source: libcfa/src/heap.cfa@ d23c0b2

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since d23c0b2 was 709b812, checked in by Peter A. Buhr <pabuhr@…>, 5 years ago

add separate statistics counters for zero allocations and nullptr free, update printing of malloc_stats, fix statistics gathering issues, code restructuring for heap

  • Property mode set to 100644
File size: 54.7 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
[92aca37]7// heap.cfa --
[73abe95]8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[709b812]12// Last Modified On : Sun Jan 10 11:20:49 2021
13// Update Count : 1031
[73abe95]14//
[c4f68dc]15
16#include <unistd.h> // sbrk, sysconf
[ad2dced]17#include <stdlib.h> // EXIT_FAILURE
[c4f68dc]18#include <stdbool.h> // true, false
19#include <stdio.h> // snprintf, fileno
20#include <errno.h> // errno
[1e034d9]21#include <string.h> // memset, memcpy
[1076d05]22#include <limits.h> // ULONG_MAX
[ada0246d]23#include <malloc.h> // memalign, malloc_usable_size
[c4f68dc]24#include <sys/mman.h> // mmap, munmap
25
[92aca37]26#include "bits/align.hfa" // libAlign
[bcb14b5]27#include "bits/defs.hfa" // likely, unlikely
28#include "bits/locks.hfa" // __spinlock_t
[73abe95]29#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[7cfef0d]30#include "math.hfa" // ceiling
31#include "bitmanip.hfa" // is_pow2, ceiling2
[c4f68dc]32
[93c2e0a]33static bool traceHeap = false;
[d46ed6e]34
[baf608a]35inline bool traceHeap() { return traceHeap; }
[d46ed6e]36
[93c2e0a]37bool traceHeapOn() {
38 bool temp = traceHeap;
[d46ed6e]39 traceHeap = true;
40 return temp;
41} // traceHeapOn
42
[93c2e0a]43bool traceHeapOff() {
44 bool temp = traceHeap;
[d46ed6e]45 traceHeap = false;
46 return temp;
47} // traceHeapOff
48
[baf608a]49bool traceHeapTerm() { return false; }
50
[d46ed6e]51
[95eb7cf]52static bool prtFree = false;
[d46ed6e]53
[95eb7cf]54inline bool prtFree() {
55 return prtFree;
56} // prtFree
[5d4fa18]57
[95eb7cf]58bool prtFreeOn() {
59 bool temp = prtFree;
60 prtFree = true;
[5d4fa18]61 return temp;
[95eb7cf]62} // prtFreeOn
[5d4fa18]63
[95eb7cf]64bool prtFreeOff() {
65 bool temp = prtFree;
66 prtFree = false;
[5d4fa18]67 return temp;
[95eb7cf]68} // prtFreeOff
[5d4fa18]69
70
[e723100]71enum {
[1e034d9]72 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address,
73 // the brk address is extended by the extension amount.
[ad2dced]74 __CFA_DEFAULT_HEAP_EXPANSION__ = (10 * 1024 * 1024),
[1e034d9]75
76 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;
77 // values greater than or equal to this value are mmap from the operating system.
78 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),
[e723100]79};
80
[dd23e66]81size_t default_mmap_start() __attribute__(( weak )) {
82 return __CFA_DEFAULT_MMAP_START__;
83} // default_mmap_start
84
[e723100]85size_t default_heap_expansion() __attribute__(( weak )) {
86 return __CFA_DEFAULT_HEAP_EXPANSION__;
87} // default_heap_expansion
88
89
[f0b3f51]90#ifdef __CFA_DEBUG__
[92aca37]91static size_t allocUnfreed; // running total of allocations minus frees
[d46ed6e]92
[95eb7cf]93static void prtUnfreed() {
[c1f38e6c]94 if ( allocUnfreed != 0 ) {
[d46ed6e]95 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
[4ea1c6d]96 char helpText[512];
[92aca37]97 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %zu(0x%zx) bytes of storage allocated but not freed.\n"
[4ea1c6d]98 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
[c1f38e6c]99 (long int)getpid(), allocUnfreed, allocUnfreed ); // always print the UNIX pid
[4ea1c6d]100 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[b6830d74]101 } // if
[95eb7cf]102} // prtUnfreed
[d46ed6e]103
104extern "C" {
[bcb14b5]105 void heapAppStart() { // called by __cfaabi_appready_startup
[c1f38e6c]106 allocUnfreed = 0;
[bcb14b5]107 } // heapAppStart
108
109 void heapAppStop() { // called by __cfaabi_appready_startdown
110 fclose( stdin ); fclose( stdout );
[95eb7cf]111 prtUnfreed();
[bcb14b5]112 } // heapAppStop
[d46ed6e]113} // extern "C"
114#endif // __CFA_DEBUG__
115
[1e034d9]116
[e723100]117// statically allocated variables => zero filled.
[ad2dced]118size_t __page_size; // architecture pagesize
119int __map_prot; // common mmap/mprotect protection
[e723100]120static size_t heapExpand; // sbrk advance
121static size_t mmapStart; // cross over point for mmap
122static unsigned int maxBucketsUsed; // maximum number of buckets in use
123
124
125#define SPINLOCK 0
126#define LOCKFREE 1
127#define BUCKETLOCK SPINLOCK
[9c438546]128#if BUCKETLOCK == SPINLOCK
129#elif BUCKETLOCK == LOCKFREE
130#include <stackLockFree.hfa>
131#else
132 #error undefined lock type for bucket lock
[e723100]133#endif // LOCKFREE
134
135// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
136// Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]137enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]138
[c4f68dc]139struct HeapManager {
140 struct Storage {
[bcb14b5]141 struct Header { // header
[c4f68dc]142 union Kind {
143 struct RealHeader {
144 union {
[bcb14b5]145 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[f0b3f51]146 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]147 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]148 #endif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]149
150 union {
[9c438546]151 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
[cfbc703d]152 // 2nd low-order bit => zero filled
[c4f68dc]153 void * home; // allocated block points back to home locations (must overlay alignment)
154 size_t blockSize; // size for munmap (must overlay alignment)
[9c438546]155 #if BUCKETLOCK == SPINLOCK
[c4f68dc]156 Storage * next; // freed block points next freed block of same size
157 #endif // SPINLOCK
158 };
[9c438546]159 size_t size; // allocation size in bytes
[c4f68dc]160
[f0b3f51]161 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]162 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]163 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]164 };
[9c438546]165 #if BUCKETLOCK == LOCKFREE
166 Link(Storage) next; // freed block points next freed block of same size (double-wide)
[c4f68dc]167 #endif // LOCKFREE
168 };
[93c2e0a]169 } real; // RealHeader
[9c438546]170
[c4f68dc]171 struct FakeHeader {
172 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
[9c438546]173 uint32_t alignment; // 1st low-order bit => fake header & alignment
[f0b3f51]174 #endif // __ORDER_LITTLE_ENDIAN__
[c4f68dc]175
176 uint32_t offset;
177
178 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
179 uint32_t alignment; // low-order bits of home/blockSize used for tricks
[f0b3f51]180 #endif // __ORDER_BIG_ENDIAN__
[93c2e0a]181 } fake; // FakeHeader
182 } kind; // Kind
[bcb14b5]183 } header; // Header
[95eb7cf]184 char pad[libAlign() - sizeof( Header )];
[bcb14b5]185 char data[0]; // storage
[c4f68dc]186 }; // Storage
187
[95eb7cf]188 static_assert( libAlign() >= sizeof( Storage ), "libAlign() < sizeof( Storage )" );
[c4f68dc]189
190 struct FreeHeader {
[9c438546]191 #if BUCKETLOCK == SPINLOCK
[bcb14b5]192 __spinlock_t lock; // must be first field for alignment
193 Storage * freeList;
[c4f68dc]194 #else
[9c438546]195 StackLF(Storage) freeList;
196 #endif // BUCKETLOCK
[bcb14b5]197 size_t blockSize; // size of allocations on this list
[c4f68dc]198 }; // FreeHeader
199
200 // must be first fields for alignment
201 __spinlock_t extlock; // protects allocation-buffer extension
202 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
203
204 void * heapBegin; // start of heap
205 void * heapEnd; // logical end of heap
206 size_t heapRemaining; // amount of storage not allocated in the current chunk
207}; // HeapManager
208
[9c438546]209#if BUCKETLOCK == LOCKFREE
[c45d2fa]210static inline {
[8b58bae]211 Link(HeapManager.Storage) * ?`next( HeapManager.Storage * this ) { return &this->header.kind.real.next; }
[c45d2fa]212 void ?{}( HeapManager.FreeHeader & ) {}
213 void ^?{}( HeapManager.FreeHeader & ) {}
214} // distribution
[9c438546]215#endif // LOCKFREE
216
[7b149bc]217static inline size_t getKey( const HeapManager.FreeHeader & freeheader ) { return freeheader.blockSize; }
[5d4fa18]218
[e723100]219
220#define FASTLOOKUP
221#define __STATISTICS__
[5d4fa18]222
[c1f38e6c]223// Size of array must harmonize with NoBucketSizes and individual bucket sizes must be multiple of 16.
