source: libcfa/src/heap.cfa @ ca4f2b2

Last change on this file since ca4f2b2 was feb999f, checked in by Peter A. Buhr <pabuhr@…>, 7 months ago

formatting, change free null statistic to also count malloc(0), remove spurious union/struct in header, remove spurious CALIGN after attribute fix, update the PROLOG macro

  • Property mode set to 100644
File size: 69.3 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
[92aca37]7// heap.cfa --
[73abe95]8//
[c4f68dc]9// Author           : Peter A. Buhr
10// Created On       : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[feb999f]12// Last Modified On : Sun Apr  7 21:54:29 2024
13// Update Count     : 1644
[73abe95]14//
[c4f68dc]15
[116a2ea]16#include <stdio.h>
[1e034d9]17#include <string.h>                                                                             // memset, memcpy
[1076d05]18#include <limits.h>                                                                             // ULONG_MAX
[31a5f418]19#include <errno.h>                                                                              // errno, ENOMEM, EINVAL
[8ee54963]20#include <unistd.h>                                                                             // STDERR_FILENO, sbrk, sysconf, write
[c4f68dc]21#include <sys/mman.h>                                                                   // mmap, munmap
[116a2ea]22extern "C" {
[31a5f418]23#include <sys/sysinfo.h>                                                                // get_nprocs
[116a2ea]24} // extern "C"
[c4f68dc]25
[8ee54963]26#include "heap.hfa"
[92aca37]27#include "bits/align.hfa"                                                               // libAlign
[bcb14b5]28#include "bits/defs.hfa"                                                                // likely, unlikely
[be10079]29#include "concurrency/kernel/fwd.hfa"                                   // disable_interrupts, enable_interrupts
[73abe95]30#include "startup.hfa"                                                                  // STARTUP_PRIORITY_MEMORY
[116a2ea]31#include "math.hfa"                                                                             // ceiling, min
[7cfef0d]32#include "bitmanip.hfa"                                                                 // is_pow2, ceiling2
[c4f68dc]33
[116a2ea]34// supported mallopt options
35#ifndef M_MMAP_THRESHOLD
36#define M_MMAP_THRESHOLD (-1)
37#endif // M_MMAP_THRESHOLD
38
39#ifndef M_TOP_PAD
40#define M_TOP_PAD (-2)
41#endif // M_TOP_PAD
42
43#define FASTLOOKUP                                                                              // use O(1) table lookup from allocation size to bucket size
44#define OWNERSHIP                                                                               // return freed memory to owner thread
[7a2057a]45#define RETURNSPIN                                                                              // toggle spinlock / lockfree queue
46#if ! defined( OWNERSHIP ) && defined( RETURNSPIN )
47#warning "RETURNSPIN is ignored without OWNERSHIP; suggest commenting out RETURNSPIN"
48#endif // ! OWNERSHIP && RETURNSPIN
[116a2ea]49
50#define CACHE_ALIGN 64
51#define CALIGN __attribute__(( aligned(CACHE_ALIGN) ))
52
53#define TLSMODEL __attribute__(( tls_model("initial-exec") ))
54
[1e7a765]55#define __STATISTICS__
[116a2ea]56
57enum {
58        // The default extension heap amount in units of bytes. When the current heap reaches the brk address, the brk
59        // address is extended by the extension amount.
60        __CFA_DEFAULT_HEAP_EXPANSION__ = 10 * 1024 * 1024,
61
62        // The mmap crossover point during allocation. Allocations less than this amount are allocated from buckets; values
63        // greater than or equal to this value are mmap from the operating system.
64        __CFA_DEFAULT_MMAP_START__ = 512 * 1024 + 1,
65
66        // The default unfreed storage amount in units of bytes. When the uC++ program ends it subtracts this amount from
67        // the malloc/free counter to adjust for storage the program does not free.
68        __CFA_DEFAULT_HEAP_UNFREED__ = 0
69}; // enum
70
71
72//####################### Heap Trace/Print ####################
[31a5f418]73
74
[93c2e0a]75static bool traceHeap = false;
[d46ed6e]76
[032234bd]77inline bool traceHeap() libcfa_public { return traceHeap; }
[d46ed6e]78
[032234bd]79bool traceHeapOn() libcfa_public {
[93c2e0a]80        bool temp = traceHeap;
[d46ed6e]81        traceHeap = true;
82        return temp;
83} // traceHeapOn
84
[032234bd]85bool traceHeapOff() libcfa_public {
[93c2e0a]86        bool temp = traceHeap;
[d46ed6e]87        traceHeap = false;
88        return temp;
89} // traceHeapOff
90
[032234bd]91bool traceHeapTerm() libcfa_public { return false; }
[baf608a]92
[d46ed6e]93
[95eb7cf]94static bool prtFree = false;
[d46ed6e]95
[116a2ea]96bool prtFree() {
[95eb7cf]97        return prtFree;
98} // prtFree
[5d4fa18]99
[116a2ea]100bool prtFreeOn() {
[95eb7cf]101        bool temp = prtFree;
102        prtFree = true;
[5d4fa18]103        return temp;
[95eb7cf]104} // prtFreeOn
[5d4fa18]105
[116a2ea]106bool prtFreeOff() {
[95eb7cf]107        bool temp = prtFree;
108        prtFree = false;
[5d4fa18]109        return temp;
[95eb7cf]110} // prtFreeOff
[5d4fa18]111
112
[7a2057a]113//######################### Helpers #########################
114
115
[feb999f]116// CFA generic Bsearchl does not inline, so substitute with hand-coded binary-search.
