source: libcfa/src/heap.cfa @ efe39bb

Last change on this file since efe39bb was a47fe52, checked in by Peter A. Buhr <pabuhr@…>, 14 months ago

missing add of terminating thread-heap statistics to master heap, check for environment variable CFA_MALLOC_STATS and print heap statistics at program termination

  • Property mode set to 100644
File size: 67.5 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
[92aca37]7// heap.cfa --
[73abe95]8//
[c4f68dc]9// Author           : Peter A. Buhr
10// Created On       : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[a47fe52]12// Last Modified On : Wed Aug  2 18:48:30 2023
13// Update Count     : 1614
[73abe95]14//
[c4f68dc]15
[116a2ea]16#include <stdio.h>
[1e034d9]17#include <string.h>                                                                             // memset, memcpy
[1076d05]18#include <limits.h>                                                                             // ULONG_MAX
[31a5f418]19#include <errno.h>                                                                              // errno, ENOMEM, EINVAL
[8ee54963]20#include <unistd.h>                                                                             // STDERR_FILENO, sbrk, sysconf, write
[c4f68dc]21#include <sys/mman.h>                                                                   // mmap, munmap
[116a2ea]22extern "C" {
[31a5f418]23#include <sys/sysinfo.h>                                                                // get_nprocs
[116a2ea]24} // extern "C"
[c4f68dc]25
[8ee54963]26#include "heap.hfa"
[92aca37]27#include "bits/align.hfa"                                                               // libAlign
[bcb14b5]28#include "bits/defs.hfa"                                                                // likely, unlikely
[116a2ea]29#include "concurrency/kernel/fwd.hfa"                                   // __POLL_PREEMPTION
[73abe95]30#include "startup.hfa"                                                                  // STARTUP_PRIORITY_MEMORY
[116a2ea]31#include "math.hfa"                                                                             // ceiling, min
[7cfef0d]32#include "bitmanip.hfa"                                                                 // is_pow2, ceiling2
[c4f68dc]33
[116a2ea]34// supported mallopt options
35#ifndef M_MMAP_THRESHOLD
36#define M_MMAP_THRESHOLD (-1)
37#endif // M_MMAP_THRESHOLD
38
39#ifndef M_TOP_PAD
40#define M_TOP_PAD (-2)
41#endif // M_TOP_PAD
42
43#define FASTLOOKUP                                                                              // use O(1) table lookup from allocation size to bucket size
44#define OWNERSHIP                                                                               // return freed memory to owner thread
[7a2057a]45#define RETURNSPIN                                                                              // toggle spinlock / lockfree queue
46#if ! defined( OWNERSHIP ) && defined( RETURNSPIN )
47#warning "RETURNSPIN is ignored without OWNERSHIP; suggest commenting out RETURNSPIN"
48#endif // ! OWNERSHIP && RETURNSPIN
[116a2ea]49
50#define CACHE_ALIGN 64
51#define CALIGN __attribute__(( aligned(CACHE_ALIGN) ))
52
53#define TLSMODEL __attribute__(( tls_model("initial-exec") ))
54
55//#define __STATISTICS__
56
57enum {
58        // The default extension heap amount in units of bytes. When the current heap reaches the brk address, the brk
59        // address is extended by the extension amount.
60        __CFA_DEFAULT_HEAP_EXPANSION__ = 10 * 1024 * 1024,
61
62        // The mmap crossover point during allocation. Allocations less than this amount are allocated from buckets; values
63        // greater than or equal to this value are mmap from the operating system.
64        __CFA_DEFAULT_MMAP_START__ = 512 * 1024 + 1,
65
66        // The default unfreed storage amount in units of bytes. When the uC++ program ends it subtracts this amount from
67        // the malloc/free counter to adjust for storage the program does not free.
68        __CFA_DEFAULT_HEAP_UNFREED__ = 0
69}; // enum
70
71
72//####################### Heap Trace/Print ####################
[31a5f418]73
74
[93c2e0a]75static bool traceHeap = false;
[d46ed6e]76
[032234bd]77inline bool traceHeap() libcfa_public { return traceHeap; }
[d46ed6e]78
[032234bd]79bool traceHeapOn() libcfa_public {
[93c2e0a]80        bool temp = traceHeap;
[d46ed6e]81        traceHeap = true;
82        return temp;
83} // traceHeapOn
84
[032234bd]85bool traceHeapOff() libcfa_public {
[93c2e0a]86        bool temp = traceHeap;
[d46ed6e]87        traceHeap = false;
88        return temp;
89} // traceHeapOff
90
[032234bd]91bool traceHeapTerm() libcfa_public { return false; }
[baf608a]92
[d46ed6e]93
[95eb7cf]94static bool prtFree = false;
[d46ed6e]95
[116a2ea]96bool prtFree() {
[95eb7cf]97        return prtFree;
98} // prtFree
[5d4fa18]99
[116a2ea]100bool prtFreeOn() {
[95eb7cf]101        bool temp = prtFree;
102        prtFree = true;
[5d4fa18]103        return temp;
[95eb7cf]104} // prtFreeOn
[5d4fa18]105
[116a2ea]106bool prtFreeOff() {
[95eb7cf]107        bool temp = prtFree;
108        prtFree = false;
[5d4fa18]109        return temp;
[95eb7cf]110} // prtFreeOff
[5d4fa18]111
112
[7a2057a]113//######################### Helpers #########################
114
115
116// generic Bsearchl does not inline, so substitute with hand-coded binary-search.
117inline __attribute__((always_inline))
118static size_t Bsearchl( unsigned int key, const unsigned int vals[], size_t dim ) {
119        size_t l = 0, m, h = dim;
120        while ( l < h ) {
121                m = (l + h) / 2;
122                if ( (unsigned int &)(vals[m]) < key ) {                // cast away const
123                        l = m + 1;
124                } else {
125                        h = m;
126                } // if
127        } // while
128        return l;
129} // Bsearchl
[1e034d9]130
[dd23e66]131
[116a2ea]132// pause to prevent excess processor bus usage
133#if defined( __i386 ) || defined( __x86_64 )
134        #define Pause() __asm__ __volatile__ ( "pause" : : : )
135#elif defined(__ARM_ARCH)
136        #define Pause() __asm__ __volatile__ ( "YIELD" : : : )
137#else
138        #error unsupported architecture
139#endif
140
[8ee54963]141typedef volatile uintptr_t SpinLock_t;
[116a2ea]142
143static inline __attribute__((always_inline)) void lock( volatile SpinLock_t & slock ) {
144        enum { SPIN_START = 4, SPIN_END = 64 * 1024, };
145        unsigned int spin = SPIN_START;
146
147        for ( unsigned int i = 1;; i += 1 ) {
[8ee54963]148          if ( slock == 0 && __atomic_test_and_set( &slock, __ATOMIC_ACQUIRE ) == 0 ) break; // Fence
[116a2ea]149                for ( volatile unsigned int s = 0; s < spin; s += 1 ) Pause(); // exponential spin
150                spin += spin;                                                                   // powers of 2
151                //if ( i % 64 == 0 ) spin += spin;                              // slowly increase by powers of 2
152                if ( spin > SPIN_END ) spin = SPIN_END;                 // cap spinning
153        } // for
154} // spin_lock
155
156static inline __attribute__((always_inline)) void unlock( volatile SpinLock_t & slock ) {
[8ee54963]157        __atomic_clear( &slock, __ATOMIC_RELEASE );                     // Fence
[116a2ea]158} // spin_unlock
[e723100]159
160
[433905a]161//####################### Heap Statistics ####################
[d46ed6e]162
163
[433905a]164#ifdef __STATISTICS__
165enum { CntTriples = 12 };                                                               // number of counter triples
166enum { MALLOC, AALLOC, CALLOC, MEMALIGN, AMEMALIGN, CMEMALIGN, RESIZE, REALLOC, FREE };
[bcb14b5]167
[433905a]168struct StatsOverlay {                                                                   // overlay for iteration
169        unsigned int calls, calls_0;
170        unsigned long long int request, alloc;
171};
[d46ed6e]172
[433905a]173// Heap statistics counters.
174union HeapStatistics {
175        struct {                                                                                        // minimum qualification
176                unsigned int malloc_calls, malloc_0_calls;
177                unsigned long long int malloc_storage_request, malloc_storage_alloc;
178                unsigned int aalloc_calls, aalloc_0_calls;
179                unsigned long long int aalloc_storage_request, aalloc_storage_alloc;
180                unsigned int calloc_calls, calloc_0_calls;
181                unsigned long long int calloc_storage_request, calloc_storage_alloc;
182                unsigned int memalign_calls, memalign_0_calls;
183                unsigned long long int memalign_storage_request, memalign_storage_alloc;
184                unsigned int amemalign_calls, amemalign_0_calls;
185                unsigned long long int amemalign_storage_request, amemalign_storage_alloc;
186                unsigned int cmemalign_calls, cmemalign_0_calls;
187                unsigned long long int cmemalign_storage_request, cmemalign_storage_alloc;
188                unsigned int resize_calls, resize_0_calls;
189                unsigned long long int resize_storage_request, resize_storage_alloc;
190                unsigned int realloc_calls, realloc_0_calls;
191                unsigned long long int realloc_storage_request, realloc_storage_alloc;
192                unsigned int free_calls, free_null_calls;
193                unsigned long long int free_storage_request, free_storage_alloc;
[116a2ea]194                unsigned int return_pulls, return_pushes;
195                unsigned long long int return_storage_request, return_storage_alloc;
[433905a]196                unsigned int mmap_calls, mmap_0_calls;                  // no zero calls
197                unsigned long long int mmap_storage_request, mmap_storage_alloc;
198                unsigned int munmap_calls, munmap_0_calls;              // no zero calls
199                unsigned long long int munmap_storage_request, munmap_storage_alloc;
200        };
201        struct StatsOverlay counters[CntTriples];                       // overlay for iteration
202}; // HeapStatistics
[1e034d9]203
[433905a]204static_assert( sizeof(HeapStatistics) == CntTriples * sizeof(StatsOverlay),
[116a2ea]205                           "Heap statistics counter-triplets does not match with array size" );
[433905a]206
207static void HeapStatisticsCtor( HeapStatistics & stats ) {
208        memset( &stats, '\0', sizeof(stats) );                          // very fast
209        // for ( unsigned int i = 0; i < CntTriples; i += 1 ) {
210        //      stats.counters[i].calls = stats.counters[i].calls_0 = stats.counters[i].request = stats.counters[i].alloc = 0;
211        // } // for
212} // HeapStatisticsCtor
213
214static HeapStatistics & ?+=?( HeapStatistics & lhs, const HeapStatistics & rhs ) {
215        for ( unsigned int i = 0; i < CntTriples; i += 1 ) {
216                lhs.counters[i].calls += rhs.counters[i].calls;
217                lhs.counters[i].calls_0 += rhs.counters[i].calls_0;
218                lhs.counters[i].request += rhs.counters[i].request;
219                lhs.counters[i].alloc += rhs.counters[i].alloc;
220        } // for
221        return lhs;
222} // ?+=?