[d5d3a90]224// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
225// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
[e723100]226static const unsigned int bucketSizes[] @= { // different bucket sizes
[d5d3a90]227 16 + sizeof(HeapManager.Storage), 32 + sizeof(HeapManager.Storage), 48 + sizeof(HeapManager.Storage), 64 + sizeof(HeapManager.Storage), // 4
228 96 + sizeof(HeapManager.Storage), 112 + sizeof(HeapManager.Storage), 128 + sizeof(HeapManager.Storage), // 3
[95eb7cf]229 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4
230 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4
231 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4
232 1_536, 2_048 + sizeof(HeapManager.Storage), // 2
233 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4
234 6_144, 8_192 + sizeof(HeapManager.Storage), // 2
235 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8
236 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8
237 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8
238 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8
239 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8
240 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8
241 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4
242 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8
243 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4
[5d4fa18]244};
[e723100]245
[c1f38e6c]246static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0] ), "size of bucket array wrong" );
[e723100]247
[5d4fa18]248#ifdef FASTLOOKUP
[a92a4fe]249enum { LookupSizes = 65_536 + sizeof(HeapManager.Storage) }; // number of fast lookup sizes
[5d4fa18]250static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
251#endif // FASTLOOKUP
252
[ad2dced]253static const off_t mmapFd = -1; // fake or actual fd for anonymous file
[5d4fa18]254#ifdef __CFA_DEBUG__
[93c2e0a]255static bool heapBoot = 0; // detect recursion during boot
[5d4fa18]256#endif // __CFA_DEBUG__
[9c438546]257
258// The constructor for heapManager is called explicitly in memory_startup.
[5d4fa18]259static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
260
[c4f68dc]261
262#ifdef __STATISTICS__
[95eb7cf]263// Heap statistics counters.
[709b812]264static unsigned int malloc_zero_calls, malloc_calls;
[c1f38e6c]265static unsigned long long int malloc_storage;
[709b812]266static unsigned int aalloc_zero_calls, aalloc_calls;
[c1f38e6c]267static unsigned long long int aalloc_storage;
[709b812]268static unsigned int calloc_zero_calls, calloc_calls;
[c1f38e6c]269static unsigned long long int calloc_storage;
[709b812]270static unsigned int memalign_zero_calls, memalign_calls;
[c1f38e6c]271static unsigned long long int memalign_storage;
[709b812]272static unsigned int amemalign_zero_calls, amemalign_calls;
[c1f38e6c]273static unsigned long long int amemalign_storage;
[709b812]274static unsigned int cmemalign_zero_calls, cmemalign_calls;
[c1f38e6c]275static unsigned long long int cmemalign_storage;
[709b812]276static unsigned int resize_zero_calls, resize_calls;
[c1f38e6c]277static unsigned long long int resize_storage;
[709b812]278static unsigned int realloc_zero_calls, realloc_calls;
[c1f38e6c]279static unsigned long long int realloc_storage;
[709b812]280static unsigned int free_zero_calls, free_calls;
[c1f38e6c]281static unsigned long long int free_storage;
282static unsigned int mmap_calls;
283static unsigned long long int mmap_storage;
284static unsigned int munmap_calls;
285static unsigned long long int munmap_storage;
286static unsigned int sbrk_calls;
287static unsigned long long int sbrk_storage;
[95eb7cf]288// Statistics file descriptor (changed by malloc_stats_fd).
[709b812]289static int stats_fd = STDERR_FILENO; // default stderr
[c4f68dc]290
291// Use "write" because streams may be shutdown when calls are made.
[d46ed6e]292static void printStats() {
[76e2113]293 char helpText[1024];
[95eb7cf]294 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[709b812]295 "\nHeap statistics:\n"
296 " malloc 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
297 " aalloc 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
298 " calloc 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
299 " memalign 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
300 " amemalign 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
301 " cmemalign 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
302 " resize 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
303 " realloc 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
304 " free 0-calls %'u; >0-calls %'u; storage %'llu bytes\n"
305 " mmap calls %'u; storage %'llu bytes\n"
306 " munmap calls %'u; storage %'llu bytes\n"
307 " sbrk calls %'u; storage %'llu bytes\n",
308 malloc_zero_calls, malloc_calls, malloc_storage,
309 aalloc_zero_calls, aalloc_calls, aalloc_storage,
310 calloc_zero_calls, calloc_calls, calloc_storage,
311 memalign_zero_calls, memalign_calls, memalign_storage,
312 amemalign_zero_calls, amemalign_calls, amemalign_storage,
313 cmemalign_zero_calls, cmemalign_calls, cmemalign_storage,
314 resize_zero_calls, resize_calls, resize_storage,
315 realloc_zero_calls, realloc_calls, realloc_storage,
316 free_zero_calls, free_calls, free_storage,
317 mmap_calls, mmap_storage,
318 munmap_calls, munmap_storage,
319 sbrk_calls, sbrk_storage
[c4f68dc]320 );
[d46ed6e]321} // printStats
[c4f68dc]322
[bcb14b5]323static int printStatsXML( FILE * stream ) { // see malloc_info
[76e2113]324 char helpText[1024];
[b6830d74]325 int len = snprintf( helpText, sizeof(helpText),
[c4f68dc]326 "<malloc version=\"1\">\n"
327 "<heap nr=\"0\">\n"
328 "<sizes>\n"
329 "</sizes>\n"
[709b812]330 "<total type=\"malloc\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
331 "<total type=\"aalloc\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
332 "<total type=\"calloc\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
333 "<total type=\"memalign\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
334 "<total type=\"amemalign\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
335 "<total type=\"cmemalign\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
336 "<total type=\"resize\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
337 "<total type=\"realloc\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
338 "<total type=\"free\" 0 count=\"%'u;\" >0 count=\"%'u;\" size=\"%'llu\"/> bytes\n"
339 "<total type=\"mmap\" count=\"%'u;\" size=\"%'llu\"/> bytes\n"
340 "<total type=\"munmap\" count=\"%'u;\" size=\"%'llu\"/> bytes\n"
341 "<total type=\"sbrk\" count=\"%'u;\" size=\"%'llu\"/> bytes\n"
[c4f68dc]342 "</malloc>",
[709b812]343 malloc_zero_calls, malloc_calls, malloc_storage,
344 aalloc_zero_calls, aalloc_calls, aalloc_storage,
345 calloc_zero_calls, calloc_calls, calloc_storage,
346 memalign_zero_calls, memalign_calls, memalign_storage,
347 amemalign_zero_calls, amemalign_calls, amemalign_storage,
348 cmemalign_zero_calls, cmemalign_calls, cmemalign_storage,
349 resize_zero_calls, resize_calls, resize_storage,
350 realloc_zero_calls, realloc_calls, realloc_storage,
351 free_zero_calls, free_calls, free_storage,
[c4f68dc]352 mmap_calls, mmap_storage,
353 munmap_calls, munmap_storage,
354 sbrk_calls, sbrk_storage
355 );
[95eb7cf]356 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit
357 return len;
[d46ed6e]358} // printStatsXML
[c4f68dc]359#endif // __STATISTICS__
360
[95eb7cf]361
[1e034d9]362// thunk problem
363size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
364 size_t l = 0, m, h = dim;
365 while ( l < h ) {
366 m = (l + h) / 2;
367 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
368 l = m + 1;
369 } else {
370 h = m;
371 } // if
372 } // while
373 return l;
374} // Bsearchl
375
376
[95eb7cf]377static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
[ad2dced]378 if ( value < __page_size || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]379 mmapStart = value; // set global
380
381 // find the closest bucket size less than or equal to the mmapStart size
[1e034d9]382 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
[95eb7cf]383 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
384 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]385 return true;
[95eb7cf]386} // setMmapStart
387
388
[cfbc703d]389// <-------+----------------------------------------------------> bsize (bucket size)
390// |header |addr
391//==================================================================================
392// align/offset |
393// <-----------------<------------+-----------------------------> bsize (bucket size)
394// |fake-header | addr
395#define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))
396#define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset))
397
398// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
399// |header |addr
400//==================================================================================
401// align/offset |
402// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
403// |fake-header |addr
404#define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
405
406
407static inline void checkAlign( size_t alignment ) {
[92aca37]408 if ( alignment < libAlign() || ! is_pow2( alignment ) ) {
[cfbc703d]409 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
410 } // if
411} // checkAlign
412
413
[e3fea42]414static inline void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]415 if ( unlikely( check ) ) { // bad address ?
