source: libcfa/src/heap.cfa@ 2dda05d

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 2dda05d was e4b6b7d3, checked in by Peter A. Buhr <pabuhr@…>, 5 years ago

for debug, fill deleted memory with deadbeef pattern

  • Property mode set to 100644
File size: 52.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// heap.cfa --
8//
9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Dec 11 07:36:34 2020
13// Update Count : 970
14//
15
16#include <unistd.h> // sbrk, sysconf
17#include <stdbool.h> // true, false
18#include <stdio.h> // snprintf, fileno
19#include <errno.h> // errno
20#include <string.h> // memset, memcpy
21#include <limits.h> // ULONG_MAX
22#include <malloc.h> // memalign, malloc_usable_size
23#include <sys/mman.h> // mmap, munmap
24
25#include "bits/align.hfa" // libAlign
26#include "bits/defs.hfa" // likely, unlikely
27#include "bits/locks.hfa" // __spinlock_t
28#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
29#include "math.hfa" // ceiling
30#include "bitmanip.hfa" // is_pow2, ceiling2
31
32static bool traceHeap = false;
33
34inline bool traceHeap() { return traceHeap; }
35
36bool traceHeapOn() {
37 bool temp = traceHeap;
38 traceHeap = true;
39 return temp;
40} // traceHeapOn
41
42bool traceHeapOff() {
43 bool temp = traceHeap;
44 traceHeap = false;
45 return temp;
46} // traceHeapOff
47
48bool traceHeapTerm() { return false; }
49
50
51static bool prtFree = false;
52
53inline bool prtFree() {
54 return prtFree;
55} // prtFree
56
57bool prtFreeOn() {
58 bool temp = prtFree;
59 prtFree = true;
60 return temp;
61} // prtFreeOn
62
63bool prtFreeOff() {
64 bool temp = prtFree;
65 prtFree = false;
66 return temp;
67} // prtFreeOff
68
69
70enum {
71 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address,
72 // the brk address is extended by the extension amount.
73 __CFA_DEFAULT_HEAP_EXPANSION__ = (1 * 1024 * 1024),
74
75 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;
76 // values greater than or equal to this value are mmap from the operating system.
77 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),
78};
79
80size_t default_mmap_start() __attribute__(( weak )) {
81 return __CFA_DEFAULT_MMAP_START__;
82} // default_mmap_start
83
84size_t default_heap_expansion() __attribute__(( weak )) {
85 return __CFA_DEFAULT_HEAP_EXPANSION__;
86} // default_heap_expansion
87
88
89#ifdef __CFA_DEBUG__
90static size_t allocUnfreed; // running total of allocations minus frees
91
92static void prtUnfreed() {
93 if ( allocUnfreed != 0 ) {
94 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
95 char helpText[512];
96 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %zu(0x%zx) bytes of storage allocated but not freed.\n"
97 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
98 (long int)getpid(), allocUnfreed, allocUnfreed ); // always print the UNIX pid
99 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
100 } // if
101} // prtUnfreed
102
103extern "C" {
104 void heapAppStart() { // called by __cfaabi_appready_startup
105 allocUnfreed = 0;
106 } // heapAppStart
107
108 void heapAppStop() { // called by __cfaabi_appready_startdown
109 fclose( stdin ); fclose( stdout );
110 prtUnfreed();
111 } // heapAppStop
112} // extern "C"
113#endif // __CFA_DEBUG__
114
115
116// statically allocated variables => zero filled.
117static size_t pageSize; // architecture pagesize
118static size_t heapExpand; // sbrk advance
119static size_t mmapStart; // cross over point for mmap
120static unsigned int maxBucketsUsed; // maximum number of buckets in use
121
122
123#define SPINLOCK 0
124#define LOCKFREE 1
125#define BUCKETLOCK SPINLOCK
126#if BUCKETLOCK == SPINLOCK
127#elif BUCKETLOCK == LOCKFREE
128#include <stackLockFree.hfa>
129#else
130 #error undefined lock type for bucket lock
131#endif // LOCKFREE
132
133// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
134// Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
135enum { NoBucketSizes = 91 }; // number of buckets sizes
136
137struct HeapManager {
138 struct Storage {
139 struct Header { // header
140 union Kind {
141 struct RealHeader {
142 union {
143 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
144 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
145 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
146 #endif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
147
148 union {
149 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
150 // 2nd low-order bit => zero filled
151 void * home; // allocated block points back to home locations (must overlay alignment)
152 size_t blockSize; // size for munmap (must overlay alignment)
153 #if BUCKETLOCK == SPINLOCK
154 Storage * next; // freed block points next freed block of same size
155 #endif // SPINLOCK
156 };
157 size_t size; // allocation size in bytes
158
159 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
160 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
161 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
162 };
163 #if BUCKETLOCK == LOCKFREE
164 Link(Storage) next; // freed block points next freed block of same size (double-wide)
165 #endif // LOCKFREE
166 };
167 } real; // RealHeader
168
169 struct FakeHeader {
170 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
171 uint32_t alignment; // 1st low-order bit => fake header & alignment
172 #endif // __ORDER_LITTLE_ENDIAN__
173
174 uint32_t offset;
175
176 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
177 uint32_t alignment; // low-order bits of home/blockSize used for tricks
178 #endif // __ORDER_BIG_ENDIAN__
179 } fake; // FakeHeader
180 } kind; // Kind
181 } header; // Header
182 char pad[libAlign() - sizeof( Header )];
183 char data[0]; // storage
184 }; // Storage
185
186 static_assert( libAlign() >= sizeof( Storage ), "libAlign() < sizeof( Storage )" );
187
188 struct FreeHeader {
189 #if BUCKETLOCK == SPINLOCK
190 __spinlock_t lock; // must be first field for alignment
191 Storage * freeList;
192 #else
193 StackLF(Storage) freeList;
194 #endif // BUCKETLOCK
195 size_t blockSize; // size of allocations on this list
196 }; // FreeHeader
197
198 // must be first fields for alignment
199 __spinlock_t extlock; // protects allocation-buffer extension
200 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
201
202 void * heapBegin; // start of heap
203 void * heapEnd; // logical end of heap
204 size_t heapRemaining; // amount of storage not allocated in the current chunk
205}; // HeapManager
206
207#if BUCKETLOCK == LOCKFREE
208static inline {
209 Link(HeapManager.Storage) * ?`next( HeapManager.Storage * this ) { return &this->header.kind.real.next; }
210 void ?{}( HeapManager.FreeHeader & ) {}
211 void ^?{}( HeapManager.FreeHeader & ) {}
212} // distribution
213#endif // LOCKFREE
214
215static inline size_t getKey( const HeapManager.FreeHeader & freeheader ) { return freeheader.blockSize; }
216
217
218#define FASTLOOKUP
219#define __STATISTICS__
220
221// Size of array must harmonize with NoBucketSizes and individual bucket sizes must be multiple of 16.
222// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
223// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
224static const unsigned int bucketSizes[] @= { // different bucket sizes
225 16 + sizeof(HeapManager.Storage), 32 + sizeof(HeapManager.Storage), 48 + sizeof(HeapManager.Storage), 64 + sizeof(HeapManager.Storage), // 4
226 96 + sizeof(HeapManager.Storage), 112 + sizeof(HeapManager.Storage), 128 + sizeof(HeapManager.Storage), // 3
227 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4
228 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4
229 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4
230 1_536, 2_048 + sizeof(HeapManager.Storage), // 2
231 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4
232 6_144, 8_192 + sizeof(HeapManager.Storage), // 2
233 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8
234 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8
235 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8
236 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8
237 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8
238 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8
239 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4
240 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8
241 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4
242};
243
244static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0] ), "size of bucket array wrong" );
245
246#ifdef FASTLOOKUP
247enum { LookupSizes = 65_536 + sizeof(HeapManager.Storage) }; // number of fast lookup sizes
248static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
249#endif // FASTLOOKUP
250
251static int mmapFd = -1; // fake or actual fd for anonymous file
252#ifdef __CFA_DEBUG__
253static bool heapBoot = 0; // detect recursion during boot
254#endif // __CFA_DEBUG__
255
256// The constructor for heapManager is called explicitly in memory_startup.
257static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
258
259
260#ifdef __STATISTICS__
261// Heap statistics counters.
262static unsigned int malloc_calls;
263static unsigned long long int malloc_storage;
264static unsigned int aalloc_calls;
265static unsigned long long int aalloc_storage;
266static unsigned int calloc_calls;
267static unsigned long long int calloc_storage;
268static unsigned int memalign_calls;
269static unsigned long long int memalign_storage;
270static unsigned int amemalign_calls;
271static unsigned long long int amemalign_storage;
272static unsigned int cmemalign_calls;
273static unsigned long long int cmemalign_storage;
274static unsigned int resize_calls;
275static unsigned long long int resize_storage;
276static unsigned int realloc_calls;
277static unsigned long long int realloc_storage;
278static unsigned int free_calls;
279static unsigned long long int free_storage;
280static unsigned int mmap_calls;
281static unsigned long long int mmap_storage;
282static unsigned int munmap_calls;
283static unsigned long long int munmap_storage;
284static unsigned int sbrk_calls;
285static unsigned long long int sbrk_storage;
286// Statistics file descriptor (changed by malloc_stats_fd).
287static int stat_fd = STDERR_FILENO; // default stderr
288
289// Use "write" because streams may be shutdown when calls are made.
290static void printStats() {
291 char helpText[1024];
292 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
293 "\nHeap statistics:\n"
294 " malloc: calls %u / storage %llu\n"
295 " aalloc: calls %u / storage %llu\n"
296 " calloc: calls %u / storage %llu\n"
297 " memalign: calls %u / storage %llu\n"
298 " amemalign: calls %u / storage %llu\n"
299 " cmemalign: calls %u / storage %llu\n"
300 " resize: calls %u / storage %llu\n"
301 " realloc: calls %u / storage %llu\n"
302 " free: calls %u / storage %llu\n"
303 " mmap: calls %u / storage %llu\n"
304 " munmap: calls %u / storage %llu\n"
305 " sbrk: calls %u / storage %llu\n",
306 malloc_calls, malloc_storage,
307 aalloc_calls, aalloc_storage,
308 calloc_calls, calloc_storage,
309 memalign_calls, memalign_storage,
310 amemalign_calls, amemalign_storage,
311 cmemalign_calls, cmemalign_storage,
312 resize_calls, resize_storage,
313 realloc_calls, realloc_storage,
314 free_calls, free_storage,
315 mmap_calls, mmap_storage,
316 munmap_calls, munmap_storage,
317 sbrk_calls, sbrk_storage
318 );
319} // printStats
320
321static int printStatsXML( FILE * stream ) { // see malloc_info
322 char helpText[1024];
323 int len = snprintf( helpText, sizeof(helpText),
324 "<malloc version=\"1\">\n"
325 "<heap nr=\"0\">\n"
326 "<sizes>\n"
327 "</sizes>\n"
328 "<total type=\"malloc\" count=\"%u\" size=\"%llu\"/>\n"
329 "<total type=\"aalloc\" count=\"%u\" size=\"%llu\"/>\n"
330 "<total type=\"calloc\" count=\"%u\" size=\"%llu\"/>\n"
331 "<total type=\"memalign\" count=\"%u\" size=\"%llu\"/>\n"
332 "<total type=\"amemalign\" count=\"%u\" size=\"%llu\"/>\n"
333 "<total type=\"cmemalign\" count=\"%u\" size=\"%llu\"/>\n"
334 "<total type=\"resize\" count=\"%u\" size=\"%llu\"/>\n"
335 "<total type=\"realloc\" count=\"%u\" size=\"%llu\"/>\n"
336 "<total type=\"free\" count=\"%u\" size=\"%llu\"/>\n"
337 "<total type=\"mmap\" count=\"%u\" size=\"%llu\"/>\n"
338 "<total type=\"munmap\" count=\"%u\" size=\"%llu\"/>\n"
339 "<total type=\"sbrk\" count=\"%u\" size=\"%llu\"/>\n"
340 "</malloc>",
341 malloc_calls, malloc_storage,
342 aalloc_calls, aalloc_storage,
343 calloc_calls, calloc_storage,
344 memalign_calls, memalign_storage,
345 amemalign_calls, amemalign_storage,
346 cmemalign_calls, cmemalign_storage,