223#endif // __STATISTICS__
[e723100]224
225
226// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
[31a5f418]227// Break recursion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]228enum { NoBucketSizes = 91 };                                                    // number of buckets sizes
[d46ed6e]229
[31a5f418]230struct Heap {
[c4f68dc]231        struct Storage {
[bcb14b5]232                struct Header {                                                                 // header
[c4f68dc]233                        union Kind {
234                                struct RealHeader {
235                                        union {
[bcb14b5]236                                                struct {                                                // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[c4f68dc]237                                                        union {
[31a5f418]238                                                                // 2nd low-order bit => zero filled, 3rd low-order bit => mmapped
[9c438546]239                                                                // FreeHeader * home;           // allocated block points back to home locations (must overlay alignment)
[c4f68dc]240                                                                void * home;                    // allocated block points back to home locations (must overlay alignment)
241                                                                size_t blockSize;               // size for munmap (must overlay alignment)
[31a5f418]242                                                                Storage * next;                 // freed block points to next freed block of same size
[c4f68dc]243                                                        };
[9c438546]244                                                        size_t size;                            // allocation size in bytes
[c4f68dc]245                                                };
246                                        };
[93c2e0a]247                                } real; // RealHeader
[9c438546]248
[c4f68dc]249                                struct FakeHeader {
[31a5f418]250                                        uintptr_t alignment;                            // 1st low-order bit => fake header & alignment
251                                        uintptr_t offset;
[93c2e0a]252                                } fake; // FakeHeader
253                        } kind; // Kind
[bcb14b5]254                } header; // Header
[31a5f418]255
[95eb7cf]256                char pad[libAlign() - sizeof( Header )];
[bcb14b5]257                char data[0];                                                                   // storage
[c4f68dc]258        }; // Storage
259
[31a5f418]260        static_assert( libAlign() >= sizeof( Storage ), "minimum alignment < sizeof( Storage )" );
[c4f68dc]261
[8ee54963]262        struct CALIGN FreeHeader {
263                size_t blockSize CALIGN;                                                // size of allocations on this list
[116a2ea]264                #ifdef OWNERSHIP
265                #ifdef RETURNSPIN
266                SpinLock_t returnLock;
267                #endif // RETURNSPIN
268                Storage * returnList;                                                   // other thread return list
269                #endif // OWNERSHIP
[7a2057a]270
[116a2ea]271                Storage * freeList;                                                             // thread free list
272                Heap * homeManager;                                                             // heap owner (free storage to bucket, from bucket to heap)
273        }; // FreeHeader
[c4f68dc]274
275        FreeHeader freeLists[NoBucketSizes];                            // buckets for different allocation sizes
[116a2ea]276        void * heapBuffer;                                                                      // start of free storage in buffer
277        size_t heapReserve;                                                                     // amount of remaining free storage in buffer
[c4f68dc]278
[116a2ea]279        #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
280        Heap * nextHeapManager;                                                         // intrusive link of existing heaps; traversed to collect statistics or check unfreed storage
281        #endif // __STATISTICS__ || __CFA_DEBUG__
282        Heap * nextFreeHeapManager;                                                     // intrusive link of free heaps from terminated threads; reused by new threads
283
284        #ifdef __CFA_DEBUG__
[8ee54963]285        ptrdiff_t allocUnfreed;                                                         // running total of allocations minus frees; can be negative
[116a2ea]286        #endif // __CFA_DEBUG__
287
288        #ifdef __STATISTICS__
289        HeapStatistics stats;                                                           // local statistic table for this heap
290        #endif // __STATISTICS__
[31a5f418]291}; // Heap
[c4f68dc]292
[116a2ea]293
294struct HeapMaster {
295        SpinLock_t extLock;                                                                     // protects allocation-buffer extension
296        SpinLock_t mgrLock;                                                                     // protects freeHeapManagersList, heapManagersList, heapManagersStorage, heapManagersStorageEnd
297
298        void * heapBegin;                                                                       // start of heap
299        void * heapEnd;                                                                         // logical end of heap
300        size_t heapRemaining;                                                           // amount of storage not allocated in the current chunk
301        size_t pageSize;                                                                        // architecture pagesize
302        size_t heapExpand;                                                                      // sbrk advance
303        size_t mmapStart;                                                                       // cross over point for mmap
304        unsigned int maxBucketsUsed;                                            // maximum number of buckets in use
305
306        Heap * heapManagersList;                                                        // heap-list head
307        Heap * freeHeapManagersList;                                            // free-list head
308
309        // Heap superblocks are not linked; heaps in superblocks are linked via intrusive links.
310        Heap * heapManagersStorage;                                                     // next heap to use in heap superblock
311        Heap * heapManagersStorageEnd;                                          // logical heap outside of superblock's end
312
313        #ifdef __STATISTICS__
314        HeapStatistics stats;                                                           // global stats for thread-local heaps to add there counters when exiting
315        unsigned long int threads_started, threads_exited;      // counts threads that have started and exited
316        unsigned long int reused_heap, new_heap;                        // counts reusability of heaps
317        unsigned int sbrk_calls;
318        unsigned long long int sbrk_storage;
319        int stats_fd;
320        #endif // __STATISTICS__
321}; // HeapMaster
[5d4fa18]322
[e723100]323
[31a5f418]324#ifdef FASTLOOKUP
[116a2ea]325enum { LookupSizes = 65_536 + sizeof(Heap.Storage) };   // number of fast lookup sizes
[31a5f418]326static unsigned char lookup[LookupSizes];                               // O(1) lookup for small sizes
327#endif // FASTLOOKUP
328
[116a2ea]329static volatile bool heapMasterBootFlag = false;                // trigger for first heap
330static HeapMaster heapMaster @= {};                                             // program global
331
332static void heapMasterCtor();
333static void heapMasterDtor();
334static Heap * getHeap();
[31a5f418]335
[5d4fa18]336
[c1f38e6c]337// Size of array must harmonize with NoBucketSizes and individual bucket sizes must be multiple of 16.
[d5d3a90]338// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
339// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
[e723100]340static const unsigned int bucketSizes[] @= {                    // different bucket sizes
[31a5f418]341        16 + sizeof(Heap.Storage), 32 + sizeof(Heap.Storage), 48 + sizeof(Heap.Storage), 64 + sizeof(Heap.Storage), // 4
342        96 + sizeof(Heap.Storage), 112 + sizeof(Heap.Storage), 128 + sizeof(Heap.Storage), // 3
343        160, 192, 224, 256 + sizeof(Heap.Storage), // 4
344        320, 384, 448, 512 + sizeof(Heap.Storage), // 4
345        640, 768, 896, 1_024 + sizeof(Heap.Storage), // 4
346        1_536, 2_048 + sizeof(Heap.Storage), // 2
347        2_560, 3_072, 3_584, 4_096 + sizeof(Heap.Storage), // 4
348        6_144, 8_192 + sizeof(Heap.Storage), // 2
349        9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(Heap.Storage), // 8
350        18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(Heap.Storage), // 8
351        36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(Heap.Storage), // 8
352        73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(Heap.Storage), // 8
353        147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(Heap.Storage), // 8
354        294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(Heap.Storage), // 8
355        655_360, 786_432, 917_504, 1_048_576 + sizeof(Heap.Storage), // 4
356        1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(Heap.Storage), // 8
357        2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(Heap.Storage), // 4
[5d4fa18]358};
[e723100]359
[c1f38e6c]360static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0] ), "size of bucket array wrong" );
[e723100]361
[5d4fa18]362
[116a2ea]363// extern visibility, used by runtime kernel
364libcfa_public size_t __page_size;                                               // architecture pagesize
365libcfa_public int __map_prot;                                                   // common mmap/mprotect protection
[c4f68dc]366
[19e5d65d]367
[116a2ea]368// Thread-local storage is allocated lazily when the storage is accessed.
369static __thread size_t PAD1 CALIGN TLSMODEL __attribute__(( unused )); // protect false sharing
[8ee54963]370static __thread Heap * heapManager CALIGN TLSMODEL;
[07b59ec]371static  __thread bool heapManagerBootFlag CALIGN TLSMODEL = false;
[116a2ea]372static __thread size_t PAD2 CALIGN TLSMODEL __attribute__(( unused )); // protect further false sharing
[19e5d65d]373
[31a5f418]374
[116a2ea]375// declare helper functions for HeapMaster
376void noMemory();                                                                                // forward, called by "builtin_new" when malloc returns 0
377
378
379void heapMasterCtor() with( heapMaster ) {
380        // Singleton pattern to initialize heap master
381
382        verify( bucketSizes[0] == (16 + sizeof(Heap.Storage)) );
383
384        __page_size = sysconf( _SC_PAGESIZE );
385        __map_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
386
[7a2057a]387        extLock = 0;
388        mgrLock = 0;
[116a2ea]389
390        char * end = (char *)sbrk( 0 );
391        heapBegin = heapEnd = sbrk( (char *)ceiling2( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment
392        heapRemaining = 0;
393        heapExpand = malloc_expansion();
394        mmapStart = malloc_mmap_start();
395
396        // find the closest bucket size less than or equal to the mmapStart size
397        maxBucketsUsed = Bsearchl( mmapStart, bucketSizes, NoBucketSizes ); // binary search
398
399        verify( (mmapStart >= pageSize) && (bucketSizes[NoBucketSizes - 1] >= mmapStart) );
400        verify( maxBucketsUsed < NoBucketSizes );                       // subscript failure ?
401        verify( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
402
403        heapManagersList = 0p;
404        freeHeapManagersList = 0p;
405
406        heapManagersStorage = 0p;
407        heapManagersStorageEnd = 0p;
408
409        #ifdef __STATISTICS__
410        HeapStatisticsCtor( stats );                                            // clear statistic counters
411        threads_started = threads_exited = 0;
412        reused_heap = new_heap = 0;
413        sbrk_calls = sbrk_storage = 0;
414        stats_fd = STDERR_FILENO;
415        #endif // __STATISTICS__
416
417        #ifdef FASTLOOKUP
418        for ( unsigned int i = 0, idx = 0; i < LookupSizes; i += 1 ) {
419                if ( i > bucketSizes[idx] ) idx += 1;
420                lookup[i] = idx;
421                verify( i <= bucketSizes[idx] );
422                verify( (i <= 32 && idx == 0) || (i > bucketSizes[idx - 1]) );
423        } // for
424        #endif // FASTLOOKUP
425
426        heapMasterBootFlag = true;
427} // heapMasterCtor
428
429
[7671c6d]430#define NO_MEMORY_MSG "**** Error **** insufficient heap memory available to allocate %zd new bytes."
[116a2ea]431
432Heap * getHeap() with( heapMaster ) {
433        Heap * heap;
434        if ( freeHeapManagersList ) {                                           // free heap for reused ?
435                heap = freeHeapManagersList;
436                freeHeapManagersList = heap->nextFreeHeapManager;
437
438                #ifdef __STATISTICS__
439                reused_heap += 1;
440                #endif // __STATISTICS__
441        } else {                                                                                        // free heap not found, create new
442                // Heap size is about 12K, FreeHeader (128 bytes because of cache alignment) * NoBucketSizes (91) => 128 heaps *
443                // 12K ~= 120K byte superblock.  Where 128-heap superblock handles a medium sized multi-processor server.
444                size_t remaining = heapManagersStorageEnd - heapManagersStorage; // remaining free heaps in superblock
[8ee54963]445                if ( ! heapManagersStorage || remaining == 0 ) {
[116a2ea]446                        // Each block of heaps is a multiple of the number of cores on the computer.