[c4f68dc]416 abort( "Attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]417 "Possible cause is duplicate free on same block or overwriting of memory.",
418 name, addr );
[b6830d74]419 } // if
[c4f68dc]420} // checkHeader
421
[95eb7cf]422
423static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {
[b6830d74]424 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?
[c4f68dc]425 alignment = header->kind.fake.alignment & -2; // remove flag from value
426 #ifdef __CFA_DEBUG__
427 checkAlign( alignment ); // check alignment
428 #endif // __CFA_DEBUG__
[cfbc703d]429 header = realHeader( header ); // backup from fake to real header
[d5d3a90]430 } else {
[c1f38e6c]431 alignment = libAlign(); // => no fake header
[b6830d74]432 } // if
[c4f68dc]433} // fakeHeader
434
[95eb7cf]435
[9c438546]436static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem,
437 size_t & size, size_t & alignment ) with( heapManager ) {
[b6830d74]438 header = headerAddr( addr );
[c4f68dc]439
[13fece5]440 if ( unlikely( addr < heapBegin || heapEnd < addr ) ) { // mmapped ?
[95eb7cf]441 fakeHeader( header, alignment );
[c4f68dc]442 size = header->kind.real.blockSize & -3; // mmap size
443 return true;
[b6830d74]444 } // if
[c4f68dc]445
446 #ifdef __CFA_DEBUG__
[13fece5]447 checkHeader( header < (HeapManager.Storage.Header *)heapBegin, name, addr ); // bad low address ?
[c4f68dc]448 #endif // __CFA_DEBUG__
[b6830d74]449
[bcb14b5]450 // header may be safe to dereference
[95eb7cf]451 fakeHeader( header, alignment );
[c4f68dc]452 #ifdef __CFA_DEBUG__
[bcb14b5]453 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]454 #endif // __CFA_DEBUG__
455
[bcb14b5]456 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);
[c4f68dc]457 #ifdef __CFA_DEBUG__
[bcb14b5]458 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {
459 abort( "Attempt to %s storage %p with corrupted header.\n"
460 "Possible cause is duplicate free on same block or overwriting of header information.",
461 name, addr );
462 } // if
[c4f68dc]463 #endif // __CFA_DEBUG__
[bcb14b5]464 size = freeElem->blockSize;
465 return false;
[c4f68dc]466} // headers
467
[709b812]468// #ifdef __CFA_DEBUG__
469// #if __SIZEOF_POINTER__ == 4
470// #define MASK 0xdeadbeef
471// #else
472// #define MASK 0xdeadbeefdeadbeef
473// #endif
474// #define STRIDE size_t
[e4b6b7d3]475
[709b812]476// static void * Memset( void * addr, STRIDE size ) { // debug only
477// if ( size % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, size %zd not multiple of %zd.", size, sizeof(STRIDE) );
478// if ( (STRIDE)addr % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, addr %p not multiple of %zd.", addr, sizeof(STRIDE) );
[e4b6b7d3]479
[709b812]480// STRIDE * end = (STRIDE *)addr + size / sizeof(STRIDE);
481// for ( STRIDE * p = (STRIDE *)addr; p < end; p += 1 ) *p = MASK;
482// return addr;
483// } // Memset
484// #endif // __CFA_DEBUG__
[e4b6b7d3]485
[13fece5]486
[92aca37]487#define NO_MEMORY_MSG "insufficient heap memory available for allocating %zd new bytes."
[c4f68dc]488
[9c438546]489static inline void * extend( size_t size ) with( heapManager ) {
[b6830d74]490 lock( extlock __cfaabi_dbg_ctx2 );
491 ptrdiff_t rem = heapRemaining - size;
492 if ( rem < 0 ) {
[c4f68dc]493 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
494
[ad2dced]495 size_t increase = ceiling2( size > heapExpand ? size : heapExpand, __page_size );
496 // Do not call abort or strerror( errno ) as they may call malloc.
[92aca37]497 if ( sbrk( increase ) == (void *)-1 ) { // failed, no memory ?
[c4f68dc]498 unlock( extlock );
[ad2dced]499 __cfaabi_bits_print_nolock( STDERR_FILENO, NO_MEMORY_MSG, size );
[709b812]500 _exit( EXIT_FAILURE ); // give up
[92aca37]501 } // if
[709b812]502 // Make storage executable for thunks.
[ad2dced]503 if ( mprotect( (char *)heapEnd + heapRemaining, increase, __map_prot ) ) {
504 unlock( extlock );
505 __cfaabi_bits_print_nolock( STDERR_FILENO, "extend() : internal error, mprotect failure, heapEnd:%p size:%zd, errno:%d.\n", heapEnd, increase, errno );
506 _exit( EXIT_FAILURE );
[b4aa1ab]507 } // if
[bcb14b5]508 #ifdef __STATISTICS__
[c4f68dc]509 sbrk_calls += 1;
510 sbrk_storage += increase;
[bcb14b5]511 #endif // __STATISTICS__
512 #ifdef __CFA_DEBUG__
[c4f68dc]513 // Set new memory to garbage so subsequent uninitialized usages might fail.