347 resize_calls, resize_storage,
348 realloc_calls, realloc_storage,
349 free_calls, free_storage,
350 mmap_calls, mmap_storage,
351 munmap_calls, munmap_storage,
352 sbrk_calls, sbrk_storage
353 );
354 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit
355 return len;
356} // printStatsXML
357#endif // __STATISTICS__
358
359
360// thunk problem
361size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
362 size_t l = 0, m, h = dim;
363 while ( l < h ) {
364 m = (l + h) / 2;
365 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
366 l = m + 1;
367 } else {
368 h = m;
369 } // if
370 } // while
371 return l;
372} // Bsearchl
373
374
375static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
376 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return false;
377 mmapStart = value; // set global
378
379 // find the closest bucket size less than or equal to the mmapStart size
380 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
381 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
382 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
383 return true;
384} // setMmapStart
385
386
387// <-------+----------------------------------------------------> bsize (bucket size)
388// |header |addr
389//==================================================================================
390// align/offset |
391// <-----------------<------------+-----------------------------> bsize (bucket size)
392// |fake-header | addr
393#define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))
394#define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset))
395
396// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
397// |header |addr
398//==================================================================================
399// align/offset |
400// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
401// |fake-header |addr
402#define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
403
404
405static inline void checkAlign( size_t alignment ) {
406 if ( alignment < libAlign() || ! is_pow2( alignment ) ) {
407 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
408 } // if
409} // checkAlign
410
411
412static inline void checkHeader( bool check, const char name[], void * addr ) {
413 if ( unlikely( check ) ) { // bad address ?
414 abort( "Attempt to %s storage %p with address outside the heap.\n"
415 "Possible cause is duplicate free on same block or overwriting of memory.",
416 name, addr );
417 } // if
418} // checkHeader
419
420
421static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {
422 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?
423 alignment = header->kind.fake.alignment & -2; // remove flag from value
424 #ifdef __CFA_DEBUG__
425 checkAlign( alignment ); // check alignment
426 #endif // __CFA_DEBUG__
427 header = realHeader( header ); // backup from fake to real header
428 } else {
429 alignment = libAlign(); // => no fake header
430 } // if
431} // fakeHeader
432
433
434static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem,
435 size_t & size, size_t & alignment ) with( heapManager ) {
436 header = headerAddr( addr );
437
438 if ( unlikely( heapEnd < addr ) ) { // mmapped ?
439 fakeHeader( header, alignment );
440 size = header->kind.real.blockSize & -3; // mmap size
441 return true;
442 } // if
443
444 #ifdef __CFA_DEBUG__
445 checkHeader( addr < heapBegin, name, addr ); // bad low address ?
446 #endif // __CFA_DEBUG__
447
448 // header may be safe to dereference
449 fakeHeader( header, alignment );
450 #ifdef __CFA_DEBUG__
451 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
452 #endif // __CFA_DEBUG__
453
454 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);
455 #ifdef __CFA_DEBUG__
456 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {
457 abort( "Attempt to %s storage %p with corrupted header.\n"
458 "Possible cause is duplicate free on same block or overwriting of header information.",
459 name, addr );
460 } // if
461 #endif // __CFA_DEBUG__
462 size = freeElem->blockSize;
463 return false;
464} // headers
465
466#ifdef __CFA_DEBUG__
467#if __SIZEOF_POINTER__ == 4
468#define MASK 0xdeadbeef
469#else
470#define MASK 0xdeadbeefdeadbeef
471#endif
472#define STRIDE size_t
473
474static void * Memset( void * addr, STRIDE size ) { // debug only
475 if ( size % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, size %zd not multiple of %zd.", size, sizeof(STRIDE) );
476 if ( (STRIDE)addr % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, addr %p not multiple of %zd.", addr, sizeof(STRIDE) );
477
478 STRIDE * end = (STRIDE *)addr + size / sizeof(STRIDE);
479 for ( STRIDE * p = (STRIDE *)addr; p < end; p += 1 ) *p = MASK;
480 return addr;
481} // Memset
482#endif // __CFA_DEBUG__
483
484#define NO_MEMORY_MSG "insufficient heap memory available for allocating %zd new bytes."
485
486static inline void * extend( size_t size ) with( heapManager ) {
487 lock( extlock __cfaabi_dbg_ctx2 );
488 ptrdiff_t rem = heapRemaining - size;
489 if ( rem < 0 ) {
490 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
491
492 size_t increase = ceiling2( size > heapExpand ? size : heapExpand, libAlign() );
493 if ( sbrk( increase ) == (void *)-1 ) { // failed, no memory ?
494 unlock( extlock );
495 abort( NO_MEMORY_MSG, size ); // give up
496 } // if
497 #ifdef __STATISTICS__
498 sbrk_calls += 1;
499 sbrk_storage += increase;
500 #endif // __STATISTICS__
501 #ifdef __CFA_DEBUG__
502 // Set new memory to garbage so subsequent uninitialized usages might fail.