447                        int HeapDim = get_nprocs();                                     // get_nprocs_conf does not work
448                        size_t size = HeapDim * sizeof( Heap );
449
450                        heapManagersStorage = (Heap *)mmap( 0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 );
451                        if ( unlikely( heapManagersStorage == (Heap *)MAP_FAILED ) ) { // failed ?
452                                if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, size ); // no memory
453                                // Do not call strerror( errno ) as it may call malloc.
[7671c6d]454                                abort( "**** Error **** attempt to allocate block of heaps of size %zu bytes and mmap failed with errno %d.", size, errno );
[116a2ea]455                        } // if
456                        heapManagersStorageEnd = &heapManagersStorage[HeapDim]; // outside array
457                } // if
458
459                heap = heapManagersStorage;
460                heapManagersStorage = heapManagersStorage + 1; // bump next heap
461
462                #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
463                heap->nextHeapManager = heapManagersList;
464                #endif // __STATISTICS__ || __CFA_DEBUG__
465                heapManagersList = heap;
466
467                #ifdef __STATISTICS__
468                new_heap += 1;
469                #endif // __STATISTICS__
470
471                with( *heap ) {
472                        for ( unsigned int j = 0; j < NoBucketSizes; j += 1 ) { // initialize free lists
473                                #ifdef OWNERSHIP
474                                #ifdef RETURNSPIN
[7a2057a]475                                freeLists[j].returnLock = 0;
[116a2ea]476                                freeLists[j].returnList = 0p;
[7a2057a]477                                #endif // RETURNSPIN
[116a2ea]478                                #endif // OWNERSHIP
[7a2057a]479
[116a2ea]480                                freeLists[j].freeList = 0p;
481                                freeLists[j].homeManager = heap;
482                                freeLists[j].blockSize = bucketSizes[j];
483                        } // for
[88ac843e]484
[116a2ea]485                        heapBuffer = 0p;
486                        heapReserve = 0;
487                        nextFreeHeapManager = 0p;
488                        #ifdef __CFA_DEBUG__
489                        allocUnfreed = 0;
490                        #endif // __CFA_DEBUG__
[07b59ec]491                        heapManagerBootFlag = true;
[116a2ea]492                } // with
[433905a]493        } // if
[5951956]494
[116a2ea]495        return heap;
496} // getHeap
497
498
499void heapManagerCtor() libcfa_public {
500        if ( unlikely( ! heapMasterBootFlag ) ) heapMasterCtor();
501
[0bdfcc3]502        lock( heapMaster.mgrLock );                                                     // protect heapMaster counters
[116a2ea]503
[07b59ec]504        assert( ! heapManagerBootFlag );
505
[116a2ea]506        // get storage for heap manager
507
508        heapManager = getHeap();
509
510        #ifdef __STATISTICS__
511        HeapStatisticsCtor( heapManager->stats );                       // heap local
512        heapMaster.threads_started += 1;
513        #endif // __STATISTICS__
514
515        unlock( heapMaster.mgrLock );
516} // heapManagerCtor
517
518
519void heapManagerDtor() libcfa_public {
[07b59ec]520  if ( unlikely( ! heapManagerBootFlag ) ) return;              // thread never used ?
521
[116a2ea]522        lock( heapMaster.mgrLock );
523
524        // place heap on list of free heaps for reusability
525        heapManager->nextFreeHeapManager = heapMaster.freeHeapManagersList;
526        heapMaster.freeHeapManagersList = heapManager;
527
528        #ifdef __STATISTICS__
[a47fe52]529        heapMaster.stats += heapManager->stats;                         // retain this heap's statistics
[116a2ea]530        heapMaster.threads_exited += 1;
531        #endif // __STATISTICS__
532
533        // Do not set heapManager to NULL because it is used after Cforall is shutdown but before the program shuts down.
534
[07b59ec]535        heapManagerBootFlag = false;
[116a2ea]536        unlock( heapMaster.mgrLock );
537} // heapManagerDtor
538
539
540//####################### Memory Allocation Routines Helpers ####################
541
[31a5f418]542
[433905a]543extern int cfa_main_returned;                                                   // from interpose.cfa
544extern "C" {
[07b59ec]545        void memory_startup( void ) {                                           // singleton => called once at start of program
[116a2ea]546                if ( ! heapMasterBootFlag ) heapManagerCtor();  // sanity check
547        } // memory_startup
548
549        void memory_shutdown( void ) {
550                heapManagerDtor();
551        } // memory_shutdown
552
[433905a]553        void heapAppStart() {                                                           // called by __cfaabi_appready_startup
[116a2ea]554                verify( heapManager );
555                #ifdef __CFA_DEBUG__
556                heapManager->allocUnfreed = 0;                                  // clear prior allocation counts
557                #endif // __CFA_DEBUG__
558
559                #ifdef __STATISTICS__
560                HeapStatisticsCtor( heapManager->stats );               // clear prior statistic counters
561                #endif // __STATISTICS__
[433905a]562        } // heapAppStart
[31a5f418]563
[433905a]564        void heapAppStop() {                                                            // called by __cfaabi_appready_startdown
[116a2ea]565                fclose( stdin ); fclose( stdout );                              // free buffer storage
566          if ( ! cfa_main_returned ) return;                            // do not check unfreed storage if exit called
567
[a47fe52]568                #ifdef __STATISTICS__
569                if ( getenv( "CFA_MALLOC_STATS" ) ) {                   // check for external printing
570                        malloc_stats();
571                } // if
572                #endif // __STATISTICS__
573
[116a2ea]574                #ifdef __CFA_DEBUG__
575                // allocUnfreed is set to 0 when a heap is created and it accumulates any unfreed storage during its multiple thread
576                // usages.  At the end, add up each heap allocUnfreed value across all heaps to get the total unfreed storage.
[8ee54963]577                ptrdiff_t allocUnfreed = 0;
[116a2ea]578                for ( Heap * heap = heapMaster.heapManagersList; heap; heap = heap->nextHeapManager ) {
579                        allocUnfreed += heap->allocUnfreed;
580                } // for
581
582                allocUnfreed -= malloc_unfreed();                               // subtract any user specified unfreed storage
583                if ( allocUnfreed > 0 ) {
584                        // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
585                        char helpText[512];
586                        __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[8ee54963]587                                                                                "CFA warning (UNIX pid:%ld) : program terminating with %td(%#tx) bytes of storage allocated but not freed.\n"
[116a2ea]588                                                                                "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
589                                                                                (long int)getpid(), allocUnfreed, allocUnfreed ); // always print the UNIX pid
590                } // if
591                #endif // __CFA_DEBUG__
[433905a]592        } // heapAppStop
593} // extern "C"
[31a5f418]594
595
[433905a]596#ifdef __STATISTICS__
[31a5f418]597static HeapStatistics stats;                                                    // zero filled
[c4f68dc]598
[31a5f418]599#define prtFmt \
600        "\nHeap statistics: (storage request / allocation)\n" \
601        "  malloc    >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
602        "  aalloc    >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
603        "  calloc    >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
604        "  memalign  >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
605        "  amemalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
606        "  cmemalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
607        "  resize    >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
608        "  realloc   >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
609        "  free      !null calls %'u; null calls %'u; storage %'llu / %'llu bytes\n" \
[116a2ea]610        "  return    pulls %'u; pushes %'u; storage %'llu / %'llu bytes\n" \
611        "  sbrk      calls %'u; storage %'llu bytes\n" \
612        "  mmap      calls %'u; storage %'llu / %'llu bytes\n" \
613        "  munmap    calls %'u; storage %'llu / %'llu bytes\n" \
614        "  threads   started %'lu; exited %'lu\n" \
615        "  heaps     new %'lu; reused %'lu\n"
[31a5f418]616
[c4f68dc]617// Use "write" because streams may be shutdown when calls are made.
[116a2ea]618static int printStats( HeapStatistics & stats ) with( heapMaster, stats ) {     // see malloc_stats
[31a5f418]619        char helpText[sizeof(prtFmt) + 1024];                           // space for message and values
[116a2ea]620        return __cfaabi_bits_print_buffer( stats_fd, helpText, sizeof(helpText), prtFmt,
621                        malloc_calls, malloc_0_calls, malloc_storage_request, malloc_storage_alloc,
622                        aalloc_calls, aalloc_0_calls, aalloc_storage_request, aalloc_storage_alloc,
623                        calloc_calls, calloc_0_calls, calloc_storage_request, calloc_storage_alloc,
624                        memalign_calls, memalign_0_calls, memalign_storage_request, memalign_storage_alloc,
625                        amemalign_calls, amemalign_0_calls, amemalign_storage_request, amemalign_storage_alloc,
626                        cmemalign_calls, cmemalign_0_calls, cmemalign_storage_request, cmemalign_storage_alloc,
627                        resize_calls, resize_0_calls, resize_storage_request, resize_storage_alloc,
628                        realloc_calls, realloc_0_calls, realloc_storage_request, realloc_storage_alloc,
629                        free_calls, free_null_calls, free_storage_request, free_storage_alloc,
630                        return_pulls, return_pushes, return_storage_request, return_storage_alloc,
[31a5f418]631                        sbrk_calls, sbrk_storage,
[116a2ea]632                        mmap_calls, mmap_storage_request, mmap_storage_alloc,
633                        munmap_calls, munmap_storage_request, munmap_storage_alloc,
634                        threads_started, threads_exited,
635                        new_heap, reused_heap
[c4f68dc]636                );
[d46ed6e]637} // printStats
[c4f68dc]638
[31a5f418]639#define prtFmtXML \
640        "<malloc version=\"1\">\n" \
641        "<heap nr=\"0\">\n" \
642        "<sizes>\n" \
643        "</sizes>\n" \
644        "<total type=\"malloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
645        "<total type=\"aalloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
646        "<total type=\"calloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
647        "<total type=\"memalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
648        "<total type=\"amemalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
649        "<total type=\"cmemalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
650        "<total type=\"resize\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
651        "<total type=\"realloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
652        "<total type=\"free\" !null=\"%'u;\" 0 null=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[116a2ea]653        "<total type=\"return\" pulls=\"%'u;\" 0 pushes=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[31a5f418]654        "<total type=\"sbrk\" count=\"%'u;\" size=\"%'llu\"/> bytes\n" \
655        "<total type=\"mmap\" count=\"%'u;\" size=\"%'llu / %'llu\" / > bytes\n" \
656        "<total type=\"munmap\" count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[116a2ea]657        "<total type=\"threads\" started=\"%'lu;\" exited=\"%'lu\"/>\n" \
658        "<total type=\"heaps\" new=\"%'lu;\" reused=\"%'lu\"/>\n" \
[31a5f418]659        "</malloc>"
660
[116a2ea]661static int printStatsXML( HeapStatistics & stats, FILE * stream ) with( heapMaster, stats ) { // see malloc_info
[31a5f418]662        char helpText[sizeof(prtFmtXML) + 1024];                        // space for message and values
663        return __cfaabi_bits_print_buffer( fileno( stream ), helpText, sizeof(helpText), prtFmtXML,
[116a2ea]664                        malloc_calls, malloc_0_calls, malloc_storage_request, malloc_storage_alloc,
665                        aalloc_calls, aalloc_0_calls, aalloc_storage_request, aalloc_storage_alloc,
666                        calloc_calls, calloc_0_calls, calloc_storage_request, calloc_storage_alloc,
667                        memalign_calls, memalign_0_calls, memalign_storage_request, memalign_storage_alloc,
668                        amemalign_calls, amemalign_0_calls, amemalign_storage_request, amemalign_storage_alloc,
669                        cmemalign_calls, cmemalign_0_calls, cmemalign_storage_request, cmemalign_storage_alloc,
670                        resize_calls, resize_0_calls, resize_storage_request, resize_storage_alloc,
671                        realloc_calls, realloc_0_calls, realloc_storage_request, realloc_storage_alloc,
672                        free_calls, free_null_calls, free_storage_request, free_storage_alloc,
673                        return_pulls, return_pushes, return_storage_request, return_storage_alloc,
[31a5f418]674                        sbrk_calls, sbrk_storage,
[116a2ea]675                        mmap_calls, mmap_storage_request, mmap_storage_alloc,
676                    munmap_calls, munmap_storage_request, munmap_storage_alloc,
677                        threads_started, threads_exited,
678                        new_heap, reused_heap
[c4f68dc]679                );
[d46ed6e]680} // printStatsXML
[95eb7cf]681
[116a2ea]682static HeapStatistics & collectStats( HeapStatistics & stats ) with( heapMaster ) {
683        lock( mgrLock );
[433905a]684
[116a2ea]685        stats += heapMaster.stats;
686        for ( Heap * heap = heapManagersList; heap; heap = heap->nextHeapManager ) {
687                stats += heap->stats;
688        } // for
[433905a]689
[116a2ea]690        unlock( mgrLock );
691        return stats;
692} // collectStats
693#endif // __STATISTICS__
[1e034d9]694
695
[116a2ea]696static bool setMmapStart( size_t value ) with( heapMaster ) { // true => mmapped, false => sbrk
[ad2dced]697  if ( value < __page_size || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]698        mmapStart = value;                                                                      // set global
699
700        // find the closest bucket size less than or equal to the mmapStart size
[116a2ea]701        maxBucketsUsed = Bsearchl( mmapStart, bucketSizes, NoBucketSizes ); // binary search
[7a2057a]702
[116a2ea]703        verify( maxBucketsUsed < NoBucketSizes );                       // subscript failure ?
