1271 int malloc_set_state( void * ) {
1272 return 0; // unsupported
1273 } // malloc_set_state
1274} // extern "C"
1275
1276
1277// Must have CFA linkage to overload with C linkage realloc.
1278void * resize( void * oaddr, size_t nalign, size_t size ) {
1279 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1280 if ( unlikely( size == 0 ) ) { // special cases
1281 #ifdef __STATISTICS__
1282 __atomic_add_fetch( &resize_zero_calls, 1, __ATOMIC_SEQ_CST );
1283 #endif // __STATISTICS__
1284 free( oaddr );
1285 return 0p;
1286 } // if
1287
1288 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
1289 #ifdef __CFA_DEBUG__
1290 else checkAlign( nalign ); // check alignment
1291 #endif // __CFA_DEBUG__
1292
1293 if ( unlikely( oaddr == 0p ) ) {
1294 #ifdef __STATISTICS__
1295 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
1296 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
1297 #endif // __STATISTICS__
1298 return memalignNoStats( nalign, size );
1299 } // if
1300
1301 // Attempt to reuse existing alignment.
1302 HeapManager.Storage.Header * header = headerAddr( oaddr );
1303 bool isFakeHeader = header->kind.fake.alignment & 1; // old fake header ?
1304 size_t oalign;
1305 if ( isFakeHeader ) {
1306 oalign = header->kind.fake.alignment & -2; // old alignment
1307 if ( (uintptr_t)oaddr % nalign == 0 // lucky match ?
1308 && ( oalign <= nalign // going down
1309 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
1310 ) {
1311 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1312 HeapManager.FreeHeader * freeElem;
1313 size_t bsize, oalign;
1314 headers( "resize", oaddr, header, freeElem, bsize, oalign );
1315 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
1316
1317 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted data storage
1318 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1319
1320 header->kind.real.blockSize &= -2; // turn off 0 fill
1321 header->kind.real.size = size; // reset allocation size
1322 return oaddr;
1323 } // if
1324 } // if
1325 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1326 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
1327 return resize( oaddr, size ); // duplicate special case checks
1328 } // if
1329
1330 #ifdef __STATISTICS__
1331 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
1332 #endif // __STATISTICS__
1333
1334 // change size, DO NOT preserve STICKY PROPERTIES.
1335 free( oaddr );
1336 return memalignNoStats( nalign, size ); // create new aligned area
1337} // resize
1338
1339
1340void * realloc( void * oaddr, size_t nalign, size_t size ) {
1341 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1342 if ( unlikely( size == 0 ) ) { // special cases
1343 #ifdef __STATISTICS__
1344 __atomic_add_fetch( &realloc_zero_calls, 1, __ATOMIC_SEQ_CST );
1345 #endif // __STATISTICS__
1346 free( oaddr );
1347 return 0p;
1348 } // if
1349
1350 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
1351 #ifdef __CFA_DEBUG__
1352 else checkAlign( nalign ); // check alignment
1353 #endif // __CFA_DEBUG__
1354
1355 if ( unlikely( oaddr == 0p ) ) {
1356 #ifdef __STATISTICS__
1357 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
1358 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
1359 #endif // __STATISTICS__
1360 return memalignNoStats( nalign, size );
1361 } // if
1362
1363 // Attempt to reuse existing alignment.
1364 HeapManager.Storage.Header * header = headerAddr( oaddr );
1365 bool isFakeHeader = header->kind.fake.alignment & 1; // old fake header ?
1366 size_t oalign;
1367 if ( isFakeHeader ) {
1368 oalign = header->kind.fake.alignment & -2; // old alignment
1369 if ( (uintptr_t)oaddr % nalign == 0 // lucky match ?
1370 && ( oalign <= nalign // going down
1371 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
1372 ) {
1373 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1374 return realloc( oaddr, size ); // duplicate alignment and special case checks
1375 } // if
1376 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1377 && nalign == libAlign() ) // new alignment also on libAlign => no fake header needed
1378 return realloc( oaddr, size ); // duplicate alignment and special case checks
1379
1380 #ifdef __STATISTICS__
1381 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
1382 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
1383 #endif // __STATISTICS__
1384
1385 HeapManager.FreeHeader * freeElem;
1386 size_t bsize;
1387 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
1388
1389 // change size and copy old content to new storage
1390
1391 size_t osize = header->kind.real.size; // old allocation size
1392 bool ozfill = (header->kind.real.blockSize & 2); // old allocation zero filled
1393
1394 void * naddr = memalignNoStats( nalign, size ); // create new aligned area
1395
1396 headers( "realloc", naddr, header, freeElem, bsize, oalign );
1397 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
1398 free( oaddr );
1399
1400 if ( unlikely( ozfill ) ) { // previous request zero fill ?
1401 header->kind.real.blockSize |= 2; // mark new request as zero filled
1402 if ( size > osize ) { // previous request larger ?
1403 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
1404 } // if
1405 } // if
1406 return naddr;
1407} // realloc
1408
1409
1410// Local Variables: //
1411// tab-width: 4 //
1412// compile-command: "cfa -nodebug -O2 heap.cfa" //
1413// End: //
Note: See TracBrowser for help on using the repository browser.