503 //memset( (char *)heapEnd + heapRemaining, '\377', increase );
504 Memset( (char *)heapEnd + heapRemaining, increase );
505 #endif // __CFA_DEBUG__
506 rem = heapRemaining + increase - size;
507 } // if
508
509 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;
510 heapRemaining = rem;
511 heapEnd = (char *)heapEnd + size;
512 unlock( extlock );
513 return block;
514} // extend
515
516
517static inline void * doMalloc( size_t size ) with( heapManager ) {
518 HeapManager.Storage * block; // pointer to new block of storage
519
520 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
521 // along with the block and is a multiple of the alignment size.
522
523 if ( unlikely( size > ULONG_MAX - sizeof(HeapManager.Storage) ) ) return 0p;
524 size_t tsize = size + sizeof(HeapManager.Storage);
525 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
526 size_t posn;
527 #ifdef FASTLOOKUP
528 if ( tsize < LookupSizes ) posn = lookup[tsize];
529 else
530 #endif // FASTLOOKUP
531 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
532 HeapManager.FreeHeader * freeElem = &freeLists[posn];
533 verify( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
534 verify( tsize <= freeElem->blockSize ); // search failure ?
535 tsize = freeElem->blockSize; // total space needed for request
536
537 // Spin until the lock is acquired for this particular size of block.
538
539 #if BUCKETLOCK == SPINLOCK
540 lock( freeElem->lock __cfaabi_dbg_ctx2 );
541 block = freeElem->freeList; // remove node from stack
542 #else
543 block = pop( freeElem->freeList );
544 #endif // BUCKETLOCK
545 if ( unlikely( block == 0p ) ) { // no free block ?
546 #if BUCKETLOCK == SPINLOCK
547 unlock( freeElem->lock );
548 #endif // BUCKETLOCK
549
550 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
551 // and then carve it off.
552
553 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call
554 #if BUCKETLOCK == SPINLOCK
555 } else {
556 freeElem->freeList = block->header.kind.real.next;
557 unlock( freeElem->lock );
558 #endif // BUCKETLOCK
559 } // if
560
561 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
562 } else { // large size => mmap
563 if ( unlikely( size > ULONG_MAX - pageSize ) ) return 0p;
564 tsize = ceiling2( tsize, pageSize ); // must be multiple of page size
565 #ifdef __STATISTICS__
566 __atomic_add_fetch( &mmap_calls, 1, __ATOMIC_SEQ_CST );
567 __atomic_add_fetch( &mmap_storage, tsize, __ATOMIC_SEQ_CST );
568 #endif // __STATISTICS__
569
570 block = (HeapManager.Storage *)mmap( 0, tsize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
571 if ( block == (HeapManager.Storage *)MAP_FAILED ) { // failed ?
572 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize ); // no memory
573 // Do not call strerror( errno ) as it may call malloc.
574 abort( "(HeapManager &)0x%p.doMalloc() : internal error, mmap failure, size:%zu error:%d.", &heapManager, tsize, errno );
575 } //if
576 #ifdef __CFA_DEBUG__
577 // Set new memory to garbage so subsequent uninitialized usages might fail.
578 //memset( block, '\377', tsize );
579 Memset( block, tsize );
580 #endif // __CFA_DEBUG__
581 block->header.kind.real.blockSize = tsize; // storage size for munmap
582 } // if
583
584 block->header.kind.real.size = size; // store allocation size
585 void * addr = &(block->data); // adjust off header to user bytes
586 verify( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
587
588 #ifdef __CFA_DEBUG__
589 __atomic_add_fetch( &allocUnfreed, tsize, __ATOMIC_SEQ_CST );
590 if ( traceHeap() ) {
591 enum { BufferSize = 64 };
592 char helpText[BufferSize];
593 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize );
594 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
595 } // if
596 #endif // __CFA_DEBUG__
597
598 return addr;
599} // doMalloc
600
601
602static inline void doFree( void * addr ) with( heapManager ) {
603 #ifdef __CFA_DEBUG__
604 if ( unlikely( heapManager.heapBegin == 0p ) ) {
605 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
606 } // if
607 #endif // __CFA_DEBUG__
608
609 HeapManager.Storage.Header * header;
610 HeapManager.FreeHeader * freeElem;
611 size_t size, alignment; // not used (see realloc)
612
613 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
614 #ifdef __STATISTICS__
615 __atomic_add_fetch( &munmap_calls, 1, __ATOMIC_SEQ_CST );
616 __atomic_add_fetch( &munmap_storage, size, __ATOMIC_SEQ_CST );
617 #endif // __STATISTICS__
618 if ( munmap( header, size ) == -1 ) {
619 #ifdef __CFA_DEBUG__
620 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
621 "Possible cause is invalid pointer.",
622 addr );
623 #endif // __CFA_DEBUG__
624 } // if
625 } else {
626 #ifdef __CFA_DEBUG__
627 // Set free memory to garbage so subsequent usages might fail.