[7a2057a]117inline __attribute__((always_inline))
118static size_t Bsearchl( unsigned int key, const unsigned int vals[], size_t dim ) {
119        size_t l = 0, m, h = dim;
120        while ( l < h ) {
121                m = (l + h) / 2;
122                if ( (unsigned int &)(vals[m]) < key ) {                // cast away const
123                        l = m + 1;
124                } else {
125                        h = m;
126                } // if
127        } // while
128        return l;
129} // Bsearchl
[1e034d9]130
[dd23e66]131
[116a2ea]132// pause to prevent excess processor bus usage
133#if defined( __i386 ) || defined( __x86_64 )
134        #define Pause() __asm__ __volatile__ ( "pause" : : : )
135#elif defined(__ARM_ARCH)
136        #define Pause() __asm__ __volatile__ ( "YIELD" : : : )
137#else
138        #error unsupported architecture
139#endif
140
[8ee54963]141typedef volatile uintptr_t SpinLock_t;
[116a2ea]142
143static inline __attribute__((always_inline)) void lock( volatile SpinLock_t & slock ) {
144        enum { SPIN_START = 4, SPIN_END = 64 * 1024, };
145        unsigned int spin = SPIN_START;
146
147        for ( unsigned int i = 1;; i += 1 ) {
[8ee54963]148          if ( slock == 0 && __atomic_test_and_set( &slock, __ATOMIC_ACQUIRE ) == 0 ) break; // Fence
[116a2ea]149                for ( volatile unsigned int s = 0; s < spin; s += 1 ) Pause(); // exponential spin
150                spin += spin;                                                                   // powers of 2
151                //if ( i % 64 == 0 ) spin += spin;                              // slowly increase by powers of 2
152                if ( spin > SPIN_END ) spin = SPIN_END;                 // cap spinning
153        } // for
154} // spin_lock
155
156static inline __attribute__((always_inline)) void unlock( volatile SpinLock_t & slock ) {
[8ee54963]157        __atomic_clear( &slock, __ATOMIC_RELEASE );                     // Fence
[116a2ea]158} // spin_unlock
[e723100]159
160
[433905a]161//####################### Heap Statistics ####################
[d46ed6e]162
163
[433905a]164#ifdef __STATISTICS__
165enum { CntTriples = 12 };                                                               // number of counter triples
166enum { MALLOC, AALLOC, CALLOC, MEMALIGN, AMEMALIGN, CMEMALIGN, RESIZE, REALLOC, FREE };
[bcb14b5]167
[433905a]168struct StatsOverlay {                                                                   // overlay for iteration
169        unsigned int calls, calls_0;
170        unsigned long long int request, alloc;
171};
[d46ed6e]172
[433905a]173// Heap statistics counters.
174union HeapStatistics {
175        struct {                                                                                        // minimum qualification
176                unsigned int malloc_calls, malloc_0_calls;
177                unsigned long long int malloc_storage_request, malloc_storage_alloc;
178                unsigned int aalloc_calls, aalloc_0_calls;
179                unsigned long long int aalloc_storage_request, aalloc_storage_alloc;
180                unsigned int calloc_calls, calloc_0_calls;
181                unsigned long long int calloc_storage_request, calloc_storage_alloc;
182                unsigned int memalign_calls, memalign_0_calls;
183                unsigned long long int memalign_storage_request, memalign_storage_alloc;
184                unsigned int amemalign_calls, amemalign_0_calls;
185                unsigned long long int amemalign_storage_request, amemalign_storage_alloc;
186                unsigned int cmemalign_calls, cmemalign_0_calls;
187                unsigned long long int cmemalign_storage_request, cmemalign_storage_alloc;
188                unsigned int resize_calls, resize_0_calls;
189                unsigned long long int resize_storage_request, resize_storage_alloc;
190                unsigned int realloc_calls, realloc_0_calls;
191                unsigned long long int realloc_storage_request, realloc_storage_alloc;
[feb999f]192                unsigned int free_calls, free_null_0_calls;
[433905a]193                unsigned long long int free_storage_request, free_storage_alloc;
[116a2ea]194                unsigned int return_pulls, return_pushes;
195                unsigned long long int return_storage_request, return_storage_alloc;
[433905a]196                unsigned int mmap_calls, mmap_0_calls;                  // no zero calls
197                unsigned long long int mmap_storage_request, mmap_storage_alloc;
198                unsigned int munmap_calls, munmap_0_calls;              // no zero calls
199                unsigned long long int munmap_storage_request, munmap_storage_alloc;
200        };
201        struct StatsOverlay counters[CntTriples];                       // overlay for iteration
202}; // HeapStatistics
[1e034d9]203
[433905a]204static_assert( sizeof(HeapStatistics) == CntTriples * sizeof(StatsOverlay),
[116a2ea]205                           "Heap statistics counter-triplets does not match with array size" );
[433905a]206
207static void HeapStatisticsCtor( HeapStatistics & stats ) {
208        memset( &stats, '\0', sizeof(stats) );                          // very fast
209        // for ( unsigned int i = 0; i < CntTriples; i += 1 ) {
210        //      stats.counters[i].calls = stats.counters[i].calls_0 = stats.counters[i].request = stats.counters[i].alloc = 0;
211        // } // for
212} // HeapStatisticsCtor
213
214static HeapStatistics & ?+=?( HeapStatistics & lhs, const HeapStatistics & rhs ) {
215        for ( unsigned int i = 0; i < CntTriples; i += 1 ) {
216                lhs.counters[i].calls += rhs.counters[i].calls;
217                lhs.counters[i].calls_0 += rhs.counters[i].calls_0;
218                lhs.counters[i].request += rhs.counters[i].request;
219                lhs.counters[i].alloc += rhs.counters[i].alloc;
220        } // for
221        return lhs;
222} // ?+=?
223#endif // __STATISTICS__
[e723100]224
225
226// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
[31a5f418]227// Break recursion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]228enum { NoBucketSizes = 91 };                                                    // number of buckets sizes