[13fece5]514 memset( (char *)heapEnd + heapRemaining, '\xde', increase );
[ad2dced]515 //Memset( (char *)heapEnd + heapRemaining, increase );
[bcb14b5]516 #endif // __CFA_DEBUG__
[c4f68dc]517 rem = heapRemaining + increase - size;
[b6830d74]518 } // if
[c4f68dc]519
[b6830d74]520 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;
521 heapRemaining = rem;
522 heapEnd = (char *)heapEnd + size;
523 unlock( extlock );
524 return block;
[c4f68dc]525} // extend
526
527
[9c438546]528static inline void * doMalloc( size_t size ) with( heapManager ) {
[7b149bc]529 HeapManager.Storage * block; // pointer to new block of storage
[c4f68dc]530
[b6830d74]531 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
532 // along with the block and is a multiple of the alignment size.
[c4f68dc]533
[1076d05]534 if ( unlikely( size > ULONG_MAX - sizeof(HeapManager.Storage) ) ) return 0p;
[b6830d74]535 size_t tsize = size + sizeof(HeapManager.Storage);
536 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
[e723100]537 size_t posn;
538 #ifdef FASTLOOKUP
539 if ( tsize < LookupSizes ) posn = lookup[tsize];
540 else
541 #endif // FASTLOOKUP
542 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
543 HeapManager.FreeHeader * freeElem = &freeLists[posn];
[c1f38e6c]544 verify( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
545 verify( tsize <= freeElem->blockSize ); // search failure ?
[c4f68dc]546 tsize = freeElem->blockSize; // total space needed for request
547
548 // Spin until the lock is acquired for this particular size of block.
549
[9c438546]550 #if BUCKETLOCK == SPINLOCK
[bcb14b5]551 lock( freeElem->lock __cfaabi_dbg_ctx2 );
552 block = freeElem->freeList; // remove node from stack
[c4f68dc]553 #else
[9c438546]554 block = pop( freeElem->freeList );
555 #endif // BUCKETLOCK
[95eb7cf]556 if ( unlikely( block == 0p ) ) { // no free block ?
[9c438546]557 #if BUCKETLOCK == SPINLOCK
[c4f68dc]558 unlock( freeElem->lock );
[9c438546]559 #endif // BUCKETLOCK
[bcb14b5]560
[c4f68dc]561 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
562 // and then carve it off.
563
564 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call
[9c438546]565 #if BUCKETLOCK == SPINLOCK
[c4f68dc]566 } else {
567 freeElem->freeList = block->header.kind.real.next;
568 unlock( freeElem->lock );
[9c438546]569 #endif // BUCKETLOCK
[c4f68dc]570 } // if
571
572 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
[bcb14b5]573 } else { // large size => mmap
[ad2dced]574 if ( unlikely( size > ULONG_MAX - __page_size ) ) return 0p;
575 tsize = ceiling2( tsize, __page_size ); // must be multiple of page size
[c4f68dc]576 #ifdef __STATISTICS__
[bcb14b5]577 __atomic_add_fetch( &mmap_calls, 1, __ATOMIC_SEQ_CST );
578 __atomic_add_fetch( &mmap_storage, tsize, __ATOMIC_SEQ_CST );
[c4f68dc]579 #endif // __STATISTICS__
[92aca37]580
[ad2dced]581 block = (HeapManager.Storage *)mmap( 0, tsize, __map_prot, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
[92aca37]582 if ( block == (HeapManager.Storage *)MAP_FAILED ) { // failed ?
583 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize ); // no memory
[c4f68dc]584 // Do not call strerror( errno ) as it may call malloc.
[b4aa1ab]585 abort( "(HeapManager &)0x%p.doMalloc() : internal error, mmap failure, size:%zu errno:%d.", &heapManager, tsize, errno );
[92aca37]586 } //if
[bcb14b5]587 #ifdef __CFA_DEBUG__
[c4f68dc]588 // Set new memory to garbage so subsequent uninitialized usages might fail.
[13fece5]589 memset( block, '\xde', tsize );
[ad2dced]590 //Memset( block, tsize );
[bcb14b5]591 #endif // __CFA_DEBUG__
[c4f68dc]592 block->header.kind.real.blockSize = tsize; // storage size for munmap
[bcb14b5]593 } // if
[c4f68dc]594
[9c438546]595 block->header.kind.real.size = size; // store allocation size
[95eb7cf]596 void * addr = &(block->data); // adjust off header to user bytes
[c1f38e6c]597 verify( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[c4f68dc]598
599 #ifdef __CFA_DEBUG__
[c1f38e6c]600 __atomic_add_fetch( &allocUnfreed, tsize, __ATOMIC_SEQ_CST );
[bcb14b5]601 if ( traceHeap() ) {
602 enum { BufferSize = 64 };
603 char helpText[BufferSize];
[95eb7cf]604 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize );
605 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]606 } // if
[c4f68dc]607 #endif // __CFA_DEBUG__
608
[95eb7cf]609 return addr;
[c4f68dc]610} // doMalloc
611
612
[9c438546]613static inline void doFree( void * addr ) with( heapManager ) {
[c4f68dc]614 #ifdef __CFA_DEBUG__
[95eb7cf]615 if ( unlikely( heapManager.heapBegin == 0p ) ) {
[bcb14b5]616 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
617 } // if
[c4f68dc]618 #endif // __CFA_DEBUG__
619
[b6830d74]620 HeapManager.Storage.Header * header;
621 HeapManager.FreeHeader * freeElem;
622 size_t size, alignment; // not used (see realloc)
[c4f68dc]623
[b6830d74]624 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
[c4f68dc]625 #ifdef __STATISTICS__
[bcb14b5]626 __atomic_add_fetch( &munmap_calls, 1, __ATOMIC_SEQ_CST );
627 __atomic_add_fetch( &munmap_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]628 #endif // __STATISTICS__
629 if ( munmap( header, size ) == -1 ) {
630 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
[bcb14b5]631 "Possible cause is invalid pointer.",
632 addr );
[c4f68dc]633 } // if
[bcb14b5]634 } else {
[c4f68dc]635 #ifdef __CFA_DEBUG__
[bcb14b5]636 // Set free memory to garbage so subsequent usages might fail.