704        verify( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]705        return true;
[95eb7cf]706} // setMmapStart
707
708
[cfbc703d]709// <-------+----------------------------------------------------> bsize (bucket size)
710// |header |addr
711//==================================================================================
712//                   align/offset |
713// <-----------------<------------+-----------------------------> bsize (bucket size)
714//                   |fake-header | addr
[19e5d65d]715#define HeaderAddr( addr ) ((Heap.Storage.Header *)( (char *)addr - sizeof(Heap.Storage) ))
716#define RealHeader( header ) ((Heap.Storage.Header *)((char *)header - header->kind.fake.offset))
[cfbc703d]717
718// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
719// |header |addr
720//==================================================================================
721//                   align/offset |
722// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
723//                   |fake-header |addr
[19e5d65d]724#define DataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
[cfbc703d]725
726
[116a2ea]727inline __attribute__((always_inline))
728static void checkAlign( size_t alignment ) {
[19e5d65d]729        if ( unlikely( alignment < libAlign() || ! is_pow2( alignment ) ) ) {
730                abort( "**** Error **** alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
[cfbc703d]731        } // if
732} // checkAlign
733
734
[116a2ea]735inline __attribute__((always_inline))
736static void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]737        if ( unlikely( check ) ) {                                                      // bad address ?
[19e5d65d]738                abort( "**** Error **** attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]739                           "Possible cause is duplicate free on same block or overwriting of memory.",
740                           name, addr );
[b6830d74]741        } // if
[c4f68dc]742} // checkHeader
743
[95eb7cf]744
[19e5d65d]745// Manipulate sticky bits stored in unused 3 low-order bits of an address.
746//   bit0 => alignment => fake header
747//   bit1 => zero filled (calloc)
748//   bit2 => mapped allocation versus sbrk
749#define StickyBits( header ) (((header)->kind.real.blockSize & 0x7))
750#define ClearStickyBits( addr ) (typeof(addr))((uintptr_t)(addr) & ~7)
751#define MarkAlignmentBit( align ) ((align) | 1)
752#define AlignmentBit( header ) ((((header)->kind.fake.alignment) & 1))
753#define ClearAlignmentBit( header ) (((header)->kind.fake.alignment) & ~1)
754#define ZeroFillBit( header ) ((((header)->kind.real.blockSize) & 2))
755#define ClearZeroFillBit( header ) ((((header)->kind.real.blockSize) &= ~2))
756#define MarkZeroFilledBit( header ) ((header)->kind.real.blockSize |= 2)
757#define MmappedBit( header ) ((((header)->kind.real.blockSize) & 4))
758#define MarkMmappedBit( size ) ((size) | 4)
759
760
[116a2ea]761inline __attribute__((always_inline))
762static void fakeHeader( Heap.Storage.Header *& header, size_t & alignment ) {
[19e5d65d]763        if ( unlikely( AlignmentBit( header ) ) ) {                     // fake header ?
764                alignment = ClearAlignmentBit( header );                // clear flag from value
[c4f68dc]765                #ifdef __CFA_DEBUG__
766                checkAlign( alignment );                                                // check alignment
767                #endif // __CFA_DEBUG__
[19e5d65d]768                header = RealHeader( header );                                  // backup from fake to real header
[d5d3a90]769        } else {
[c1f38e6c]770                alignment = libAlign();                                                 // => no fake header
[b6830d74]771        } // if
[c4f68dc]772} // fakeHeader
773
[95eb7cf]774
[116a2ea]775inline __attribute__((always_inline))
776static bool headers( const char name[] __attribute__(( unused )), void * addr, Heap.Storage.Header *& header,
777                                                        Heap.FreeHeader *& freeHead, size_t & size, size_t & alignment ) with( heapMaster, *heapManager ) {
[19e5d65d]778        header = HeaderAddr( addr );
[c4f68dc]779
780        #ifdef __CFA_DEBUG__
[31a5f418]781        checkHeader( header < (Heap.Storage.Header *)heapBegin, name, addr ); // bad low address ?
[c4f68dc]782        #endif // __CFA_DEBUG__
[b6830d74]783
[19e5d65d]784        if ( likely( ! StickyBits( header ) ) ) {                       // no sticky bits ?
785                freeHead = (Heap.FreeHeader *)(header->kind.real.home);
786                alignment = libAlign();
787        } else {
788                fakeHeader( header, alignment );
[433905a]789                if ( unlikely( MmappedBit( header ) ) ) {               // mmapped ?
790                        verify( addr < heapBegin || heapEnd < addr );
[19e5d65d]791                        size = ClearStickyBits( header->kind.real.blockSize ); // mmap size
792                        return true;
793                } // if
794
795                freeHead = (Heap.FreeHeader *)(ClearStickyBits( header->kind.real.home ));
796        } // if
797        size = freeHead->blockSize;
798
[c4f68dc]799        #ifdef __CFA_DEBUG__
[31a5f418]800        checkHeader( header < (Heap.Storage.Header *)heapBegin || (Heap.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]801
[116a2ea]802        Heap * homeManager;
[433905a]803        if ( unlikely( freeHead == 0p || // freed and only free-list node => null link
804                                   // freed and link points at another free block not to a bucket in the bucket array.
[116a2ea]805                                   (homeManager = freeHead->homeManager, freeHead < &homeManager->freeLists[0] ||
806                                        &homeManager->freeLists[NoBucketSizes] <= freeHead ) ) ) {
[433905a]807                abort( "**** Error **** attempt to %s storage %p with corrupted header.\n"
808                           "Possible cause is duplicate free on same block or overwriting of header information.",
809                           name, addr );
810        } // if
[c4f68dc]811        #endif // __CFA_DEBUG__
[19e5d65d]812
[bcb14b5]813        return false;
[c4f68dc]814} // headers
815
816
[116a2ea]817static void * master_extend( size_t size ) with( heapMaster ) {
818        lock( extLock );
[19e5d65d]819
[b6830d74]820        ptrdiff_t rem = heapRemaining - size;
[a7662b8]821        if ( unlikely( rem < 0 ) ) {                                            // negative ?
[c4f68dc]822                // If the size requested is bigger than the current remaining storage, increase the size of the heap.
823
[116a2ea]824                size_t increase = ceiling2( size > heapExpand ? size : heapExpand, libAlign() );
825                if ( unlikely( sbrk( increase ) == (void *)-1 ) ) {     // failed, no memory ?
826                        unlock( extLock );
[0bdfcc3]827                        abort( NO_MEMORY_MSG, size );                           // give up
[92aca37]828                } // if
[7671c6d]829
830                // Make storage executable for thunks.
831                if ( mprotect( (char *)heapEnd + heapRemaining, increase, __map_prot ) ) {
832                        unlock( extLock );
833                        abort( "**** Error **** attempt to make heap storage executable for thunks and mprotect failed with errno %d.", errno );
834                } // if
835
[116a2ea]836                rem = heapRemaining + increase - size;
[19e5d65d]837
[bcb14b5]838                #ifdef __STATISTICS__
[c4f68dc]839                sbrk_calls += 1;
840                sbrk_storage += increase;
[bcb14b5]841                #endif // __STATISTICS__
[b6830d74]842        } // if
[c4f68dc]843
[31a5f418]844        Heap.Storage * block = (Heap.Storage *)heapEnd;
[b6830d74]845        heapRemaining = rem;
846        heapEnd = (char *)heapEnd + size;
[116a2ea]847
848        unlock( extLock );
849        return block;
850} // master_extend
851
852
853__attribute__(( noinline ))
854static void * manager_extend( size_t size ) with( *heapManager ) {
855        ptrdiff_t rem = heapReserve - size;
856
[a7662b8]857        if ( unlikely( rem < 0 ) ) {                                            // negative ?
[116a2ea]858                // If the size requested is bigger than the current remaining reserve, use the current reserve to populate
859                // smaller freeLists, and increase the reserve.
860
861                rem = heapReserve;                                                              // positive
862
[a7662b8]863                if ( (unsigned int)rem >= bucketSizes[0] ) {    // minimal size ? otherwise ignore
[116a2ea]864                        size_t bucket;
865                        #ifdef FASTLOOKUP
866                        if ( likely( rem < LookupSizes ) ) bucket = lookup[rem];
867                        #endif // FASTLOOKUP
868                                bucket = Bsearchl( rem, bucketSizes, heapMaster.maxBucketsUsed );
869                        verify( 0 <= bucket && bucket <= heapMaster.maxBucketsUsed );
870                        Heap.FreeHeader * freeHead = &(freeLists[bucket]);
871
[a7662b8]872                        // The remaining storage may not be bucket size, whereas all other allocations are. Round down to previous
[116a2ea]873                        // bucket size in this case.