[d46ed6e]229
[31a5f418]230struct Heap {
[c4f68dc]231        struct Storage {
[bcb14b5]232                struct Header {                                                                 // header
[c4f68dc]233                        union Kind {
[feb999f]234                                struct RealHeader {                                             // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[c4f68dc]235                                        union {
[feb999f]236                                                // 2nd low-order bit => zero filled, 3rd low-order bit => mmapped
237                                                // FreeHeader * home;                   // allocated block points back to home locations (must overlay alignment)
238                                                void * home;                                    // allocated block points back to home locations (must overlay alignment)
239                                                size_t blockSize;                               // size for munmap (must overlay alignment)
240                                                Storage * next;                                 // freed block points to next freed block of same size
[c4f68dc]241                                        };
[feb999f]242                                        size_t size;                                            // allocation size in bytes
[93c2e0a]243                                } real; // RealHeader
[9c438546]244
[c4f68dc]245                                struct FakeHeader {
[31a5f418]246                                        uintptr_t alignment;                            // 1st low-order bit => fake header & alignment
247                                        uintptr_t offset;
[93c2e0a]248                                } fake; // FakeHeader
249                        } kind; // Kind
[bcb14b5]250                } header; // Header
[31a5f418]251
[95eb7cf]252                char pad[libAlign() - sizeof( Header )];
[bcb14b5]253                char data[0];                                                                   // storage
[c4f68dc]254        }; // Storage
255
[31a5f418]256        static_assert( libAlign() >= sizeof( Storage ), "minimum alignment < sizeof( Storage )" );
[c4f68dc]257
[8ee54963]258        struct CALIGN FreeHeader {
[116a2ea]259                #ifdef OWNERSHIP
260                #ifdef RETURNSPIN
261                SpinLock_t returnLock;
262                #endif // RETURNSPIN
263                Storage * returnList;                                                   // other thread return list
264                #endif // OWNERSHIP
[7a2057a]265
[116a2ea]266                Storage * freeList;                                                             // thread free list
267                Heap * homeManager;                                                             // heap owner (free storage to bucket, from bucket to heap)
[feb999f]268                size_t blockSize;                                                               // size of allocations on this list
[116a2ea]269        }; // FreeHeader
[c4f68dc]270
271        FreeHeader freeLists[NoBucketSizes];                            // buckets for different allocation sizes
[116a2ea]272        void * heapBuffer;                                                                      // start of free storage in buffer
273        size_t heapReserve;                                                                     // amount of remaining free storage in buffer
[c4f68dc]274
[116a2ea]275        #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
276        Heap * nextHeapManager;                                                         // intrusive link of existing heaps; traversed to collect statistics or check unfreed storage
277        #endif // __STATISTICS__ || __CFA_DEBUG__
278        Heap * nextFreeHeapManager;                                                     // intrusive link of free heaps from terminated threads; reused by new threads
279
280        #ifdef __CFA_DEBUG__
[8ee54963]281        ptrdiff_t allocUnfreed;                                                         // running total of allocations minus frees; can be negative
[116a2ea]282        #endif // __CFA_DEBUG__
283
284        #ifdef __STATISTICS__
285        HeapStatistics stats;                                                           // local statistic table for this heap
286        #endif // __STATISTICS__
[31a5f418]287}; // Heap
[c4f68dc]288
[116a2ea]289
290struct HeapMaster {
291        SpinLock_t extLock;                                                                     // protects allocation-buffer extension
292        SpinLock_t mgrLock;                                                                     // protects freeHeapManagersList, heapManagersList, heapManagersStorage, heapManagersStorageEnd
293
294        void * heapBegin;                                                                       // start of heap
295        void * heapEnd;                                                                         // logical end of heap
296        size_t heapRemaining;                                                           // amount of storage not allocated in the current chunk
297        size_t pageSize;                                                                        // architecture pagesize
298        size_t heapExpand;                                                                      // sbrk advance
299        size_t mmapStart;                                                                       // cross over point for mmap
300        unsigned int maxBucketsUsed;                                            // maximum number of buckets in use
301
302        Heap * heapManagersList;                                                        // heap-list head
303        Heap * freeHeapManagersList;                                            // free-list head
304
305        // Heap superblocks are not linked; heaps in superblocks are linked via intrusive links.