[13fece5]637 memset( ((HeapManager.Storage *)header)->data, '\xde', freeElem->blockSize - sizeof( HeapManager.Storage ) );
[ad2dced]638 //Memset( ((HeapManager.Storage *)header)->data, freeElem->blockSize - sizeof( HeapManager.Storage ) );
[c4f68dc]639 #endif // __CFA_DEBUG__
640
641 #ifdef __STATISTICS__
[bcb14b5]642 free_storage += size;
[c4f68dc]643 #endif // __STATISTICS__
[9c438546]644 #if BUCKETLOCK == SPINLOCK
[bcb14b5]645 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
646 header->kind.real.next = freeElem->freeList; // push on stack
647 freeElem->freeList = (HeapManager.Storage *)header;
648 unlock( freeElem->lock ); // release spin lock
[c4f68dc]649 #else
[9c438546]650 push( freeElem->freeList, *(HeapManager.Storage *)header );
651 #endif // BUCKETLOCK
[bcb14b5]652 } // if
[c4f68dc]653
654 #ifdef __CFA_DEBUG__
[c1f38e6c]655 __atomic_add_fetch( &allocUnfreed, -size, __ATOMIC_SEQ_CST );
[bcb14b5]656 if ( traceHeap() ) {
[92aca37]657 char helpText[64];
[bcb14b5]658 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size );
[95eb7cf]659 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]660 } // if
[c4f68dc]661 #endif // __CFA_DEBUG__
662} // doFree
663
664
[9c438546]665size_t prtFree( HeapManager & manager ) with( manager ) {
[b6830d74]666 size_t total = 0;
[c4f68dc]667 #ifdef __STATISTICS__
[95eb7cf]668 __cfaabi_bits_acquire();
669 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]670 #endif // __STATISTICS__
[b6830d74]671 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
[d46ed6e]672 size_t size = freeLists[i].blockSize;
673 #ifdef __STATISTICS__
674 unsigned int N = 0;
675 #endif // __STATISTICS__
[b6830d74]676
[9c438546]677 #if BUCKETLOCK == SPINLOCK
[95eb7cf]678 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]679 #else
[b4aa1ab]680 for(;;) {
681// for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; p = (p)`next->top ) {
[7cfef0d]682// for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; /* p = getNext( p )->top */) {
[b4aa1ab]683// HeapManager.Storage * temp = p->header.kind.real.next.top; // FIX ME: direct assignent fails, initialization works`
[7cfef0d]684// typeof(p) temp = (( p )`next)->top; // FIX ME: direct assignent fails, initialization works`
685// p = temp;
[9c438546]686 #endif // BUCKETLOCK
[d46ed6e]687 total += size;
688 #ifdef __STATISTICS__
689 N += 1;
690 #endif // __STATISTICS__
[b6830d74]691 } // for
692
[d46ed6e]693 #ifdef __STATISTICS__
[95eb7cf]694 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
695 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]696 #endif // __STATISTICS__
697 } // for
698 #ifdef __STATISTICS__
[95eb7cf]699 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
700 __cfaabi_bits_release();
[d46ed6e]701 #endif // __STATISTICS__
702 return (char *)heapEnd - (char *)heapBegin - total;
[95eb7cf]703} // prtFree
704
705
[9c438546]706static void ?{}( HeapManager & manager ) with( manager ) {
[ad2dced]707 __page_size = sysconf( _SC_PAGESIZE );
708 __map_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
[95eb7cf]709
710 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
711 freeLists[i].blockSize = bucketSizes[i];
712 } // for
713
714 #ifdef FASTLOOKUP
715 unsigned int idx = 0;
716 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
717 if ( i > bucketSizes[idx] ) idx += 1;
718 lookup[i] = idx;
719 } // for
720 #endif // FASTLOOKUP
721
[1076d05]722 if ( ! setMmapStart( default_mmap_start() ) ) {
[95eb7cf]723 abort( "HeapManager : internal error, mmap start initialization failure." );
724 } // if
725 heapExpand = default_heap_expansion();
726
[1e034d9]727 char * end = (char *)sbrk( 0 );
[ad2dced]728 heapBegin = heapEnd = sbrk( (char *)ceiling2( (long unsigned int)end, __page_size ) - end ); // move start of heap to multiple of alignment
[95eb7cf]729} // HeapManager
730
731
732static void ^?{}( HeapManager & ) {
733 #ifdef __STATISTICS__
[baf608a]734 if ( traceHeapTerm() ) {
735 printStats();
[92aca37]736 // prtUnfreed() called in heapAppStop()
[baf608a]737 } // if
[95eb7cf]738 #endif // __STATISTICS__
739} // ~HeapManager
740
741
742static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
743void memory_startup( void ) {
744 #ifdef __CFA_DEBUG__
[92aca37]745 if ( heapBoot ) { // check for recursion during system boot
[95eb7cf]746 abort( "boot() : internal error, recursively invoked during system boot." );
747 } // if
748 heapBoot = true;
749 #endif // __CFA_DEBUG__
750
[c1f38e6c]751 //verify( heapManager.heapBegin != 0 );
[95eb7cf]752 //heapManager{};
[1076d05]753 if ( heapManager.heapBegin == 0p ) heapManager{}; // sanity check
[95eb7cf]754} // memory_startup
755
756static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
757void memory_shutdown( void ) {
758 ^heapManager{};
759} // memory_shutdown
[c4f68dc]760
[bcb14b5]761
762static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
[92aca37]763 verify( heapManager.heapBegin != 0p ); // called before memory_startup ?
[dd23e66]764 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[d5d3a90]765
[76e2113]766#if __SIZEOF_POINTER__ == 8
767 verify( size < ((typeof(size_t))1 << 48) );
768#endif // __SIZEOF_POINTER__ == 8
[d5d3a90]769 return doMalloc( size );
[bcb14b5]770} // mallocNoStats
[c4f68dc]771
772
[92aca37]773static inline void * memalignNoStats( size_t alignment, size_t size ) {
[dd23e66]774 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[d5d3a90]775
[bcb14b5]776 #ifdef __CFA_DEBUG__
[b6830d74]777 checkAlign( alignment ); // check alignment
[bcb14b5]778 #endif // __CFA_DEBUG__
[c4f68dc]779
[b6830d74]780 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
[bcb14b5]781 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
[b6830d74]782
783 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
784 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
785 // .-------------v-----------------v----------------v----------,
786 // | Real Header | ... padding ... | Fake Header | data ... |
787 // `-------------^-----------------^-+--------------^----------'
788 // |<--------------------------------' offset/align |<-- alignment boundary
789
790 // subtract libAlign() because it is already the minimum alignment
791 // add sizeof(Storage) for fake header
[95eb7cf]792 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) );
[b6830d74]793
794 // address in the block of the "next" alignment address
[92aca37]795 char * user = (char *)ceiling2( (uintptr_t)(addr + sizeof(HeapManager.Storage)), alignment );
[b6830d74]796
797 // address of header from malloc
[95eb7cf]798 HeapManager.Storage.Header * realHeader = headerAddr( addr );
[4cf617e]799 realHeader->kind.real.size = size; // correct size to eliminate above alignment offset
[b6830d74]800 // address of fake header * before* the alignment location
801 HeapManager.Storage.Header * fakeHeader = headerAddr( user );
802 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
803 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
804 // SKULLDUGGERY: odd alignment imples fake header
805 fakeHeader->kind.fake.alignment = alignment | 1;
806
807 return user;
[bcb14b5]808} // memalignNoStats
[c4f68dc]809
810
811extern "C" {
[61248a4]812 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
813 // then malloc() returns a unique pointer value that can later be successfully passed to free().
[b6830d74]814 void * malloc( size_t size ) {
[c4f68dc]815 #ifdef __STATISTICS__
[709b812]816 if ( likely( size > 0 ) ) {
817 __atomic_add_fetch( &malloc_calls, 1, __ATOMIC_SEQ_CST );
818 __atomic_add_fetch( &malloc_storage, size, __ATOMIC_SEQ_CST );
819 } else {
820 __atomic_add_fetch( &malloc_zero_calls, 1, __ATOMIC_SEQ_CST );
821 } // if
[c4f68dc]822 #endif // __STATISTICS__
823
[bcb14b5]824 return mallocNoStats( size );
825 } // malloc
[c4f68dc]826
[76e2113]827
[61248a4]828 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[76e2113]829 void * aalloc( size_t dim, size_t elemSize ) {
[92aca37]830 size_t size = dim * elemSize;
[76e2113]831 #ifdef __STATISTICS__
[709b812]832 if ( likely( size > 0 ) ) {
833 __atomic_add_fetch( &aalloc_calls, 1, __ATOMIC_SEQ_CST );
834 __atomic_add_fetch( &aalloc_storage, size, __ATOMIC_SEQ_CST );
835 } else {
836 __atomic_add_fetch( &aalloc_zero_calls, 1, __ATOMIC_SEQ_CST );
837 } // if
[76e2113]838 #endif // __STATISTICS__
839
[92aca37]840 return mallocNoStats( size );
[76e2113]841 } // aalloc
842
843
[61248a4]844 // Same as aalloc() with memory set to zero.