628 //memset( ((HeapManager.Storage *)header)->data, '\377', freeElem->blockSize - sizeof( HeapManager.Storage ) );
629 Memset( ((HeapManager.Storage *)header)->data, freeElem->blockSize - sizeof( HeapManager.Storage ) );
630 #endif // __CFA_DEBUG__
631
632 #ifdef __STATISTICS__
633 free_storage += size;
634 #endif // __STATISTICS__
635 #if BUCKETLOCK == SPINLOCK
636 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
637 header->kind.real.next = freeElem->freeList; // push on stack
638 freeElem->freeList = (HeapManager.Storage *)header;
639 unlock( freeElem->lock ); // release spin lock
640 #else
641 push( freeElem->freeList, *(HeapManager.Storage *)header );
642 #endif // BUCKETLOCK
643 } // if
644
645 #ifdef __CFA_DEBUG__
646 __atomic_add_fetch( &allocUnfreed, -size, __ATOMIC_SEQ_CST );
647 if ( traceHeap() ) {
648 char helpText[64];
649 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size );
650 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
651 } // if
652 #endif // __CFA_DEBUG__
653} // doFree
654
655
656size_t prtFree( HeapManager & manager ) with( manager ) {
657 size_t total = 0;
658 #ifdef __STATISTICS__
659 __cfaabi_bits_acquire();
660 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
661 #endif // __STATISTICS__
662 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
663 size_t size = freeLists[i].blockSize;
664 #ifdef __STATISTICS__
665 unsigned int N = 0;
666 #endif // __STATISTICS__
667
668 #if BUCKETLOCK == SPINLOCK
669 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
670 #else
671 // for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; p = (p)`next->top ) {
672// for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; /* p = getNext( p )->top */) {
673 for ( HeapManager.Storage * p ;; /* p = getNext( p )->top */) {
674 HeapManager.Storage * temp = p->header.kind.real.next.top; // FIX ME: direct assignent fails, initialization works`
675// typeof(p) temp = (( p )`next)->top; // FIX ME: direct assignent fails, initialization works`
676// p = temp;
677 #endif // BUCKETLOCK
678 total += size;
679 #ifdef __STATISTICS__
680 N += 1;
681 #endif // __STATISTICS__
682 } // for
683
684 #ifdef __STATISTICS__
685 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
686 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
687 #endif // __STATISTICS__
688 } // for
689 #ifdef __STATISTICS__
690 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
691 __cfaabi_bits_release();
692 #endif // __STATISTICS__
693 return (char *)heapEnd - (char *)heapBegin - total;
694} // prtFree
695
696
697static void ?{}( HeapManager & manager ) with( manager ) {
698 pageSize = sysconf( _SC_PAGESIZE );
699
700 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
701 freeLists[i].blockSize = bucketSizes[i];
702 } // for
703
704 #ifdef FASTLOOKUP
705 unsigned int idx = 0;
706 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
707 if ( i > bucketSizes[idx] ) idx += 1;
708 lookup[i] = idx;
709 } // for
710 #endif // FASTLOOKUP
711
712 if ( ! setMmapStart( default_mmap_start() ) ) {
713 abort( "HeapManager : internal error, mmap start initialization failure." );
714 } // if
715 heapExpand = default_heap_expansion();
716
717 char * end = (char *)sbrk( 0 );
718 heapBegin = heapEnd = sbrk( (char *)ceiling2( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment
719} // HeapManager
720
721
722static void ^?{}( HeapManager & ) {
723 #ifdef __STATISTICS__
724 if ( traceHeapTerm() ) {
725 printStats();
726 // prtUnfreed() called in heapAppStop()
727 } // if
728 #endif // __STATISTICS__
729} // ~HeapManager
730
731
732static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
733void memory_startup( void ) {
734 #ifdef __CFA_DEBUG__
735 if ( heapBoot ) { // check for recursion during system boot
736 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
737 abort( "boot() : internal error, recursively invoked during system boot." );
738 } // if
739 heapBoot = true;
740 #endif // __CFA_DEBUG__
741
742 //verify( heapManager.heapBegin != 0 );
743 //heapManager{};
744 if ( heapManager.heapBegin == 0p ) heapManager{}; // sanity check
745} // memory_startup
746
747static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
748void memory_shutdown( void ) {
749 ^heapManager{};
750} // memory_shutdown
751
752
753static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
754 verify( heapManager.heapBegin != 0p ); // called before memory_startup ?
755 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
756
757#if __SIZEOF_POINTER__ == 8
758 verify( size < ((typeof(size_t))1 << 48) );
759#endif // __SIZEOF_POINTER__ == 8
760 return doMalloc( size );
761} // mallocNoStats
762
763
764static inline void * callocNoStats( size_t dim, size_t elemSize ) {
765 size_t size = dim * elemSize;
766 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
767 char * addr = (char *)mallocNoStats( size );
768
769 HeapManager.Storage.Header * header;
770 HeapManager.FreeHeader * freeElem;
771 size_t bsize, alignment;
772 #ifndef __CFA_DEBUG__
773 bool mapped =
774 #endif // __CFA_DEBUG__
775 headers( "calloc", addr, header, freeElem, bsize, alignment );
776 #ifndef __CFA_DEBUG__
777
778 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
779 if ( ! mapped )
780 #endif // __CFA_DEBUG__
781 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
782 // `-header`-addr `-size
783 memset( addr, '\0', size ); // set to zeros
784
785 header->kind.real.blockSize |= 2; // mark as zero filled
786 return addr;
787} // callocNoStats
788
789
790static inline void * memalignNoStats( size_t alignment, size_t size ) {
791 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
792
793 #ifdef __CFA_DEBUG__
794 checkAlign( alignment ); // check alignment
795 #endif // __CFA_DEBUG__
796
797 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
798 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
799
800 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
801 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
802 // .-------------v-----------------v----------------v----------,
803 // | Real Header | ... padding ... | Fake Header | data ... |
804 // `-------------^-----------------^-+--------------^----------'
805 // |<--------------------------------' offset/align |<-- alignment boundary
806
807 // subtract libAlign() because it is already the minimum alignment
808 // add sizeof(Storage) for fake header
809 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) );
810
811 // address in the block of the "next" alignment address
812 char * user = (char *)ceiling2( (uintptr_t)(addr + sizeof(HeapManager.Storage)), alignment );
813
814 // address of header from malloc
815 HeapManager.Storage.Header * realHeader = headerAddr( addr );
816 realHeader->kind.real.size = size; // correct size to eliminate above alignment offset
817 // address of fake header * before* the alignment location
818 HeapManager.Storage.Header * fakeHeader = headerAddr( user );
819 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
820 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
821 // SKULLDUGGERY: odd alignment imples fake header
822 fakeHeader->kind.fake.alignment = alignment | 1;
823
824 return user;
825} // memalignNoStats
826
827
828static inline void * cmemalignNoStats( size_t alignment, size_t dim, size_t elemSize ) {
829 size_t size = dim * elemSize;
830 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
831 char * addr = (char *)memalignNoStats( alignment, size );
832
833 HeapManager.Storage.Header * header;
834 HeapManager.FreeHeader * freeElem;
835 size_t bsize;
836 #ifndef __CFA_DEBUG__
837 bool mapped =
838 #endif // __CFA_DEBUG__
839 headers( "cmemalign", addr, header, freeElem, bsize, alignment );
840
841 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
842 #ifndef __CFA_DEBUG__
843 if ( ! mapped )
844 #endif // __CFA_DEBUG__
845 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
846 // `-header`-addr `-size
847 memset( addr, '\0', size ); // set to zeros
848
849 header->kind.real.blockSize |= 2; // mark as zero filled
850 return addr;
851} // cmemalignNoStats
852
853
854extern "C" {
855 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
856 // then malloc() returns a unique pointer value that can later be successfully passed to free().