306        Heap * heapManagersStorage;                                                     // next heap to use in heap superblock
307        Heap * heapManagersStorageEnd;                                          // logical heap outside of superblock's end
308
309        #ifdef __STATISTICS__
310        HeapStatistics stats;                                                           // global stats for thread-local heaps to add there counters when exiting
311        unsigned long int threads_started, threads_exited;      // counts threads that have started and exited
312        unsigned long int reused_heap, new_heap;                        // counts reusability of heaps
313        unsigned int sbrk_calls;
314        unsigned long long int sbrk_storage;
315        int stats_fd;
316        #endif // __STATISTICS__
317}; // HeapMaster
[5d4fa18]318
[e723100]319
[31a5f418]320#ifdef FASTLOOKUP
[116a2ea]321enum { LookupSizes = 65_536 + sizeof(Heap.Storage) };   // number of fast lookup sizes
[31a5f418]322static unsigned char lookup[LookupSizes];                               // O(1) lookup for small sizes
323#endif // FASTLOOKUP
324
[116a2ea]325static volatile bool heapMasterBootFlag = false;                // trigger for first heap
326static HeapMaster heapMaster @= {};                                             // program global
327
328static void heapMasterCtor();
329static void heapMasterDtor();
330static Heap * getHeap();
[31a5f418]331
[5d4fa18]332
[c1f38e6c]333// Size of array must harmonize with NoBucketSizes and individual bucket sizes must be multiple of 16.
[d5d3a90]334// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
335// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
[e723100]336static const unsigned int bucketSizes[] @= {                    // different bucket sizes
[31a5f418]337        16 + sizeof(Heap.Storage), 32 + sizeof(Heap.Storage), 48 + sizeof(Heap.Storage), 64 + sizeof(Heap.Storage), // 4
338        96 + sizeof(Heap.Storage), 112 + sizeof(Heap.Storage), 128 + sizeof(Heap.Storage), // 3
339        160, 192, 224, 256 + sizeof(Heap.Storage), // 4
340        320, 384, 448, 512 + sizeof(Heap.Storage), // 4
341        640, 768, 896, 1_024 + sizeof(Heap.Storage), // 4
342        1_536, 2_048 + sizeof(Heap.Storage), // 2
343        2_560, 3_072, 3_584, 4_096 + sizeof(Heap.Storage), // 4
344        6_144, 8_192 + sizeof(Heap.Storage), // 2
345        9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(Heap.Storage), // 8
346        18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(Heap.Storage), // 8
347        36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(Heap.Storage), // 8
348        73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(Heap.Storage), // 8
349        147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(Heap.Storage), // 8
350        294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(Heap.Storage), // 8
351        655_360, 786_432, 917_504, 1_048_576 + sizeof(Heap.Storage), // 4
352        1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(Heap.Storage), // 8
353        2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(Heap.Storage), // 4
[5d4fa18]354};
[e723100]355
[c1f38e6c]356static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0] ), "size of bucket array wrong" );
[e723100]357
[5d4fa18]358
[116a2ea]359// extern visibility, used by runtime kernel
360libcfa_public size_t __page_size;                                               // architecture pagesize
361libcfa_public int __map_prot;                                                   // common mmap/mprotect protection
[c4f68dc]362
[19e5d65d]363
[116a2ea]364// Thread-local storage is allocated lazily when the storage is accessed.