[76e2113]845 void * calloc( size_t dim, size_t elemSize ) {
[709b812]846 size_t size = dim * elemSize;
847 if ( unlikely( size ) == 0 ) { // 0 BYTE ALLOCATION RETURNS NULL POINTER
848 #ifdef __STATISTICS__
849 __atomic_add_fetch( &calloc_zero_calls, 1, __ATOMIC_SEQ_CST );
850 #endif // __STATISTICS__
851 return 0p;
852 } // if
[c4f68dc]853 #ifdef __STATISTICS__
[bcb14b5]854 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]855 __atomic_add_fetch( &calloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[c4f68dc]856 #endif // __STATISTICS__
857
[709b812]858 char * addr = (char *)mallocNoStats( size );
859
860 HeapManager.Storage.Header * header;
861 HeapManager.FreeHeader * freeElem;
862 size_t bsize, alignment;
863
864 #ifndef __CFA_DEBUG__
865 bool mapped =
866 #endif // __CFA_DEBUG__
867 headers( "calloc", addr, header, freeElem, bsize, alignment );
868
869 #ifndef __CFA_DEBUG__
870 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
871 if ( ! mapped )
872 #endif // __CFA_DEBUG__
873 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
874 // `-header`-addr `-size
875 memset( addr, '\0', size ); // set to zeros
876
877 header->kind.real.blockSize |= 2; // mark as zero filled
878 return addr;
[bcb14b5]879 } // calloc
[c4f68dc]880
[92aca37]881
[61248a4]882 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
883 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
884 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
885 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[cfbc703d]886 void * resize( void * oaddr, size_t size ) {
[709b812]887 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
888 if ( unlikely( size == 0 ) ) { // special cases
889 #ifdef __STATISTICS__
890 __atomic_add_fetch( &resize_zero_calls, 1, __ATOMIC_SEQ_CST );
891 #endif // __STATISTICS__
892 free( oaddr );
893 return 0p;
894 } // if
[cfbc703d]895 #ifdef __STATISTICS__
896 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
897 #endif // __STATISTICS__
898
[92aca37]899 if ( unlikely( oaddr == 0p ) ) {
900 #ifdef __STATISTICS__
901 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
902 #endif // __STATISTICS__
903 return mallocNoStats( size );
904 } // if
[cfbc703d]905
906 HeapManager.Storage.Header * header;
907 HeapManager.FreeHeader * freeElem;
[92aca37]908 size_t bsize, oalign;
[cfbc703d]909 headers( "resize", oaddr, header, freeElem, bsize, oalign );
[92847f7]910
[709b812]911 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[cfbc703d]912 // same size, DO NOT preserve STICKY PROPERTIES.
[92847f7]913 if ( oalign == libAlign() && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[cfbc703d]914 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill
[d5d3a90]915 header->kind.real.size = size; // reset allocation size
[cfbc703d]916 return oaddr;
917 } // if
[0f89d4f]918
[92aca37]919 #ifdef __STATISTICS__
920 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
921 #endif // __STATISTICS__
922
[cfbc703d]923 // change size, DO NOT preserve STICKY PROPERTIES.
924 free( oaddr );
[d5d3a90]925 return mallocNoStats( size ); // create new area
[cfbc703d]926 } // resize
927
928
[61248a4]929 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]930 // the old and new sizes.
[95eb7cf]931 void * realloc( void * oaddr, size_t size ) {
[709b812]932 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
933 if ( unlikely( size == 0 ) ) { // special cases
934 #ifdef __STATISTICS__
935 __atomic_add_fetch( &realloc_zero_calls, 1, __ATOMIC_SEQ_CST );
936 #endif // __STATISTICS__
937 free( oaddr );
938 return 0p;
939 } // if
[c4f68dc]940 #ifdef __STATISTICS__
[bcb14b5]941 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]942 #endif // __STATISTICS__
943
[92aca37]944 if ( unlikely( oaddr == 0p ) ) {
945 #ifdef __STATISTICS__
946 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
947 #endif // __STATISTICS__
948 return mallocNoStats( size );
949 } // if
[c4f68dc]950
951 HeapManager.Storage.Header * header;
952 HeapManager.FreeHeader * freeElem;
[92aca37]953 size_t bsize, oalign;
[95eb7cf]954 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
955
956 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[d5d3a90]957 size_t osize = header->kind.real.size; // old allocation size
[92847f7]958 bool ozfill = (header->kind.real.blockSize & 2); // old allocation zero filled
959 if ( unlikely( size <= odsize ) && odsize <= size * 2 ) { // allow up to 50% wasted storage
[d5d3a90]960 header->kind.real.size = size; // reset allocation size
961 if ( unlikely( ozfill ) && size > osize ) { // previous request zero fill and larger ?
[e4b6b7d3]962 memset( (char *)oaddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]963 } // if
[95eb7cf]964 return oaddr;
[c4f68dc]965 } // if
966
[92aca37]967 #ifdef __STATISTICS__
968 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
969 #endif // __STATISTICS__
970
[95eb7cf]971 // change size and copy old content to new storage
972
973 void * naddr;
[92847f7]974 if ( likely( oalign == libAlign() ) ) { // previous request not aligned ?
[d5d3a90]975 naddr = mallocNoStats( size ); // create new area
[c4f68dc]976 } else {
[d5d3a90]977 naddr = memalignNoStats( oalign, size ); // create new aligned area
[c4f68dc]978 } // if
[1e034d9]979
[95eb7cf]980 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[47dd0d2]981 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[95eb7cf]982 free( oaddr );
[d5d3a90]983
984 if ( unlikely( ozfill ) ) { // previous request zero fill ?
985 header->kind.real.blockSize |= 2; // mark new request as zero filled
986 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]987 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]988 } // if
989 } // if
[95eb7cf]990 return naddr;
[b6830d74]991 } // realloc
[c4f68dc]992
[c1f38e6c]993
[61248a4]994 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[bcb14b5]995 void * memalign( size_t alignment, size_t size ) {
[c4f68dc]996 #ifdef __STATISTICS__
[709b812]997 if ( likely( size > 0 ) ) {
998 __atomic_add_fetch( &memalign_calls, 1, __ATOMIC_SEQ_CST );
999 __atomic_add_fetch( &memalign_storage, size, __ATOMIC_SEQ_CST );
1000 } else {
1001 __atomic_add_fetch( &memalign_zero_calls, 1, __ATOMIC_SEQ_CST );
1002 } // if
[c4f68dc]1003 #endif // __STATISTICS__
1004
[95eb7cf]1005 return memalignNoStats( alignment, size );
[bcb14b5]1006 } // memalign
[c4f68dc]1007
[95eb7cf]1008
[76e2113]1009 // Same as aalloc() with memory alignment.
1010 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) {
[92aca37]1011 size_t size = dim * elemSize;
[76e2113]1012 #ifdef __STATISTICS__
[709b812]1013 if ( likely( size > 0 ) ) {
1014 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
1015 __atomic_add_fetch( &cmemalign_storage, size, __ATOMIC_SEQ_CST );
1016 } else {
1017 __atomic_add_fetch( &cmemalign_zero_calls, 1, __ATOMIC_SEQ_CST );
1018 } // if
[76e2113]1019 #endif // __STATISTICS__
1020
[92aca37]1021 return memalignNoStats( alignment, size );
[76e2113]1022 } // amemalign
1023
1024
[ca7949b]1025 // Same as calloc() with memory alignment.