857 void * malloc( size_t size ) {
858 #ifdef __STATISTICS__
859 __atomic_add_fetch( &malloc_calls, 1, __ATOMIC_SEQ_CST );
860 __atomic_add_fetch( &malloc_storage, size, __ATOMIC_SEQ_CST );
861 #endif // __STATISTICS__
862
863 return mallocNoStats( size );
864 } // malloc
865
866
867 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
868 void * aalloc( size_t dim, size_t elemSize ) {
869 size_t size = dim * elemSize;
870 #ifdef __STATISTICS__
871 __atomic_add_fetch( &aalloc_calls, 1, __ATOMIC_SEQ_CST );
872 __atomic_add_fetch( &aalloc_storage, size, __ATOMIC_SEQ_CST );
873 #endif // __STATISTICS__
874
875 return mallocNoStats( size );
876 } // aalloc
877
878
879 // Same as aalloc() with memory set to zero.
880 void * calloc( size_t dim, size_t elemSize ) {
881 #ifdef __STATISTICS__
882 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST );
883 __atomic_add_fetch( &calloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
884 #endif // __STATISTICS__
885
886 return callocNoStats( dim, elemSize );
887 } // calloc
888
889
890 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
891 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
892 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
893 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
894 void * resize( void * oaddr, size_t size ) {
895 #ifdef __STATISTICS__
896 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
897 #endif // __STATISTICS__
898
899 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
900 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
901 if ( unlikely( oaddr == 0p ) ) {
902 #ifdef __STATISTICS__
903 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
904 #endif // __STATISTICS__
905 return mallocNoStats( size );
906 } // if
907
908 HeapManager.Storage.Header * header;
909 HeapManager.FreeHeader * freeElem;
910 size_t bsize, oalign;
911 headers( "resize", oaddr, header, freeElem, bsize, oalign );
912 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
913
914 // same size, DO NOT preserve STICKY PROPERTIES.
915 if ( oalign == libAlign() && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
916 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill
917 header->kind.real.size = size; // reset allocation size
918 return oaddr;
919 } // if
920
921 #ifdef __STATISTICS__
922 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
923 #endif // __STATISTICS__
924
925 // change size, DO NOT preserve STICKY PROPERTIES.
926 free( oaddr );
927 return mallocNoStats( size ); // create new area
928 } // resize
929
930
931 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
932 // the old and new sizes.
933 void * realloc( void * oaddr, size_t size ) {
934 #ifdef __STATISTICS__
935 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
936 #endif // __STATISTICS__
937
938 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
939 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
940 if ( unlikely( oaddr == 0p ) ) {
941 #ifdef __STATISTICS__
942 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
943 #endif // __STATISTICS__
944 return mallocNoStats( size );
945 } // if
946
947 HeapManager.Storage.Header * header;
948 HeapManager.FreeHeader * freeElem;
949 size_t bsize, oalign;
950 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
951
952 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
953 size_t osize = header->kind.real.size; // old allocation size
954 bool ozfill = (header->kind.real.blockSize & 2); // old allocation zero filled
955 if ( unlikely( size <= odsize ) && odsize <= size * 2 ) { // allow up to 50% wasted storage
956 header->kind.real.size = size; // reset allocation size
957 if ( unlikely( ozfill ) && size > osize ) { // previous request zero fill and larger ?
958 memset( (char *)oaddr + osize, '\0', size - osize ); // initialize added storage
959 } // if
960 return oaddr;
961 } // if
962
963 #ifdef __STATISTICS__
964 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
965 #endif // __STATISTICS__
966
967 // change size and copy old content to new storage
968
969 void * naddr;
970 if ( likely( oalign == libAlign() ) ) { // previous request not aligned ?
971 naddr = mallocNoStats( size ); // create new area
972 } else {
973 naddr = memalignNoStats( oalign, size ); // create new aligned area
974 } // if
975
976 headers( "realloc", naddr, header, freeElem, bsize, oalign );
977 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
978 free( oaddr );
979
980 if ( unlikely( ozfill ) ) { // previous request zero fill ?
981 header->kind.real.blockSize |= 2; // mark new request as zero filled
982 if ( size > osize ) { // previous request larger ?
983 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
984 } // if
985 } // if
986 return naddr;
987 } // realloc
988
989
990 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
991 void * memalign( size_t alignment, size_t size ) {
992 #ifdef __STATISTICS__
993 __atomic_add_fetch( &memalign_calls, 1, __ATOMIC_SEQ_CST );
994 __atomic_add_fetch( &memalign_storage, size, __ATOMIC_SEQ_CST );
995 #endif // __STATISTICS__
996
997 return memalignNoStats( alignment, size );
998 } // memalign
999
1000
1001 // Same as aalloc() with memory alignment.
1002 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) {
1003 size_t size = dim * elemSize;
1004 #ifdef __STATISTICS__
1005 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
1006 __atomic_add_fetch( &cmemalign_storage, size, __ATOMIC_SEQ_CST );
1007 #endif // __STATISTICS__
1008
1009 return memalignNoStats( alignment, size );
1010 } // amemalign
1011
1012
1013 // Same as calloc() with memory alignment.