874                        if ( unlikely( freeHead->blockSize > (size_t)rem ) ) freeHead -= 1;
875                        Heap.Storage * block = (Heap.Storage *)heapBuffer;
876
877                        block->header.kind.real.next = freeHead->freeList; // push on stack
878                        freeHead->freeList = block;
879                } // if
880
881                size_t increase = ceiling( size > ( heapMaster.heapExpand / 10 ) ? size : ( heapMaster.heapExpand / 10 ), libAlign() );
882                heapBuffer = master_extend( increase );
883                rem = increase - size;
884        } // if
885
886        Heap.Storage * block = (Heap.Storage *)heapBuffer;
887        heapReserve = rem;
888        heapBuffer = (char *)heapBuffer + size;
889
[b6830d74]890        return block;
[116a2ea]891} // manager_extend
892
893
894#define BOOT_HEAP_MANAGER \
895        if ( unlikely( ! heapMasterBootFlag ) ) { \
896                heapManagerCtor(); /* trigger for first heap */ \
897        } /* if */
898
899#ifdef __STATISTICS__
900#define STAT_NAME __counter
901#define STAT_PARM , unsigned int STAT_NAME
902#define STAT_ARG( name ) , name
903#define STAT_0_CNT( counter ) stats.counters[counter].calls_0 += 1
904#else
905#define STAT_NAME
906#define STAT_PARM
907#define STAT_ARG( name )
908#define STAT_0_CNT( counter )
909#endif // __STATISTICS__
910
[07b59ec]911// Uncomment to get allocation addresses for a 0-sized allocation rather than a null pointer.
912//#define __NONNULL_0_ALLOC__
913#if ! defined( __NONNULL_0_ALLOC__ )
914#define __NULL_0_ALLOC__ unlikely( size == 0 ) ||               /* 0 BYTE ALLOCATION RETURNS NULL POINTER */
915#else
916#define __NULL_0_ALLOC__
917#endif // __NONNULL_0_ALLOC__
918
[116a2ea]919#define PROLOG( counter, ... ) \
920        BOOT_HEAP_MANAGER; \
[07b59ec]921        if ( \
922                __NULL_0_ALLOC__ \
[116a2ea]923                unlikely( size > ULONG_MAX - sizeof(Heap.Storage) ) ) { /* error check */ \
924                STAT_0_CNT( counter ); \
925                __VA_ARGS__; \
926                return 0p; \
927        } /* if */
928
[c4f68dc]929
[116a2ea]930#define SCRUB_SIZE 1024lu
931// Do not use '\xfe' for scrubbing because dereferencing an address composed of it causes a SIGSEGV *without* a valid IP
932// pointer in the interrupt frame.
933#define SCRUB '\xff'
[c4f68dc]934
[116a2ea]935static void * doMalloc( size_t size STAT_PARM ) libcfa_nopreempt with( *heapManager ) {
936        PROLOG( STAT_NAME );
937
938        verify( heapManager );
939        Heap.Storage * block;                                                           // pointer to new block of storage
[c4f68dc]940
[b6830d74]941        // Look up size in the size list.  Make sure the user request includes space for the header that must be allocated
942        // along with the block and is a multiple of the alignment size.
[31a5f418]943        size_t tsize = size + sizeof(Heap.Storage);
[19e5d65d]944
[116a2ea]945        #ifdef __STATISTICS__
946        stats.counters[STAT_NAME].calls += 1;
947        stats.counters[STAT_NAME].request += size;
948        #endif // __STATISTICS__
949
950        #ifdef __CFA_DEBUG__
951        allocUnfreed += size;
952        #endif // __CFA_DEBUG__
953
954        if ( likely( tsize < heapMaster.mmapStart ) ) {         // small size => sbrk
955                size_t bucket;
[e723100]956                #ifdef FASTLOOKUP
[116a2ea]957                if ( likely( tsize < LookupSizes ) ) bucket = lookup[tsize];
[e723100]958                else
959                #endif // FASTLOOKUP
[116a2ea]960                        bucket = Bsearchl( tsize, bucketSizes, heapMaster.maxBucketsUsed );
961                verify( 0 <= bucket && bucket <= heapMaster.maxBucketsUsed );
962                Heap.FreeHeader * freeHead = &freeLists[bucket];
963
964                verify( freeHead <= &freeLists[heapMaster.maxBucketsUsed] ); // subscripting error ?
965                verify( tsize <= freeHead->blockSize );                 // search failure ?
966
967                tsize = freeHead->blockSize;                                    // total space needed for request
968                #ifdef __STATISTICS__
969                stats.counters[STAT_NAME].alloc += tsize;
970                #endif // __STATISTICS__
[c4f68dc]971
[116a2ea]972                block = freeHead->freeList;                                             // remove node from stack
[95eb7cf]973                if ( unlikely( block == 0p ) ) {                                // no free block ?
[8ee54963]974                        // Freelist for this size is empty, so check return list (OWNERSHIP), or carve it out of the heap if there
[7a2057a]975                        // is enough left, or get some more heap storage and carve it off.
[116a2ea]976                        #ifdef OWNERSHIP
[7a2057a]977                        if ( unlikely( freeHead->returnList ) ) {       // race, get next time if lose race
978                                #ifdef RETURNSPIN
979                                lock( freeHead->returnLock );
980                                block = freeHead->returnList;
981                                freeHead->returnList = 0p;
982                                unlock( freeHead->returnLock );
983                                #else
984                                block = __atomic_exchange_n( &freeHead->returnList, 0p, __ATOMIC_SEQ_CST );
985                                #endif // RETURNSPIN
986
987                                verify( block );
988                                #ifdef __STATISTICS__
989                                stats.return_pulls += 1;
990                                #endif // __STATISTICS__
991
992                                // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
[116a2ea]993
[7a2057a]994                                freeHead->freeList = block->header.kind.real.next; // merge returnList into freeHead
995                        } else {
[116a2ea]996                        #endif // OWNERSHIP
997                                // Do not leave kernel thread as manager_extend accesses heapManager.
998                                disable_interrupts();
999                                block = (Heap.Storage *)manager_extend( tsize ); // mutual exclusion on call
1000                                enable_interrupts( false );
1001
1002                                // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1003
1004                                #ifdef __CFA_DEBUG__
[7a2057a]1005                                // Scrub new memory so subsequent uninitialized usages might fail. Only scrub the first SCRUB_SIZE bytes.
[116a2ea]1006                                memset( block->data, SCRUB, min( SCRUB_SIZE, tsize - sizeof(Heap.Storage) ) );
1007                                #endif // __CFA_DEBUG__
1008                        #ifdef OWNERSHIP
1009                        } // if
1010                        #endif // OWNERSHIP
[c4f68dc]1011                } else {
[116a2ea]1012                        // Memory is scrubbed in doFree.
1013                        freeHead->freeList = block->header.kind.real.next;
[c4f68dc]1014                } // if
1015
[116a2ea]1016                block->header.kind.real.home = freeHead;                // pointer back to free list of apropriate size
[bcb14b5]1017        } else {                                                                                        // large size => mmap
[ad2dced]1018  if ( unlikely( size > ULONG_MAX - __page_size ) ) return 0p;
1019                tsize = ceiling2( tsize, __page_size );                 // must be multiple of page size
[7a2057a]1020
[c4f68dc]1021                #ifdef __STATISTICS__
[116a2ea]1022                stats.counters[STAT_NAME].alloc += tsize;
1023                stats.mmap_calls += 1;
1024                stats.mmap_storage_request += size;
1025                stats.mmap_storage_alloc += tsize;
[c4f68dc]1026                #endif // __STATISTICS__
[92aca37]1027
[116a2ea]1028                disable_interrupts();
1029                block = (Heap.Storage *)mmap( 0, tsize, __map_prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 );
1030                enable_interrupts( false );
1031
1032                // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1033
1034                if ( unlikely( block == (Heap.Storage *)MAP_FAILED ) ) { // failed ?
[92aca37]1035                        if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize ); // no memory
[c4f68dc]1036                        // Do not call strerror( errno ) as it may call malloc.
[7a2057a]1037                        abort( "**** Error **** attempt to allocate large object (> %zu) of size %zu bytes and mmap failed with errno %d.",
1038                                   size, heapMaster.mmapStart, errno );
[116a2ea]1039                } // if
1040                block->header.kind.real.blockSize = MarkMmappedBit( tsize ); // storage size for munmap
1041
[bcb14b5]1042                #ifdef __CFA_DEBUG__
[7a2057a]1043                // Scrub new memory so subsequent uninitialized usages might fail. Only scrub the first SCRUB_SIZE bytes. The
1044                // rest of the storage set to 0 by mmap.
[116a2ea]1045                memset( block->data, SCRUB, min( SCRUB_SIZE, tsize - sizeof(Heap.Storage) ) );
[bcb14b5]1046                #endif // __CFA_DEBUG__
1047        } // if
[c4f68dc]1048
[9c438546]1049        block->header.kind.real.size = size;                            // store allocation size
[95eb7cf]1050        void * addr = &(block->data);                                           // adjust off header to user bytes
[c1f38e6c]1051        verify( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[c4f68dc]1052
1053        #ifdef __CFA_DEBUG__
[bcb14b5]1054        if ( traceHeap() ) {
[433905a]1055                char helpText[64];
1056                __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
1057                                                                        "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize ); // print debug/nodebug
[bcb14b5]1058        } // if
[c4f68dc]1059        #endif // __CFA_DEBUG__
1060
[116a2ea]1061//      poll_interrupts();                                                                      // call rollforward
1062
[95eb7cf]1063        return addr;
[c4f68dc]1064} // doMalloc
1065
1066
[116a2ea]1067static void doFree( void * addr ) libcfa_nopreempt with( *heapManager ) {
1068        verify( addr );
1069
1070        // detect free after thread-local storage destruction and use global stats in that case
[c4f68dc]1071
[31a5f418]1072        Heap.Storage.Header * header;
[116a2ea]1073        Heap.FreeHeader * freeHead;
1074        size_t size, alignment;
1075
1076        bool mapped = headers( "free", addr, header, freeHead, size, alignment );
1077        #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
1078        size_t rsize = header->kind.real.size;                          // optimization
1079        #endif // __STATISTICS__ || __CFA_DEBUG__
1080
1081        #ifdef __STATISTICS__
1082        stats.free_storage_request += rsize;
1083        stats.free_storage_alloc += size;
1084        #endif // __STATISTICS__
1085
1086        #ifdef __CFA_DEBUG__
1087        allocUnfreed -= rsize;
1088        #endif // __CFA_DEBUG__
[c4f68dc]1089
[116a2ea]1090        if ( unlikely( mapped ) ) {                                                     // mmapped ?
[c4f68dc]1091                #ifdef __STATISTICS__
[116a2ea]1092                stats.munmap_calls += 1;
1093                stats.munmap_storage_request += rsize;
1094                stats.munmap_storage_alloc += size;
[c4f68dc]1095                #endif // __STATISTICS__
[116a2ea]1096
1097                // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1098
1099                // Does not matter where this storage is freed.
1100                if ( unlikely( munmap( header, size ) == -1 ) ) {
1101                        // Do not call strerror( errno ) as it may call malloc.
[5951956]1102                        abort( "**** Error **** attempt to deallocate large object %p and munmap failed with errno %d.\n"
[116a2ea]1103                                   "Possible cause is invalid delete pointer: either not allocated or with corrupt header.",
1104                                   addr, errno );
[c4f68dc]1105                } // if
[bcb14b5]1106        } else {
[c4f68dc]1107                #ifdef __CFA_DEBUG__
[116a2ea]1108                // memset is NOT always inlined!
1109                disable_interrupts();
1110                // Scrub old memory so subsequent usages might fail. Only scrub the first/last SCRUB_SIZE bytes.