[76e2113]1026 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) {
[709b812]1027 size_t size = dim * elemSize;
1028 if ( unlikely( size ) == 0 ) { // 0 BYTE ALLOCATION RETURNS NULL POINTER
1029 #ifdef __STATISTICS__
1030 __atomic_add_fetch( &cmemalign_zero_calls, 1, __ATOMIC_SEQ_CST );
1031 #endif // __STATISTICS__
1032 return 0p;
1033 } // if
[95eb7cf]1034 #ifdef __STATISTICS__
1035 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]1036 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[95eb7cf]1037 #endif // __STATISTICS__
1038
[709b812]1039 char * addr = (char *)memalignNoStats( alignment, size );
1040
1041 HeapManager.Storage.Header * header;
1042 HeapManager.FreeHeader * freeElem;
1043 size_t bsize;
1044
1045 #ifndef __CFA_DEBUG__
1046 bool mapped =
1047 #endif // __CFA_DEBUG__
1048 headers( "cmemalign", addr, header, freeElem, bsize, alignment );
1049
1050 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
1051 #ifndef __CFA_DEBUG__
1052 if ( ! mapped )
1053 #endif // __CFA_DEBUG__
1054 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1055 // `-header`-addr `-size
1056 memset( addr, '\0', size ); // set to zeros
1057
1058 header->kind.real.blockSize |= 2; // mark as zero filled
1059 return addr;
[95eb7cf]1060 } // cmemalign
1061
[13fece5]1062
[ca7949b]1063 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
1064 // of alignment. This requirement is universally ignored.
[b6830d74]1065 void * aligned_alloc( size_t alignment, size_t size ) {
[c4f68dc]1066 return memalign( alignment, size );
[b6830d74]1067 } // aligned_alloc
[c4f68dc]1068
1069
[ca7949b]1070 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1071 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1072 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1073 // free(3).
[b6830d74]1074 int posix_memalign( void ** memptr, size_t alignment, size_t size ) {
[92aca37]1075 if ( alignment < libAlign() || ! is_pow2( alignment ) ) return EINVAL; // check alignment
[c4f68dc]1076 * memptr = memalign( alignment, size );
1077 return 0;
[b6830d74]1078 } // posix_memalign
[c4f68dc]1079
[13fece5]1080
[ca7949b]1081 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1082 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[b6830d74]1083 void * valloc( size_t size ) {
[ad2dced]1084 return memalign( __page_size, size );
[b6830d74]1085 } // valloc
[c4f68dc]1086
1087
[ca7949b]1088 // Same as valloc but rounds size to multiple of page size.
1089 void * pvalloc( size_t size ) {
[ad2dced]1090 return memalign( __page_size, ceiling2( size, __page_size ) );
[ca7949b]1091 } // pvalloc
1092
1093
1094 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1095 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1096 // 0p, no operation is performed.
[b6830d74]1097 void free( void * addr ) {
[95eb7cf]1098 if ( unlikely( addr == 0p ) ) { // special case
[709b812]1099 #ifdef __STATISTICS__
1100 __atomic_add_fetch( &free_zero_calls, 1, __ATOMIC_SEQ_CST );
1101 #endif // __STATISTICS__
1102
[95eb7cf]1103 // #ifdef __CFA_DEBUG__
1104 // if ( traceHeap() ) {
1105 // #define nullmsg "Free( 0x0 ) size:0\n"
[1e034d9]1106 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
[95eb7cf]1107 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
1108 // } // if
1109 // #endif // __CFA_DEBUG__
[c4f68dc]1110 return;
1111 } // exit
1112
1113 doFree( addr );
[b6830d74]1114 } // free
[93c2e0a]1115
[c4f68dc]1116
[76e2113]1117 // Returns the alignment of an allocation.
[b6830d74]1118 size_t malloc_alignment( void * addr ) {
[95eb7cf]1119 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[1aa6ecb]1120 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1121 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1122 return header->kind.fake.alignment & -2; // remove flag from value
1123 } else {
[cfbc703d]1124 return libAlign(); // minimum alignment
[c4f68dc]1125 } // if
[bcb14b5]1126 } // malloc_alignment
[c4f68dc]1127
[92aca37]1128
[76e2113]1129 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment.
1130 size_t $malloc_alignment_set( void * addr, size_t alignment ) {
1131 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1132 size_t ret;
1133 HeapManager.Storage.Header * header = headerAddr( addr );
1134 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1135 ret = header->kind.fake.alignment & -2; // remove flag from old value
1136 header->kind.fake.alignment = alignment | 1; // add flag to new value
1137 } else {
1138 ret = 0; // => no alignment to change
1139 } // if
1140 return ret;
1141 } // $malloc_alignment_set
1142
[c4f68dc]1143
[76e2113]1144 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[b6830d74]1145 bool malloc_zero_fill( void * addr ) {
[95eb7cf]1146 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[1aa6ecb]1147 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1148 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
[cfbc703d]1149 header = realHeader( header ); // backup from fake to real header
[c4f68dc]1150 } // if
[76e2113]1151 return (header->kind.real.blockSize & 2) != 0; // zero filled ?
[bcb14b5]1152 } // malloc_zero_fill
[c4f68dc]1153
[76e2113]1154 // Set allocation is zero filled and return previous zero filled.
1155 bool $malloc_zero_fill_set( void * addr ) {
1156 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1157 HeapManager.Storage.Header * header = headerAddr( addr );
1158 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1159 header = realHeader( header ); // backup from fake to real header
1160 } // if
1161 bool ret = (header->kind.real.blockSize & 2) != 0; // zero filled ?
1162 header->kind.real.blockSize |= 2; // mark as zero filled
1163 return ret;
1164 } // $malloc_zero_fill_set
1165
[c4f68dc]1166
[76e2113]1167 // Returns original total allocation size (not bucket size) => array size is dimension * sizeif(T).
1168 size_t malloc_size( void * addr ) {
[849fb370]1169 if ( unlikely( addr == 0p ) ) return 0; // null allocation has zero size
[cfbc703d]1170 HeapManager.Storage.Header * header = headerAddr( addr );
1171 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1172 header = realHeader( header ); // backup from fake to real header
1173 } // if
[9c438546]1174 return header->kind.real.size;
[76e2113]1175 } // malloc_size
1176
1177 // Set allocation size and return previous size.
1178 size_t $malloc_size_set( void * addr, size_t size ) {
[849fb370]1179 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
[76e2113]1180 HeapManager.Storage.Header * header = headerAddr( addr );
1181 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1182 header = realHeader( header ); // backup from fake to real header
1183 } // if
[9c438546]1184 size_t ret = header->kind.real.size;
1185 header->kind.real.size = size;
[76e2113]1186 return ret;
1187 } // $malloc_size_set
[cfbc703d]1188
1189
[ca7949b]1190 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1191 // malloc or a related function.
[95eb7cf]1192 size_t malloc_usable_size( void * addr ) {
1193 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1194 HeapManager.Storage.Header * header;
1195 HeapManager.FreeHeader * freeElem;
1196 size_t bsize, alignment;
1197
1198 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
[dd23e66]1199 return dataStorage( bsize, addr, header ); // data storage in bucket
[95eb7cf]1200 } // malloc_usable_size
1201
1202
[ca7949b]1203 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[b6830d74]1204 void malloc_stats( void ) {
[c4f68dc]1205 #ifdef __STATISTICS__
[bcb14b5]1206 printStats();
[95eb7cf]1207 if ( prtFree() ) prtFree( heapManager );
[c4f68dc]1208 #endif // __STATISTICS__
[bcb14b5]1209 } // malloc_stats
[c4f68dc]1210
[92aca37]1211
[ca7949b]1212 // Changes the file descripter where malloc_stats() writes statistics.
[95eb7cf]1213 int malloc_stats_fd( int fd __attribute__(( unused )) ) {
[c4f68dc]1214 #ifdef __STATISTICS__
[709b812]1215 int temp = stats_fd;
1216 stats_fd = fd;
[bcb14b5]1217 return temp;
[c4f68dc]1218 #else
[bcb14b5]1219 return -1;
[c4f68dc]1220 #endif // __STATISTICS__
[bcb14b5]1221 } // malloc_stats_fd
[c4f68dc]1222
[95eb7cf]1223
[1076d05]1224 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1225 // specifies the parameter to be modified, and value specifies the new value for that parameter.