365static __thread size_t PAD1 CALIGN TLSMODEL __attribute__(( unused )); // protect false sharing
[8ee54963]366static __thread Heap * heapManager CALIGN TLSMODEL;
[feb999f]367static __thread bool heapManagerBootFlag CALIGN TLSMODEL = false;
[116a2ea]368static __thread size_t PAD2 CALIGN TLSMODEL __attribute__(( unused )); // protect further false sharing
[19e5d65d]369
[31a5f418]370
[116a2ea]371// declare helper functions for HeapMaster
372void noMemory();                                                                                // forward, called by "builtin_new" when malloc returns 0
373
374
375void heapMasterCtor() with( heapMaster ) {
376        // Singleton pattern to initialize heap master
377
378        verify( bucketSizes[0] == (16 + sizeof(Heap.Storage)) );
379
380        __page_size = sysconf( _SC_PAGESIZE );
381        __map_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
382
[7a2057a]383        extLock = 0;
384        mgrLock = 0;
[116a2ea]385
386        char * end = (char *)sbrk( 0 );
387        heapBegin = heapEnd = sbrk( (char *)ceiling2( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment
388        heapRemaining = 0;
389        heapExpand = malloc_expansion();
390        mmapStart = malloc_mmap_start();
391
392        // find the closest bucket size less than or equal to the mmapStart size
393        maxBucketsUsed = Bsearchl( mmapStart, bucketSizes, NoBucketSizes ); // binary search
394
395        verify( (mmapStart >= pageSize) && (bucketSizes[NoBucketSizes - 1] >= mmapStart) );
396        verify( maxBucketsUsed < NoBucketSizes );                       // subscript failure ?
397        verify( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
398
399        heapManagersList = 0p;
400        freeHeapManagersList = 0p;
401
402        heapManagersStorage = 0p;
403        heapManagersStorageEnd = 0p;
404
405        #ifdef __STATISTICS__
406        HeapStatisticsCtor( stats );                                            // clear statistic counters
407        threads_started = threads_exited = 0;
408        reused_heap = new_heap = 0;
409        sbrk_calls = sbrk_storage = 0;
410        stats_fd = STDERR_FILENO;
411        #endif // __STATISTICS__
412
413        #ifdef FASTLOOKUP
414        for ( unsigned int i = 0, idx = 0; i < LookupSizes; i += 1 ) {
415                if ( i > bucketSizes[idx] ) idx += 1;
416                lookup[i] = idx;
417                verify( i <= bucketSizes[idx] );
418                verify( (i <= 32 && idx == 0) || (i > bucketSizes[idx - 1]) );
419        } // for
420        #endif // FASTLOOKUP
421
422        heapMasterBootFlag = true;
423} // heapMasterCtor
424
425
[7671c6d]426#define NO_MEMORY_MSG "**** Error **** insufficient heap memory available to allocate %zd new bytes."
[116a2ea]427
428Heap * getHeap() with( heapMaster ) {
429        Heap * heap;
430        if ( freeHeapManagersList ) {                                           // free heap for reused ?
431                heap = freeHeapManagersList;
432                freeHeapManagersList = heap->nextFreeHeapManager;
433
434                #ifdef __STATISTICS__
435                reused_heap += 1;
436                #endif // __STATISTICS__
437        } else {                                                                                        // free heap not found, create new
438                // Heap size is about 12K, FreeHeader (128 bytes because of cache alignment) * NoBucketSizes (91) => 128 heaps *
439                // 12K ~= 120K byte superblock.  Where 128-heap superblock handles a medium sized multi-processor server.
440                size_t remaining = heapManagersStorageEnd - heapManagersStorage; // remaining free heaps in superblock
[8ee54963]441                if ( ! heapManagersStorage || remaining == 0 ) {
[116a2ea]442                        // Each block of heaps is a multiple of the number of cores on the computer.
443                        int HeapDim = get_nprocs();                                     // get_nprocs_conf does not work
444                        size_t size = HeapDim * sizeof( Heap );
445
446                        heapManagersStorage = (Heap *)mmap( 0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 );
447                        if ( unlikely( heapManagersStorage == (Heap *)MAP_FAILED ) ) { // failed ?
448                                if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, size ); // no memory
449                                // Do not call strerror( errno ) as it may call malloc.