1014 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) {
1015 #ifdef __STATISTICS__
1016 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
1017 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
1018 #endif // __STATISTICS__
1019
1020 return cmemalignNoStats( alignment, dim, elemSize );
1021 } // cmemalign
1022
1023 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
1024 // of alignment. This requirement is universally ignored.
1025 void * aligned_alloc( size_t alignment, size_t size ) {
1026 return memalign( alignment, size );
1027 } // aligned_alloc
1028
1029
1030 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1031 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1032 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1033 // free(3).
1034 int posix_memalign( void ** memptr, size_t alignment, size_t size ) {
1035 if ( alignment < libAlign() || ! is_pow2( alignment ) ) return EINVAL; // check alignment
1036 * memptr = memalign( alignment, size );
1037 return 0;
1038 } // posix_memalign
1039
1040 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1041 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
1042 void * valloc( size_t size ) {
1043 return memalign( pageSize, size );
1044 } // valloc
1045
1046
1047 // Same as valloc but rounds size to multiple of page size.
1048 void * pvalloc( size_t size ) {
1049 return memalign( pageSize, ceiling2( size, pageSize ) );
1050 } // pvalloc
1051
1052
1053 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
1054 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
1055 // 0p, no operation is performed.
1056 void free( void * addr ) {
1057 #ifdef __STATISTICS__
1058 __atomic_add_fetch( &free_calls, 1, __ATOMIC_SEQ_CST );
1059 #endif // __STATISTICS__
1060
1061 if ( unlikely( addr == 0p ) ) { // special case
1062 // #ifdef __CFA_DEBUG__
1063 // if ( traceHeap() ) {
1064 // #define nullmsg "Free( 0x0 ) size:0\n"
1065 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
1066 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
1067 // } // if
1068 // #endif // __CFA_DEBUG__
1069 return;
1070 } // exit
1071
1072 doFree( addr );
1073 } // free
1074
1075
1076 // Returns the alignment of an allocation.
1077 size_t malloc_alignment( void * addr ) {
1078 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1079 HeapManager.Storage.Header * header = headerAddr( addr );
1080 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1081 return header->kind.fake.alignment & -2; // remove flag from value
1082 } else {
1083 return libAlign(); // minimum alignment
1084 } // if
1085 } // malloc_alignment
1086
1087
1088 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment.
1089 size_t $malloc_alignment_set( void * addr, size_t alignment ) {
1090 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1091 size_t ret;
1092 HeapManager.Storage.Header * header = headerAddr( addr );
1093 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1094 ret = header->kind.fake.alignment & -2; // remove flag from old value
1095 header->kind.fake.alignment = alignment | 1; // add flag to new value
1096 } else {
1097 ret = 0; // => no alignment to change
1098 } // if
1099 return ret;
1100 } // $malloc_alignment_set
1101
1102
1103 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
1104 bool malloc_zero_fill( void * addr ) {
1105 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1106 HeapManager.Storage.Header * header = headerAddr( addr );
1107 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1108 header = realHeader( header ); // backup from fake to real header
1109 } // if
1110 return (header->kind.real.blockSize & 2) != 0; // zero filled ?
1111 } // malloc_zero_fill
1112
1113 // Set allocation is zero filled and return previous zero filled.
1114 bool $malloc_zero_fill_set( void * addr ) {
1115 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1116 HeapManager.Storage.Header * header = headerAddr( addr );
1117 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1118 header = realHeader( header ); // backup from fake to real header
1119 } // if
1120 bool ret = (header->kind.real.blockSize & 2) != 0; // zero filled ?
1121 header->kind.real.blockSize |= 2; // mark as zero filled
1122 return ret;
1123 } // $malloc_zero_fill_set
1124
1125
1126 // Returns original total allocation size (not bucket size) => array size is dimension * sizeif(T).
1127 size_t malloc_size( void * addr ) {
1128 if ( unlikely( addr == 0p ) ) return 0; // null allocation has zero size
1129 HeapManager.Storage.Header * header = headerAddr( addr );
1130 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1131 header = realHeader( header ); // backup from fake to real header
1132 } // if
1133 return header->kind.real.size;
1134 } // malloc_size
1135
1136 // Set allocation size and return previous size.
1137 size_t $malloc_size_set( void * addr, size_t size ) {
1138 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1139 HeapManager.Storage.Header * header = headerAddr( addr );
1140 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1141 header = realHeader( header ); // backup from fake to real header
1142 } // if
1143 size_t ret = header->kind.real.size;
1144 header->kind.real.size = size;
1145 return ret;
1146 } // $malloc_size_set
1147
1148
1149 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1150 // malloc or a related function.
1151 size_t malloc_usable_size( void * addr ) {
1152 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1153 HeapManager.Storage.Header * header;
1154 HeapManager.FreeHeader * freeElem;
1155 size_t bsize, alignment;
1156
1157 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
1158 return dataStorage( bsize, addr, header ); // data storage in bucket
1159 } // malloc_usable_size
1160
1161
1162 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
1163 void malloc_stats( void ) {
1164 #ifdef __STATISTICS__
1165 printStats();
1166 if ( prtFree() ) prtFree( heapManager );
1167 #endif // __STATISTICS__
1168 } // malloc_stats
1169
1170
1171 // Changes the file descripter where malloc_stats() writes statistics.
1172 int malloc_stats_fd( int fd __attribute__(( unused )) ) {
1173 #ifdef __STATISTICS__
1174 int temp = stat_fd;
1175 stat_fd = fd;
1176 return temp;
1177 #else
1178 return -1;
1179 #endif // __STATISTICS__
1180 } // malloc_stats_fd
1181
1182
1183 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
1184 // specifies the parameter to be modified, and value specifies the new value for that parameter.