[95eb7cf]1226 int mallopt( int option, int value ) {
1227 choose( option ) {
1228 case M_TOP_PAD:
[ad2dced]1229 heapExpand = ceiling2( value, __page_size ); return 1;
[95eb7cf]1230 case M_MMAP_THRESHOLD:
1231 if ( setMmapStart( value ) ) return 1;
[1076d05]1232 break;
[95eb7cf]1233 } // switch
1234 return 0; // error, unsupported
1235 } // mallopt
1236
[c1f38e6c]1237
[ca7949b]1238 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[95eb7cf]1239 int malloc_trim( size_t ) {
1240 return 0; // => impossible to release memory
1241 } // malloc_trim
1242
1243
[ca7949b]1244 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller.
1245 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1246 // malloc).
[709b812]1247 int malloc_info( int options, FILE * stream __attribute__(( unused )) ) {
[92aca37]1248 if ( options != 0 ) { errno = EINVAL; return -1; }
1249 #ifdef __STATISTICS__
[d46ed6e]1250 return printStatsXML( stream );
[92aca37]1251 #else
1252 return 0; // unsupported
1253 #endif // __STATISTICS__
[c4f68dc]1254 } // malloc_info
1255
1256
[ca7949b]1257 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1258 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1259 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1260 // result. (The caller must free this memory.)
[c4f68dc]1261 void * malloc_get_state( void ) {
[95eb7cf]1262 return 0p; // unsupported
[c4f68dc]1263 } // malloc_get_state
1264
[bcb14b5]1265
[ca7949b]1266 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1267 // structure pointed to by state.
[92aca37]1268 int malloc_set_state( void * ) {
[bcb14b5]1269 return 0; // unsupported
[c4f68dc]1270 } // malloc_set_state
1271} // extern "C"
1272
1273
[95eb7cf]1274// Must have CFA linkage to overload with C linkage realloc.
[cfbc703d]1275void * resize( void * oaddr, size_t nalign, size_t size ) {
[709b812]1276 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1277 if ( unlikely( size == 0 ) ) { // special cases
1278 #ifdef __STATISTICS__
1279 __atomic_add_fetch( &resize_zero_calls, 1, __ATOMIC_SEQ_CST );
1280 #endif // __STATISTICS__
1281 free( oaddr );
1282 return 0p;
1283 } // if
[95eb7cf]1284
[c86f587]1285 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
1286 #ifdef __CFA_DEBUG__
[709b812]1287 else checkAlign( nalign ); // check alignment
[c86f587]1288 #endif // __CFA_DEBUG__
1289
[92aca37]1290 if ( unlikely( oaddr == 0p ) ) {
1291 #ifdef __STATISTICS__
[709b812]1292 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
[92aca37]1293 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
1294 #endif // __STATISTICS__
1295 return memalignNoStats( nalign, size );
1296 } // if
[cfbc703d]1297
[92847f7]1298 // Attempt to reuse existing alignment.
[47dd0d2]1299 HeapManager.Storage.Header * header = headerAddr( oaddr );
[92847f7]1300 bool isFakeHeader = header->kind.fake.alignment & 1; // old fake header ?
1301 size_t oalign;
1302 if ( isFakeHeader ) {
1303 oalign = header->kind.fake.alignment & -2; // old alignment
1304 if ( (uintptr_t)oaddr % nalign == 0 // lucky match ?
1305 && ( oalign <= nalign // going down
1306 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
1307 ) {
1308 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1309 HeapManager.FreeHeader * freeElem;
1310 size_t bsize, oalign;
1311 headers( "resize", oaddr, header, freeElem, bsize, oalign );
1312 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[a3ade94]1313
[92847f7]1314 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted data storage
[03b87140]1315 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
[a3ade94]1316
[92847f7]1317 header->kind.real.blockSize &= -2; // turn off 0 fill
1318 header->kind.real.size = size; // reset allocation size
1319 return oaddr;
1320 } // if
[cfbc703d]1321 } // if
[92847f7]1322 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1323 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
[113d785]1324 return resize( oaddr, size ); // duplicate special case checks
[cfbc703d]1325 } // if
1326
[92aca37]1327 #ifdef __STATISTICS__
1328 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
1329 #endif // __STATISTICS__
1330
[dd23e66]1331 // change size, DO NOT preserve STICKY PROPERTIES.
[cfbc703d]1332 free( oaddr );
[dd23e66]1333 return memalignNoStats( nalign, size ); // create new aligned area
[cfbc703d]1334} // resize
1335
1336
1337void * realloc( void * oaddr, size_t nalign, size_t size ) {
[709b812]1338 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1339 if ( unlikely( size == 0 ) ) { // special cases
1340 #ifdef __STATISTICS__
1341 __atomic_add_fetch( &realloc_zero_calls, 1, __ATOMIC_SEQ_CST );
1342 #endif // __STATISTICS__
1343 free( oaddr );
1344 return 0p;
1345 } // if
1346
[c1f38e6c]1347 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
[cfbc703d]1348 #ifdef __CFA_DEBUG__
[709b812]1349 else checkAlign( nalign ); // check alignment
[cfbc703d]1350 #endif // __CFA_DEBUG__
1351
[c86f587]1352 if ( unlikely( oaddr == 0p ) ) {
1353 #ifdef __STATISTICS__
1354 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
1355 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
1356 #endif // __STATISTICS__
1357 return memalignNoStats( nalign, size );
1358 } // if
1359
[92847f7]1360 // Attempt to reuse existing alignment.
1361 HeapManager.Storage.Header * header = headerAddr( oaddr );
1362 bool isFakeHeader = header->kind.fake.alignment & 1; // old fake header ?
1363 size_t oalign;
1364 if ( isFakeHeader ) {
1365 oalign = header->kind.fake.alignment & -2; // old alignment
1366 if ( (uintptr_t)oaddr % nalign == 0 // lucky match ?
1367 && ( oalign <= nalign // going down
1368 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
1369 ) {
[03b87140]1370 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
[92847f7]1371 return realloc( oaddr, size ); // duplicate alignment and special case checks
1372 } // if
1373 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1374 && nalign == libAlign() ) // new alignment also on libAlign => no fake header needed
1375 return realloc( oaddr, size ); // duplicate alignment and special case checks
[cfbc703d]1376
[1e034d9]1377 #ifdef __STATISTICS__
[cfbc703d]1378 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[95eb7cf]1379 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1380 #endif // __STATISTICS__
1381
[92847f7]1382 HeapManager.FreeHeader * freeElem;
1383 size_t bsize;
1384 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
1385
1386 // change size and copy old content to new storage
1387
[dd23e66]1388 size_t osize = header->kind.real.size; // old allocation size
[92847f7]1389 bool ozfill = (header->kind.real.blockSize & 2); // old allocation zero filled
[dd23e66]1390
1391 void * naddr = memalignNoStats( nalign, size ); // create new aligned area
[95eb7cf]1392
[1e034d9]1393 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[47dd0d2]1394 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[1e034d9]1395 free( oaddr );
[d5d3a90]1396
1397 if ( unlikely( ozfill ) ) { // previous request zero fill ?
1398 header->kind.real.blockSize |= 2; // mark new request as zero filled
1399 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]1400 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1401 } // if
1402 } // if
[1e034d9]1403 return naddr;
[95eb7cf]1404} // realloc
1405
1406
[c4f68dc]1407// Local Variables: //
1408// tab-width: 4 //
[f8cd310]1409// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1410// End: //
Note: See TracBrowser for help on using the repository browser.