[7671c6d]450                                abort( "**** Error **** attempt to allocate block of heaps of size %zu bytes and mmap failed with errno %d.", size, errno );
[116a2ea]451                        } // if
452                        heapManagersStorageEnd = &heapManagersStorage[HeapDim]; // outside array
453                } // if
454
455                heap = heapManagersStorage;
456                heapManagersStorage = heapManagersStorage + 1; // bump next heap
457
458                #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
459                heap->nextHeapManager = heapManagersList;
460                #endif // __STATISTICS__ || __CFA_DEBUG__
461                heapManagersList = heap;
462
463                #ifdef __STATISTICS__
464                new_heap += 1;
465                #endif // __STATISTICS__
466
467                with( *heap ) {
468                        for ( unsigned int j = 0; j < NoBucketSizes; j += 1 ) { // initialize free lists
469                                #ifdef OWNERSHIP
470                                #ifdef RETURNSPIN
[7a2057a]471                                freeLists[j].returnLock = 0;
[116a2ea]472                                freeLists[j].returnList = 0p;
[7a2057a]473                                #endif // RETURNSPIN
[116a2ea]474                                #endif // OWNERSHIP
[7a2057a]475
[116a2ea]476                                freeLists[j].freeList = 0p;
477                                freeLists[j].homeManager = heap;
478                                freeLists[j].blockSize = bucketSizes[j];
479                        } // for
[88ac843e]480
[116a2ea]481                        heapBuffer = 0p;
482                        heapReserve = 0;
483                        nextFreeHeapManager = 0p;
484                        #ifdef __CFA_DEBUG__
485                        allocUnfreed = 0;
486                        #endif // __CFA_DEBUG__
[07b59ec]487                        heapManagerBootFlag = true;
[116a2ea]488                } // with
[433905a]489        } // if
[5951956]490
[116a2ea]491        return heap;
492} // getHeap
493
494
495void heapManagerCtor() libcfa_public {
496        if ( unlikely( ! heapMasterBootFlag ) ) heapMasterCtor();
497
[0bdfcc3]498        lock( heapMaster.mgrLock );                                                     // protect heapMaster counters
[116a2ea]499
[07b59ec]500        assert( ! heapManagerBootFlag );
501
[116a2ea]502        // get storage for heap manager
503
504        heapManager = getHeap();
505
506        #ifdef __STATISTICS__
507        HeapStatisticsCtor( heapManager->stats );                       // heap local
508        heapMaster.threads_started += 1;
509        #endif // __STATISTICS__
510
511        unlock( heapMaster.mgrLock );
512} // heapManagerCtor
513
514
515void heapManagerDtor() libcfa_public {
[07b59ec]516  if ( unlikely( ! heapManagerBootFlag ) ) return;              // thread never used ?
517
[116a2ea]518        lock( heapMaster.mgrLock );
519
520        // place heap on list of free heaps for reusability
521        heapManager->nextFreeHeapManager = heapMaster.freeHeapManagersList;
522        heapMaster.freeHeapManagersList = heapManager;
523
524        #ifdef __STATISTICS__
[a47fe52]525        heapMaster.stats += heapManager->stats;                         // retain this heap's statistics
[116a2ea]526        heapMaster.threads_exited += 1;
527        #endif // __STATISTICS__
528
529        // Do not set heapManager to NULL because it is used after Cforall is shutdown but before the program shuts down.
530
[07b59ec]531        heapManagerBootFlag = false;
[116a2ea]532        unlock( heapMaster.mgrLock );
533} // heapManagerDtor
534
535
536//####################### Memory Allocation Routines Helpers ####################
537
[31a5f418]538
[433905a]539extern int cfa_main_returned;                                                   // from interpose.cfa
540extern "C" {
[07b59ec]541        void memory_startup( void ) {                                           // singleton => called once at start of program
[116a2ea]542                if ( ! heapMasterBootFlag ) heapManagerCtor();  // sanity check
543        } // memory_startup
544
545        void memory_shutdown( void ) {
546                heapManagerDtor();
547        } // memory_shutdown
548
[433905a]549        void heapAppStart() {                                                           // called by __cfaabi_appready_startup
[116a2ea]550                verify( heapManager );
551                #ifdef __CFA_DEBUG__
552                heapManager->allocUnfreed = 0;                                  // clear prior allocation counts
553                #endif // __CFA_DEBUG__
554
555                #ifdef __STATISTICS__
556                HeapStatisticsCtor( heapManager->stats );               // clear prior statistic counters
557                #endif // __STATISTICS__
[433905a]558        } // heapAppStart
[31a5f418]559
[433905a]560        void heapAppStop() {                                                            // called by __cfaabi_appready_startdown
[116a2ea]561                fclose( stdin ); fclose( stdout );                              // free buffer storage
562          if ( ! cfa_main_returned ) return;                            // do not check unfreed storage if exit called
563
[a47fe52]564                #ifdef __STATISTICS__
565                if ( getenv( "CFA_MALLOC_STATS" ) ) {                   // check for external printing
566                        malloc_stats();
567                } // if
568                #endif // __STATISTICS__
569
[116a2ea]570                #ifdef __CFA_DEBUG__
571                // allocUnfreed is set to 0 when a heap is created and it accumulates any unfreed storage during its multiple thread
572                // usages.  At the end, add up each heap allocUnfreed value across all heaps to get the total unfreed storage.