1111                char * data = ((Heap.Storage *)header)->data;   // data address
1112                size_t dsize = size - sizeof(Heap.Storage);             // data size
1113                if ( dsize <= SCRUB_SIZE * 2 ) {
1114                        memset( data, SCRUB, dsize );                           // scrub all
1115                } else {
1116                        memset( data, SCRUB, SCRUB_SIZE );                      // scrub front
1117                        memset( data + dsize - SCRUB_SIZE, SCRUB, SCRUB_SIZE ); // scrub back
1118                } // if
1119                enable_interrupts( false );
[c4f68dc]1120                #endif // __CFA_DEBUG__
1121
[7a2057a]1122                #ifdef OWNERSHIP
[116a2ea]1123                if ( likely( heapManager == freeHead->homeManager ) ) { // belongs to this thread
1124                        header->kind.real.next = freeHead->freeList; // push on stack
1125                        freeHead->freeList = (Heap.Storage *)header;
1126                } else {                                                                                // return to thread owner
1127                        verify( heapManager );
1128
1129                        #ifdef RETURNSPIN
1130                        lock( freeHead->returnLock );
1131                        header->kind.real.next = freeHead->returnList; // push to bucket return list
1132                        freeHead->returnList = (Heap.Storage *)header;
1133                        unlock( freeHead->returnLock );
1134                        #else                                                                           // lock free
1135                        header->kind.real.next = freeHead->returnList; // link new node to top node
1136                        // CAS resets header->kind.real.next = freeHead->returnList on failure
[7a2057a]1137                        while ( ! __atomic_compare_exchange_n( &freeHead->returnList, &header->kind.real.next, (Heap.Storage *)header,
[116a2ea]1138                                                                                                   false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) );
[8ee54963]1139
1140                        #ifdef __STATISTICS__
1141                        stats.return_pushes += 1;
1142                        stats.return_storage_request += rsize;
1143                        stats.return_storage_alloc += size;
1144                        #endif // __STATISTICS__
[116a2ea]1145                        #endif // RETURNSPIN
[7a2057a]1146                } // if
[116a2ea]1147
[7a2057a]1148                #else                                                                                   // no OWNERSHIP
[116a2ea]1149
[7a2057a]1150                // kind.real.home is address in owner thread's freeLists, so compute the equivalent position in this thread's freeList.
1151                freeHead = &freeLists[ClearStickyBits( (Heap.FreeHeader *)(header->kind.real.home) ) - &freeHead->homeManager->freeLists[0]];
1152                header->kind.real.next = freeHead->freeList;    // push on stack
1153                freeHead->freeList = (Heap.Storage *)header;
1154                #endif // ! OWNERSHIP
[116a2ea]1155
[7a2057a]1156                // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
[bcb14b5]1157        } // if
[c4f68dc]1158
1159        #ifdef __CFA_DEBUG__
[bcb14b5]1160        if ( traceHeap() ) {
[92aca37]1161                char helpText[64];
[433905a]1162                __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
1163                                                                        "Free( %p ) size:%zu\n", addr, size ); // print debug/nodebug
[bcb14b5]1164        } // if
[c4f68dc]1165        #endif // __CFA_DEBUG__
[116a2ea]1166
1167//      poll_interrupts();                                                                      // call rollforward
[c4f68dc]1168} // doFree
1169
1170
[116a2ea]1171size_t prtFree( Heap & manager ) with( manager ) {
[b6830d74]1172        size_t total = 0;
[c4f68dc]1173        #ifdef __STATISTICS__
[95eb7cf]1174        __cfaabi_bits_acquire();
1175        __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]1176        #endif // __STATISTICS__
[116a2ea]1177        for ( unsigned int i = 0; i < heapMaster.maxBucketsUsed; i += 1 ) {
[d46ed6e]1178                size_t size = freeLists[i].blockSize;
1179                #ifdef __STATISTICS__
1180                unsigned int N = 0;
1181                #endif // __STATISTICS__
[b6830d74]1182
[31a5f418]1183                for ( Heap.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]1184                        total += size;
1185                        #ifdef __STATISTICS__
1186                        N += 1;
1187                        #endif // __STATISTICS__
[b6830d74]1188                } // for
1189
[d46ed6e]1190                #ifdef __STATISTICS__
[95eb7cf]1191                __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u  ", size, N );
1192                if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]1193                #endif // __STATISTICS__
1194        } // for
1195        #ifdef __STATISTICS__
[95eb7cf]1196        __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
1197        __cfaabi_bits_release();
[d46ed6e]1198        #endif // __STATISTICS__
[116a2ea]1199        return (char *)heapMaster.heapEnd - (char *)heapMaster.heapBegin - total;
[95eb7cf]1200} // prtFree
1201
1202
[116a2ea]1203#ifdef __STATISTICS__
[8ee54963]1204static void incCalls( size_t statName ) libcfa_nopreempt {
[116a2ea]1205        heapManager->stats.counters[statName].calls += 1;
1206} // incCalls
[d5d3a90]1207
[8ee54963]1208static void incZeroCalls( size_t statName ) libcfa_nopreempt {
[116a2ea]1209        heapManager->stats.counters[statName].calls_0 += 1;
1210} // incZeroCalls
1211#endif // __STATISTICS__
[c4f68dc]1212
[116a2ea]1213#ifdef __CFA_DEBUG__
[5951956]1214static void incUnfreed( intptr_t offset ) libcfa_nopreempt {
[116a2ea]1215        heapManager->allocUnfreed += offset;
1216} // incUnfreed
1217#endif // __CFA_DEBUG__
[c4f68dc]1218
[d5d3a90]1219
[116a2ea]1220static void * memalignNoStats( size_t alignment, size_t size STAT_PARM ) {
[b6830d74]1221        checkAlign( alignment );                                                        // check alignment
[c4f68dc]1222
[116a2ea]1223        // if alignment <= default alignment or size == 0, do normal malloc as two headers are unnecessary
1224  if ( unlikely( alignment <= libAlign() || size == 0 ) ) return doMalloc( size STAT_ARG( STAT_NAME ) );
[b6830d74]1225
1226        // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
1227        // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
1228        //      .-------------v-----------------v----------------v----------,
1229        //      | Real Header | ... padding ... |   Fake Header  | data ... |
1230        //      `-------------^-----------------^-+--------------^----------'
1231        //      |<--------------------------------' offset/align |<-- alignment boundary
1232
1233        // subtract libAlign() because it is already the minimum alignment
1234        // add sizeof(Storage) for fake header
[116a2ea]1235        size_t offset = alignment - libAlign() + sizeof(Heap.Storage);
1236        char * addr = (char *)doMalloc( size + offset STAT_ARG( STAT_NAME ) );
[b6830d74]1237
1238        // address in the block of the "next" alignment address
[31a5f418]1239        char * user = (char *)ceiling2( (uintptr_t)(addr + sizeof(Heap.Storage)), alignment );
[b6830d74]1240
1241        // address of header from malloc
[116a2ea]1242        Heap.Storage.Header * realHeader = HeaderAddr( addr );
1243        realHeader->kind.real.size = size;                                      // correct size to eliminate above alignment offset
1244        #ifdef __CFA_DEBUG__
1245        incUnfreed( -offset );                                                          // adjustment off the offset from call to doMalloc
1246        #endif // __CFA_DEBUG__
1247
1248        // address of fake header *before* the alignment location
[19e5d65d]1249        Heap.Storage.Header * fakeHeader = HeaderAddr( user );
[116a2ea]1250
[b6830d74]1251        // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
[116a2ea]1252        fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
[69ec0fb]1253        // SKULLDUGGERY: odd alignment implies fake header
[19e5d65d]1254        fakeHeader->kind.fake.alignment = MarkAlignmentBit( alignment );
[b6830d74]1255
1256        return user;
[bcb14b5]1257} // memalignNoStats
[c4f68dc]1258
1259
[19e5d65d]1260//####################### Memory Allocation Routines ####################
1261
1262
[c4f68dc]1263extern "C" {
[61248a4]1264        // Allocates size bytes and returns a pointer to the allocated memory.  The contents are undefined. If size is 0,
1265        // then malloc() returns a unique pointer value that can later be successfully passed to free().
[032234bd]1266        void * malloc( size_t size ) libcfa_public {
[116a2ea]1267                return doMalloc( size STAT_ARG( MALLOC ) );
[bcb14b5]1268        } // malloc
[c4f68dc]1269
[76e2113]1270
[61248a4]1271        // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[032234bd]1272        void * aalloc( size_t dim, size_t elemSize ) libcfa_public {
[116a2ea]1273                return doMalloc( dim * elemSize STAT_ARG( AALLOC ) );
[76e2113]1274        } // aalloc
1275
1276
[61248a4]1277        // Same as aalloc() with memory set to zero.
[032234bd]1278        void * calloc( size_t dim, size_t elemSize ) libcfa_public {
[709b812]1279                size_t size = dim * elemSize;
[116a2ea]1280                char * addr = (char *)doMalloc( size STAT_ARG( CALLOC ) );
[c4f68dc]1281
[116a2ea]1282          if ( unlikely( addr == NULL ) ) return NULL;          // stop further processing if 0p is returned
[709b812]1283
[31a5f418]1284                Heap.Storage.Header * header;
[116a2ea]1285                Heap.FreeHeader * freeHead;
[709b812]1286                size_t bsize, alignment;
1287
1288                #ifndef __CFA_DEBUG__
1289                bool mapped =
1290                        #endif // __CFA_DEBUG__
[116a2ea]1291                        headers( "calloc", addr, header, freeHead, bsize, alignment );
[709b812]1292
1293                #ifndef __CFA_DEBUG__
1294                // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
[116a2ea]1295                if ( likely( ! mapped ) )
[709b812]1296                #endif // __CFA_DEBUG__
1297                        // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1298                        // `-header`-addr                      `-size
1299                        memset( addr, '\0', size );                                     // set to zeros
1300
[19e5d65d]1301                MarkZeroFilledBit( header );                                    // mark as zero fill
[709b812]1302                return addr;
[bcb14b5]1303        } // calloc
[c4f68dc]1304
[92aca37]1305
[61248a4]1306        // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined.  If oaddr is
1307        // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
1308        // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
1309        // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[032234bd]1310        void * resize( void * oaddr, size_t size ) libcfa_public {
[116a2ea]1311          if ( unlikely( oaddr == 0p ) ) {                              // => malloc( size )
1312                        return doMalloc( size STAT_ARG( RESIZE ) );
[709b812]1313                } // if
[cfbc703d]1314
[116a2ea]1315                PROLOG( RESIZE, doFree( oaddr ) );                              // => free( oaddr )
[cfbc703d]1316
[31a5f418]1317                Heap.Storage.Header * header;
[116a2ea]1318                Heap.FreeHeader * freeHead;
[92aca37]1319                size_t bsize, oalign;
[116a2ea]1320                headers( "resize", oaddr, header, freeHead, bsize, oalign );
[92847f7]1321
[19e5d65d]1322                size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[cfbc703d]1323                // same size, DO NOT preserve STICKY PROPERTIES.