1185 int mallopt( int option, int value ) {
1186 choose( option ) {
1187 case M_TOP_PAD:
1188 heapExpand = ceiling2( value, pageSize ); return 1;
1189 case M_MMAP_THRESHOLD:
1190 if ( setMmapStart( value ) ) return 1;
1191 break;
1192 } // switch
1193 return 0; // error, unsupported
1194 } // mallopt
1195
1196
1197 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
1198 int malloc_trim( size_t ) {
1199 return 0; // => impossible to release memory
1200 } // malloc_trim
1201
1202
1203 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller.
1204 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1205 // malloc).
1206 int malloc_info( int options, FILE * stream ) {
1207 if ( options != 0 ) { errno = EINVAL; return -1; }
1208 #ifdef __STATISTICS__
1209 return printStatsXML( stream );
1210 #else
1211 return 0; // unsupported
1212 #endif // __STATISTICS__
1213 } // malloc_info
1214
1215
1216 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1217 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1218 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1219 // result. (The caller must free this memory.)
1220 void * malloc_get_state( void ) {
1221 return 0p; // unsupported
1222 } // malloc_get_state
1223
1224
1225 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1226 // structure pointed to by state.
1227 int malloc_set_state( void * ) {
1228 return 0; // unsupported
1229 } // malloc_set_state
1230} // extern "C"
1231
1232
1233// Must have CFA linkage to overload with C linkage realloc.
1234void * resize( void * oaddr, size_t nalign, size_t size ) {
1235 #ifdef __STATISTICS__
1236 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
1237 #endif // __STATISTICS__
1238
1239 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
1240 #ifdef __CFA_DEBUG__
1241 else
1242 checkAlign( nalign ); // check alignment
1243 #endif // __CFA_DEBUG__
1244
1245 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1246 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
1247 if ( unlikely( oaddr == 0p ) ) {
1248 #ifdef __STATISTICS__
1249 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
1250 #endif // __STATISTICS__
1251 return memalignNoStats( nalign, size );
1252 } // if
1253
1254 // Attempt to reuse existing alignment.
1255 HeapManager.Storage.Header * header = headerAddr( oaddr );
1256 bool isFakeHeader = header->kind.fake.alignment & 1; // old fake header ?
1257 size_t oalign;
1258 if ( isFakeHeader ) {
1259 oalign = header->kind.fake.alignment & -2; // old alignment
1260 if ( (uintptr_t)oaddr % nalign == 0 // lucky match ?
1261 && ( oalign <= nalign // going down
1262 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
1263 ) {
1264 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1265 HeapManager.FreeHeader * freeElem;
1266 size_t bsize, oalign;
1267 headers( "resize", oaddr, header, freeElem, bsize, oalign );
1268 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
1269
1270 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted data storage
1271 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1272
1273 header->kind.real.blockSize &= -2; // turn off 0 fill
1274 header->kind.real.size = size; // reset allocation size
1275 return oaddr;
1276 } // if
1277 } // if
1278 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1279 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
1280 return resize( oaddr, size ); // duplicate special case checks
1281 } // if
1282
1283 #ifdef __STATISTICS__
1284 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
1285 #endif // __STATISTICS__
1286
1287 // change size, DO NOT preserve STICKY PROPERTIES.
1288 free( oaddr );
1289 return memalignNoStats( nalign, size ); // create new aligned area
1290} // resize
1291
1292
1293void * realloc( void * oaddr, size_t nalign, size_t size ) {
1294 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
1295 #ifdef __CFA_DEBUG__
1296 else
1297 checkAlign( nalign ); // check alignment
1298 #endif // __CFA_DEBUG__
1299
1300 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1301 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
1302 if ( unlikely( oaddr == 0p ) ) {
1303 #ifdef __STATISTICS__
1304 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
1305 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
1306 #endif // __STATISTICS__
1307 return memalignNoStats( nalign, size );
1308 } // if
1309
1310 // Attempt to reuse existing alignment.
1311 HeapManager.Storage.Header * header = headerAddr( oaddr );
1312 bool isFakeHeader = header->kind.fake.alignment & 1; // old fake header ?
1313 size_t oalign;
1314 if ( isFakeHeader ) {
1315 oalign = header->kind.fake.alignment & -2; // old alignment
1316 if ( (uintptr_t)oaddr % nalign == 0 // lucky match ?
1317 && ( oalign <= nalign // going down
1318 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
1319 ) {
1320 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1321 return realloc( oaddr, size ); // duplicate alignment and special case checks
1322 } // if
1323 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1324 && nalign == libAlign() ) // new alignment also on libAlign => no fake header needed
1325 return realloc( oaddr, size ); // duplicate alignment and special case checks
1326
1327 #ifdef __STATISTICS__
1328 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
1329 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
1330 #endif // __STATISTICS__
1331
1332 HeapManager.FreeHeader * freeElem;
1333 size_t bsize;
1334 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
1335
1336 // change size and copy old content to new storage
1337
1338 size_t osize = header->kind.real.size; // old allocation size
1339 bool ozfill = (header->kind.real.blockSize & 2); // old allocation zero filled
1340
1341 void * naddr = memalignNoStats( nalign, size ); // create new aligned area
1342
1343 headers( "realloc", naddr, header, freeElem, bsize, oalign );
1344 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
1345 free( oaddr );
1346
1347 if ( unlikely( ozfill ) ) { // previous request zero fill ?
1348 header->kind.real.blockSize |= 2; // mark new request as zero filled
1349 if ( size > osize ) { // previous request larger ?
1350 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
1351 } // if
1352 } // if
1353 return naddr;
1354} // realloc
1355
1356
1357// Local Variables: //
1358// tab-width: 4 //
1359// compile-command: "cfa -nodebug -O2 heap.cfa" //
1360// End: //
Note: See TracBrowser for help on using the repository browser.