[8ee54963]573                ptrdiff_t allocUnfreed = 0;
[116a2ea]574                for ( Heap * heap = heapMaster.heapManagersList; heap; heap = heap->nextHeapManager ) {
575                        allocUnfreed += heap->allocUnfreed;
576                } // for
577
578                allocUnfreed -= malloc_unfreed();                               // subtract any user specified unfreed storage
579                if ( allocUnfreed > 0 ) {
580                        // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
581                        char helpText[512];
582                        __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[8ee54963]583                                                                                "CFA warning (UNIX pid:%ld) : program terminating with %td(%#tx) bytes of storage allocated but not freed.\n"
[116a2ea]584                                                                                "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
585                                                                                (long int)getpid(), allocUnfreed, allocUnfreed ); // always print the UNIX pid
586                } // if
587                #endif // __CFA_DEBUG__
[433905a]588        } // heapAppStop
589} // extern "C"
[31a5f418]590
591
[433905a]592#ifdef __STATISTICS__
[31a5f418]593#define prtFmt \
594        "\nHeap statistics: (storage request / allocation)\n" \
595        "  malloc    >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
596        "  aalloc    >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
597        "  calloc    >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
598        "  memalign  >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
599        "  amemalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
600        "  cmemalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
601        "  resize    >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
602        "  realloc   >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
[feb999f]603        "  free      !null calls %'u; null/0 calls %'u; storage %'llu / %'llu bytes\n" \
[116a2ea]604        "  return    pulls %'u; pushes %'u; storage %'llu / %'llu bytes\n" \
605        "  sbrk      calls %'u; storage %'llu bytes\n" \
606        "  mmap      calls %'u; storage %'llu / %'llu bytes\n" \
607        "  munmap    calls %'u; storage %'llu / %'llu bytes\n" \
608        "  threads   started %'lu; exited %'lu\n" \
609        "  heaps     new %'lu; reused %'lu\n"
[31a5f418]610
[c4f68dc]611// Use "write" because streams may be shutdown when calls are made.
[116a2ea]612static int printStats( HeapStatistics & stats ) with( heapMaster, stats ) {     // see malloc_stats
[31a5f418]613        char helpText[sizeof(prtFmt) + 1024];                           // space for message and values
[116a2ea]614        return __cfaabi_bits_print_buffer( stats_fd, helpText, sizeof(helpText), prtFmt,
615                        malloc_calls, malloc_0_calls, malloc_storage_request, malloc_storage_alloc,
616                        aalloc_calls, aalloc_0_calls, aalloc_storage_request, aalloc_storage_alloc,
617                        calloc_calls, calloc_0_calls, calloc_storage_request, calloc_storage_alloc,
618                        memalign_calls, memalign_0_calls, memalign_storage_request, memalign_storage_alloc,
619                        amemalign_calls, amemalign_0_calls, amemalign_storage_request, amemalign_storage_alloc,
620                        cmemalign_calls, cmemalign_0_calls, cmemalign_storage_request, cmemalign_storage_alloc,
621                        resize_calls, resize_0_calls, resize_storage_request, resize_storage_alloc,
622                        realloc_calls, realloc_0_calls, realloc_storage_request, realloc_storage_alloc,
[feb999f]623                        free_calls, free_null_0_calls, free_storage_request, free_storage_alloc,
[116a2ea]624                        return_pulls, return_pushes, return_storage_request, return_storage_alloc,
[31a5f418]625                        sbrk_calls, sbrk_storage,
[116a2ea]626                        mmap_calls, mmap_storage_request, mmap_storage_alloc,
627                        munmap_calls, munmap_storage_request, munmap_storage_alloc,
628                        threads_started, threads_exited,
629                        new_heap, reused_heap
[c4f68dc]630                );
[d46ed6e]631} // printStats
[c4f68dc]632
[31a5f418]633#define prtFmtXML \
634        "<malloc version=\"1\">\n" \
635        "<heap nr=\"0\">\n" \
636        "<sizes>\n" \
637        "</sizes>\n" \
638        "<total type=\"malloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
639        "<total type=\"aalloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
640        "<total type=\"calloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
641        "<total type=\"memalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
642        "<total type=\"amemalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
643        "<total type=\"cmemalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
644        "<total type=\"resize\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
645        "<total type=\"realloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[feb999f]646        "<total type=\"free\" !null=\"%'u;\" 0 null/0=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[116a2ea]647        "<total type=\"return\" pulls=\"%'u;\" 0 pushes=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[31a5f418]648        "<total type=\"sbrk\" count=\"%'u;\" size=\"%'llu\"/> bytes\n" \
649        "<total type=\"mmap\" count=\"%'u;\" size=\"%'llu / %'llu\" / > bytes\n" \
650        "<total type=\"munmap\" count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[116a2ea]651        "<total type=\"threads\" started=\"%'lu;\" exited=\"%'lu\"/>\n" \
652        "<total type=\"heaps\" new=\"%'lu;\" reused=\"%'lu\"/>\n" \
[31a5f418]653        "</malloc>"
654