[92847f7]1324                if ( oalign == libAlign() && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[19e5d65d]1325                        ClearZeroFillBit( header );                                     // no alignment and turn off 0 fill
[116a2ea]1326                        #ifdef __CFA_DEBUG__
1327                        incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1328                        #endif // __CFA_DEBUG__
[d5d3a90]1329                        header->kind.real.size = size;                          // reset allocation size
[116a2ea]1330                        #ifdef __STATISTICS__
1331                        incCalls( RESIZE );
1332                        #endif // __STATISTICS__
[cfbc703d]1333                        return oaddr;
1334                } // if
[0f89d4f]1335
[cfbc703d]1336                // change size, DO NOT preserve STICKY PROPERTIES.
[116a2ea]1337                doFree( oaddr );                                                                // free previous storage
1338
1339                return doMalloc( size STAT_ARG( RESIZE ) );             // create new area
[cfbc703d]1340        } // resize
1341
1342
[61248a4]1343        // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]1344        // the old and new sizes.
[032234bd]1345        void * realloc( void * oaddr, size_t size ) libcfa_public {
[116a2ea]1346          if ( unlikely( oaddr == 0p ) ) {                                      // => malloc( size )
1347                  return doMalloc( size STAT_ARG( REALLOC ) );
[709b812]1348                } // if
[c4f68dc]1349
[116a2ea]1350                PROLOG( REALLOC, doFree( oaddr ) );                             // => free( oaddr )
[c4f68dc]1351
[31a5f418]1352                Heap.Storage.Header * header;
[116a2ea]1353                Heap.FreeHeader * freeHead;
[92aca37]1354                size_t bsize, oalign;
[116a2ea]1355                headers( "realloc", oaddr, header, freeHead, bsize, oalign );
[95eb7cf]1356
[19e5d65d]1357                size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[d5d3a90]1358                size_t osize = header->kind.real.size;                  // old allocation size
[19e5d65d]1359                bool ozfill = ZeroFillBit( header );                    // old allocation zero filled
[92847f7]1360          if ( unlikely( size <= odsize ) && odsize <= size * 2 ) { // allow up to 50% wasted storage
[116a2ea]1361                        #ifdef __CFA_DEBUG__
1362                        incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1363                        #endif // __CFA_DEBUG__
1364                        header->kind.real.size = size;                          // reset allocation size
[d5d3a90]1365                        if ( unlikely( ozfill ) && size > osize ) {     // previous request zero fill and larger ?
[e4b6b7d3]1366                                memset( (char *)oaddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1367                        } // if
[116a2ea]1368                        #ifdef __STATISTICS__
1369                        incCalls( REALLOC );
1370                        #endif // __STATISTICS__
[95eb7cf]1371                        return oaddr;
[c4f68dc]1372                } // if
1373
[95eb7cf]1374                // change size and copy old content to new storage
1375
1376                void * naddr;
[116a2ea]1377                if ( likely( oalign <= libAlign() ) ) {                 // previous request not aligned ?
1378                        naddr = doMalloc( size STAT_ARG( REALLOC ) ); // create new area
[c4f68dc]1379                } else {
[116a2ea]1380                        naddr = memalignNoStats( oalign, size STAT_ARG( REALLOC ) ); // create new aligned area
[c4f68dc]1381                } // if
[1e034d9]1382
[116a2ea]1383                headers( "realloc", naddr, header, freeHead, bsize, oalign );
1384                // To preserve prior fill, the entire bucket must be copied versus the size.
[47dd0d2]1385                memcpy( naddr, oaddr, min( osize, size ) );             // copy bytes
[116a2ea]1386                doFree( oaddr );                                                                // free previous storage
[d5d3a90]1387
1388                if ( unlikely( ozfill ) ) {                                             // previous request zero fill ?
[19e5d65d]1389                        MarkZeroFilledBit( header );                            // mark new request as zero filled
[d5d3a90]1390                        if ( size > osize ) {                                           // previous request larger ?
[e4b6b7d3]1391                                memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1392                        } // if
1393                } // if
[95eb7cf]1394                return naddr;
[b6830d74]1395        } // realloc
[c4f68dc]1396
[c1f38e6c]1397
[19e5d65d]1398        // Same as realloc() except the new allocation size is large enough for an array of nelem elements of size elsize.
[032234bd]1399        void * reallocarray( void * oaddr, size_t dim, size_t elemSize ) libcfa_public {
[19e5d65d]1400                return realloc( oaddr, dim * elemSize );
1401        } // reallocarray
1402
1403
[61248a4]1404        // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[032234bd]1405        void * memalign( size_t alignment, size_t size ) libcfa_public {
[116a2ea]1406                return memalignNoStats( alignment, size STAT_ARG( MEMALIGN ) );
[bcb14b5]1407        } // memalign
[c4f68dc]1408
[95eb7cf]1409
[76e2113]1410        // Same as aalloc() with memory alignment.
[032234bd]1411        void * amemalign( size_t alignment, size_t dim, size_t elemSize ) libcfa_public {
[116a2ea]1412                return memalignNoStats( alignment, dim * elemSize STAT_ARG( AMEMALIGN ) );
[76e2113]1413        } // amemalign
1414
1415
[ca7949b]1416        // Same as calloc() with memory alignment.
[032234bd]1417        void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) libcfa_public {
[709b812]1418                size_t size = dim * elemSize;
[116a2ea]1419                char * addr = (char *)memalignNoStats( alignment, size STAT_ARG( CMEMALIGN ) );
[95eb7cf]1420
[116a2ea]1421          if ( unlikely( addr == NULL ) ) return NULL;          // stop further processing if 0p is returned
[709b812]1422
[31a5f418]1423                Heap.Storage.Header * header;
[116a2ea]1424                Heap.FreeHeader * freeHead;
[709b812]1425                size_t bsize;
1426
1427                #ifndef __CFA_DEBUG__
1428                bool mapped =
1429                        #endif // __CFA_DEBUG__
[116a2ea]1430                        headers( "cmemalign", addr, header, freeHead, bsize, alignment );
[709b812]1431
1432                // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
1433                #ifndef __CFA_DEBUG__
1434                if ( ! mapped )
1435                #endif // __CFA_DEBUG__
1436                        // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1437                        // `-header`-addr                      `-size
1438                        memset( addr, '\0', size );                                     // set to zeros
1439
[19e5d65d]1440                MarkZeroFilledBit( header );                                    // mark as zero filled
[709b812]1441                return addr;
[95eb7cf]1442        } // cmemalign
1443
[13fece5]1444
[ca7949b]1445        // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
[19e5d65d]1446        // of alignment. This requirement is universally ignored.
[032234bd]1447        void * aligned_alloc( size_t alignment, size_t size ) libcfa_public {
[c4f68dc]1448                return memalign( alignment, size );
[b6830d74]1449        } // aligned_alloc
[c4f68dc]1450
1451
[ca7949b]1452        // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1453        // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1454        // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1455        // free(3).
[032234bd]1456        int posix_memalign( void ** memptr, size_t alignment, size_t size ) libcfa_public {
[69ec0fb]1457          if ( unlikely( alignment < libAlign() || ! is_pow2( alignment ) ) ) return EINVAL; // check alignment
[19e5d65d]1458                *memptr = memalign( alignment, size );
[c4f68dc]1459                return 0;
[b6830d74]1460        } // posix_memalign
[c4f68dc]1461
[13fece5]1462
[ca7949b]1463        // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1464        // page size.  It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[032234bd]1465        void * valloc( size_t size ) libcfa_public {
[ad2dced]1466                return memalign( __page_size, size );
[b6830d74]1467        } // valloc
[c4f68dc]1468
1469
[ca7949b]1470        // Same as valloc but rounds size to multiple of page size.
[032234bd]1471        void * pvalloc( size_t size ) libcfa_public {
[19e5d65d]1472                return memalign( __page_size, ceiling2( size, __page_size ) ); // round size to multiple of page size
[ca7949b]1473        } // pvalloc
1474
1475
1476        // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1477        // or realloc().  Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1478        // 0p, no operation is performed.
[032234bd]1479        void free( void * addr ) libcfa_public {
[95eb7cf]1480          if ( unlikely( addr == 0p ) ) {                                       // special case
[709b812]1481                        #ifdef __STATISTICS__
[116a2ea]1482                  if ( heapManager )
1483                        incZeroCalls( FREE );
[709b812]1484                        #endif // __STATISTICS__
[c4f68dc]1485                        return;
[116a2ea]1486                } // if
1487
1488                #ifdef __STATISTICS__
1489                incCalls( FREE );
1490                #endif // __STATISTICS__
[c4f68dc]1491
[116a2ea]1492                doFree( addr );                                                                 // handles heapManager == nullptr
[b6830d74]1493        } // free
[93c2e0a]1494
[c4f68dc]1495
[76e2113]1496        // Returns the alignment of an allocation.
[032234bd]1497        size_t malloc_alignment( void * addr ) libcfa_public {
[95eb7cf]1498          if ( unlikely( addr == 0p ) ) return libAlign();      // minimum alignment
[19e5d65d]1499                Heap.Storage.Header * header = HeaderAddr( addr );
1500                if ( unlikely( AlignmentBit( header ) ) ) {             // fake header ?
1501                        return ClearAlignmentBit( header );                     // clear flag from value
[c4f68dc]1502                } else {
[cfbc703d]1503                        return libAlign();                                                      // minimum alignment
[c4f68dc]1504                } // if
[bcb14b5]1505        } // malloc_alignment
[c4f68dc]1506
[92aca37]1507
[76e2113]1508        // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[032234bd]1509        bool malloc_zero_fill( void * addr ) libcfa_public {
[95eb7cf]1510          if ( unlikely( addr == 0p ) ) return false;           // null allocation is not zero fill
[19e5d65d]1511                Heap.Storage.Header * header = HeaderAddr( addr );
1512                if ( unlikely( AlignmentBit( header ) ) ) {             // fake header ?
1513                        header = RealHeader( header );                          // backup from fake to real header
[c4f68dc]1514                } // if
[19e5d65d]1515                return ZeroFillBit( header );                                   // zero filled ?
[bcb14b5]1516        } // malloc_zero_fill
[c4f68dc]1517
[19e5d65d]1518
1519        // Returns original total allocation size (not bucket size) => array size is dimension * sizeof(T).
[032234bd]1520        size_t malloc_size( void * addr ) libcfa_public {
[849fb370]1521          if ( unlikely( addr == 0p ) ) return 0;                       // null allocation has zero size
[19e5d65d]1522                Heap.Storage.Header * header = HeaderAddr( addr );
1523                if ( unlikely( AlignmentBit( header ) ) ) {             // fake header ?
1524                        header = RealHeader( header );                          // backup from fake to real header
[cfbc703d]1525                } // if
[9c438546]1526                return header->kind.real.size;
[76e2113]1527        } // malloc_size
1528
[cfbc703d]1529
[ca7949b]1530        // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1531        // malloc or a related function.
[032234bd]1532        size_t malloc_usable_size( void * addr ) libcfa_public {
[95eb7cf]1533          if ( unlikely( addr == 0p ) ) return 0;                       // null allocation has 0 size
[31a5f418]1534                Heap.Storage.Header * header;
[116a2ea]1535                Heap.FreeHeader * freeHead;
[95eb7cf]1536                size_t bsize, alignment;
1537
[116a2ea]1538                headers( "malloc_usable_size", addr, header, freeHead, bsize, alignment );
[19e5d65d]1539                return DataStorage( bsize, addr, header );              // data storage in bucket
[95eb7cf]1540        } // malloc_usable_size
1541
1542
[ca7949b]1543        // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[032234bd]1544        void malloc_stats( void ) libcfa_public {
[c4f68dc]1545                #ifdef __STATISTICS__
[116a2ea]1546                HeapStatistics stats;
1547                HeapStatisticsCtor( stats );
1548                if ( printStats( collectStats( stats ) ) == -1 ) {
1549                #else
1550                #define MALLOC_STATS_MSG "malloc_stats statistics disabled.\n"
1551                if ( write( STDERR_FILENO, MALLOC_STATS_MSG, sizeof( MALLOC_STATS_MSG ) - 1 /* size includes '\0' */ ) == -1 ) {
[c4f68dc]1552                #endif // __STATISTICS__
[5951956]1553                        abort( "**** Error **** write failed in malloc_stats" );
[116a2ea]1554                } // if
[bcb14b5]1555        } // malloc_stats
[c4f68dc]1556
[92aca37]1557
[19e5d65d]1558        // Changes the file descriptor where malloc_stats() writes statistics.
[032234bd]1559        int malloc_stats_fd( int fd __attribute__(( unused )) ) libcfa_public {
[c4f68dc]1560                #ifdef __STATISTICS__
[116a2ea]1561                int temp = heapMaster.stats_fd;
1562                heapMaster.stats_fd = fd;
[bcb14b5]1563                return temp;
[c4f68dc]1564                #else
[19e5d65d]1565                return -1;                                                                              // unsupported
[c4f68dc]1566                #endif // __STATISTICS__
[bcb14b5]1567        } // malloc_stats_fd
[c4f68dc]1568
[95eb7cf]1569
[19e5d65d]1570        // Prints an XML string that describes the current state of the memory-allocation implementation in the caller.
1571        // The string is printed on the file stream stream.  The exported string includes information about all arenas (see
1572        // malloc).
[032234bd]1573        int malloc_info( int options, FILE * stream __attribute__(( unused )) ) libcfa_public {
[19e5d65d]1574          if ( options != 0 ) { errno = EINVAL; return -1; }
1575                #ifdef __STATISTICS__
[116a2ea]1576                HeapStatistics stats;
1577                HeapStatisticsCtor( stats );
1578                return printStatsXML( collectStats( stats ), stream ); // returns bytes written or -1
[19e5d65d]1579                #else
1580                return 0;                                                                               // unsupported
1581                #endif // __STATISTICS__
1582        } // malloc_info
1583
1584
[1076d05]1585        // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1586        // specifies the parameter to be modified, and value specifies the new value for that parameter.
[032234bd]1587        int mallopt( int option, int value ) libcfa_public {
[19e5d65d]1588          if ( value < 0 ) return 0;
[95eb7cf]1589                choose( option ) {
1590                  case M_TOP_PAD:
[116a2ea]1591                        heapMaster.heapExpand = ceiling2( value, __page_size );
[19e5d65d]1592                        return 1;
[95eb7cf]1593                  case M_MMAP_THRESHOLD:
1594                        if ( setMmapStart( value ) ) return 1;
[19e5d65d]1595                } // choose
[95eb7cf]1596                return 0;                                                                               // error, unsupported
1597        } // mallopt
1598
[c1f38e6c]1599
[ca7949b]1600        // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[032234bd]1601        int malloc_trim( size_t ) libcfa_public {
[95eb7cf]1602                return 0;                                                                               // => impossible to release memory
1603        } // malloc_trim
1604
1605
[ca7949b]1606        // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1607        // or the state of malloc_hook functions pointers).  The state is recorded in a system-dependent opaque data
1608        // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1609        // result.  (The caller must free this memory.)
[032234bd]1610        void * malloc_get_state( void ) libcfa_public {
[95eb7cf]1611                return 0p;                                                                              // unsupported
[c4f68dc]1612        } // malloc_get_state
1613
[bcb14b5]1614
[ca7949b]1615        // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1616        // structure pointed to by state.
[032234bd]1617        int malloc_set_state( void * ) libcfa_public {
[bcb14b5]1618                return 0;                                                                               // unsupported
[c4f68dc]1619        } // malloc_set_state
[31a5f418]1620
[19e5d65d]1621
[31a5f418]1622        // Sets the amount (bytes) to extend the heap when there is insufficent free storage to service an allocation.
[032234bd]1623        __attribute__((weak)) size_t malloc_expansion() libcfa_public { return __CFA_DEFAULT_HEAP_EXPANSION__; }
[31a5f418]1624
1625        // Sets the crossover point between allocations occuring in the sbrk area or separately mmapped.
[032234bd]1626        __attribute__((weak)) size_t malloc_mmap_start() libcfa_public { return __CFA_DEFAULT_MMAP_START__; }
[31a5f418]1627
1628        // Amount subtracted to adjust for unfreed program storage (debug only).
[032234bd]1629        __attribute__((weak)) size_t malloc_unfreed() libcfa_public { return __CFA_DEFAULT_HEAP_UNFREED__; }
[c4f68dc]1630} // extern "C"
1631
1632
[95eb7cf]1633// Must have CFA linkage to overload with C linkage realloc.
[032234bd]1634void * resize( void * oaddr, size_t nalign, size_t size ) libcfa_public {
[116a2ea]1635  if ( unlikely( oaddr == 0p ) ) {                                              // => malloc( size )
1636                return memalignNoStats( nalign, size STAT_ARG( RESIZE ) );
[709b812]1637        } // if
[95eb7cf]1638
[116a2ea]1639        PROLOG( RESIZE, doFree( oaddr ) );                                      // => free( oaddr )
[cfbc703d]1640
[92847f7]1641        // Attempt to reuse existing alignment.
[19e5d65d]1642        Heap.Storage.Header * header = HeaderAddr( oaddr );
1643        bool isFakeHeader = AlignmentBit( header );                     // old fake header ?
[92847f7]1644        size_t oalign;
[19e5d65d]1645
1646        if ( unlikely( isFakeHeader ) ) {
[116a2ea]1647                checkAlign( nalign );                                                   // check alignment
[19e5d65d]1648                oalign = ClearAlignmentBit( header );                   // old alignment
1649                if ( unlikely( (uintptr_t)oaddr % nalign == 0   // lucky match ?
[92847f7]1650                         && ( oalign <= nalign                                          // going down
1651                                  || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
[19e5d65d]1652                        ) ) {
1653                        HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
[116a2ea]1654                        Heap.FreeHeader * freeHead;
[92847f7]1655                        size_t bsize, oalign;
[116a2ea]1656                        headers( "resize", oaddr, header, freeHead, bsize, oalign );
[19e5d65d]1657                        size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[a3ade94]1658
[92847f7]1659                        if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted data storage
[19e5d65d]1660                                HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
1661                                ClearZeroFillBit( header );                             // turn off 0 fill
[116a2ea]1662                                #ifdef __CFA_DEBUG__
1663                                incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1664                                #endif // __CFA_DEBUG__
[92847f7]1665                                header->kind.real.size = size;                  // reset allocation size
[116a2ea]1666                                #ifdef __STATISTICS__
1667                                incCalls( RESIZE );
1668                                #endif // __STATISTICS__
[92847f7]1669                                return oaddr;
1670                        } // if
[cfbc703d]1671                } // if
[92847f7]1672        } else if ( ! isFakeHeader                                                      // old real header (aligned on libAlign) ?
1673                                && nalign == libAlign() ) {                             // new alignment also on libAlign => no fake header needed
[113d785]1674                return resize( oaddr, size );                                   // duplicate special case checks
[cfbc703d]1675        } // if
1676
[dd23e66]1677        // change size, DO NOT preserve STICKY PROPERTIES.
[116a2ea]1678        doFree( oaddr );                                                                        // free previous storage
1679        return memalignNoStats( nalign, size STAT_ARG( RESIZE ) ); // create new aligned area
[cfbc703d]1680} // resize
1681
1682
[032234bd]1683void * realloc( void * oaddr, size_t nalign, size_t size ) libcfa_public {
[116a2ea]1684  if ( unlikely( oaddr == 0p ) ) {                                              // => malloc( size )
1685                return memalignNoStats( nalign, size STAT_ARG( REALLOC ) );
[709b812]1686        } // if
1687
[116a2ea]1688        PROLOG( REALLOC, doFree( oaddr ) );                                     // => free( oaddr )
[c86f587]1689
[92847f7]1690        // Attempt to reuse existing alignment.
[19e5d65d]1691        Heap.Storage.Header * header = HeaderAddr( oaddr );
1692        bool isFakeHeader = AlignmentBit( header );                     // old fake header ?
[92847f7]1693        size_t oalign;
[19e5d65d]1694        if ( unlikely( isFakeHeader ) ) {
[116a2ea]1695                checkAlign( nalign );                                                   // check alignment
[19e5d65d]1696                oalign = ClearAlignmentBit( header );                   // old alignment
1697                if ( unlikely( (uintptr_t)oaddr % nalign == 0   // lucky match ?
[92847f7]1698                         && ( oalign <= nalign                                          // going down
1699                                  || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
[19e5d65d]1700                        ) ) {
1701                        HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
1702                        return realloc( oaddr, size );                          // duplicate special case checks
[92847f7]1703                } // if
1704        } else if ( ! isFakeHeader                                                      // old real header (aligned on libAlign) ?
[19e5d65d]1705                                && nalign == libAlign() ) {                             // new alignment also on libAlign => no fake header needed
1706                return realloc( oaddr, size );                                  // duplicate special case checks
1707        } // if
[cfbc703d]1708
[116a2ea]1709        Heap.FreeHeader * freeHead;
[92847f7]1710        size_t bsize;
[116a2ea]1711        headers( "realloc", oaddr, header, freeHead, bsize, oalign );
[92847f7]1712
1713        // change size and copy old content to new storage
1714
[dd23e66]1715        size_t osize = header->kind.real.size;                          // old allocation size
[19e5d65d]1716        bool ozfill = ZeroFillBit( header );                            // old allocation zero filled
[dd23e66]1717
[116a2ea]1718        void * naddr = memalignNoStats( nalign, size STAT_ARG( REALLOC ) ); // create new aligned area
[95eb7cf]1719
[116a2ea]1720        headers( "realloc", naddr, header, freeHead, bsize, oalign );
[47dd0d2]1721        memcpy( naddr, oaddr, min( osize, size ) );                     // copy bytes
[116a2ea]1722        doFree( oaddr );                                                                        // free previous storage
[d5d3a90]1723
1724        if ( unlikely( ozfill ) ) {                                                     // previous request zero fill ?
[19e5d65d]1725                MarkZeroFilledBit( header );                                    // mark new request as zero filled
[d5d3a90]1726                if ( size > osize ) {                                                   // previous request larger ?
[e4b6b7d3]1727                        memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1728                } // if
1729        } // if
[1e034d9]1730        return naddr;
[95eb7cf]1731} // realloc
1732
1733
[116a2ea]1734void * reallocarray( void * oaddr, size_t nalign, size_t dim, size_t elemSize ) __THROW {
1735        return realloc( oaddr, nalign, dim * elemSize );
1736} // reallocarray
1737
1738
[c4f68dc]1739// Local Variables: //
1740// tab-width: 4 //
[f8cd310]1741// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1742// End: //
Note: See TracBrowser for help on using the repository browser.