[116a2ea]655static int printStatsXML( HeapStatistics & stats, FILE * stream ) with( heapMaster, stats ) { // see malloc_info
[31a5f418]656        char helpText[sizeof(prtFmtXML) + 1024];                        // space for message and values
657        return __cfaabi_bits_print_buffer( fileno( stream ), helpText, sizeof(helpText), prtFmtXML,
[116a2ea]658                        malloc_calls, malloc_0_calls, malloc_storage_request, malloc_storage_alloc,
659                        aalloc_calls, aalloc_0_calls, aalloc_storage_request, aalloc_storage_alloc,
660                        calloc_calls, calloc_0_calls, calloc_storage_request, calloc_storage_alloc,
661                        memalign_calls, memalign_0_calls, memalign_storage_request, memalign_storage_alloc,
662                        amemalign_calls, amemalign_0_calls, amemalign_storage_request, amemalign_storage_alloc,
663                        cmemalign_calls, cmemalign_0_calls, cmemalign_storage_request, cmemalign_storage_alloc,
664                        resize_calls, resize_0_calls, resize_storage_request, resize_storage_alloc,
665                        realloc_calls, realloc_0_calls, realloc_storage_request, realloc_storage_alloc,
[feb999f]666                        free_calls, free_null_0_calls, free_storage_request, free_storage_alloc,
[116a2ea]667                        return_pulls, return_pushes, return_storage_request, return_storage_alloc,
[31a5f418]668                        sbrk_calls, sbrk_storage,
[116a2ea]669                        mmap_calls, mmap_storage_request, mmap_storage_alloc,
670                    munmap_calls, munmap_storage_request, munmap_storage_alloc,
671                        threads_started, threads_exited,
672                        new_heap, reused_heap
[c4f68dc]673                );
[d46ed6e]674} // printStatsXML
[95eb7cf]675
[116a2ea]676static HeapStatistics & collectStats( HeapStatistics & stats ) with( heapMaster ) {
[1e7a765]677        lock( heapMaster.mgrLock );
[433905a]678
[116a2ea]679        stats += heapMaster.stats;
680        for ( Heap * heap = heapManagersList; heap; heap = heap->nextHeapManager ) {
681                stats += heap->stats;
682        } // for
[433905a]683
[1e7a765]684        unlock( heapMaster.mgrLock );
[116a2ea]685        return stats;
686} // collectStats
[c58ead7]687
688static inline void clearStats() {
[1e7a765]689        lock( heapMaster.mgrLock );
[c58ead7]690
691        // Zero the heap master and all active thread heaps.
692        HeapStatisticsCtor( heapMaster.stats );
693        for ( Heap * heap = heapMaster.heapManagersList; heap; heap = heap->nextHeapManager ) {
694                HeapStatisticsCtor( heap->stats );
695        } // for
696
[1e7a765]697        unlock( heapMaster.mgrLock );
[c58ead7]698} // clearStats
[116a2ea]699#endif // __STATISTICS__
[1e034d9]700
701
[116a2ea]702static bool setMmapStart( size_t value ) with( heapMaster ) { // true => mmapped, false => sbrk
[ad2dced]703  if ( value < __page_size || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]704        mmapStart = value;                                                                      // set global
705
706        // find the closest bucket size less than or equal to the mmapStart size
[116a2ea]707        maxBucketsUsed = Bsearchl( mmapStart, bucketSizes, NoBucketSizes ); // binary search
[7a2057a]708
[116a2ea]709        verify( maxBucketsUsed < NoBucketSizes );                       // subscript failure ?
710        verify( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]711        return true;
[95eb7cf]712} // setMmapStart
713
714
[cfbc703d]715// <-------+----------------------------------------------------> bsize (bucket size)
716// |header |addr
717//==================================================================================
718//                   align/offset |
719// <-----------------<------------+-----------------------------> bsize (bucket size)
720//                   |fake-header | addr
[19e5d65d]721#define HeaderAddr( addr ) ((Heap.Storage.Header *)( (char *)addr - sizeof(Heap.Storage) ))
722#define RealHeader( header ) ((Heap.Storage.Header *)((char *)header - header->kind.fake.offset))
[cfbc703d]723
724// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
725// |header |addr
726//==================================================================================
727//                   align/offset |
728// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
729//                   |fake-header |addr
[19e5d65d]730#define DataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
[cfbc703d]731
732
[116a2ea]733inline __attribute__((always_inline))
734static void checkAlign( size_t alignment ) {
[19e5d65d]735        if ( unlikely( alignment < libAlign() || ! is_pow2( alignment ) ) ) {
736                abort( "**** Error **** alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
[cfbc703d]737        } // if
738} // checkAlign
739
740
[116a2ea]741inline __attribute__((always_inline))
742static void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]743        if ( unlikely( check ) ) {                                                      // bad address ?
[19e5d65d]744                abort( "**** Error **** attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]745                           "Possible cause is duplicate free on same block or overwriting of memory.",
746                           name, addr );
[b6830d74]747        } // if
[c4f68dc]748} // checkHeader
749
[95eb7cf]750
[19e5d65d]751// Manipulate sticky bits stored in unused 3 low-order bits of an address.
752//   bit0 => alignment => fake header
753//   bit1 => zero filled (calloc)
754//   bit2 => mapped allocation versus sbrk
755#define StickyBits( header ) (((header)->kind.real.blockSize & 0x7))
756#define ClearStickyBits( addr ) (typeof(addr))((uintptr_t)(addr) & ~7)
757#define MarkAlignmentBit( align ) ((align) | 1)
758#define AlignmentBit( header ) ((((header)->kind.fake.alignment) & 1))
759#define ClearAlignmentBit( header ) (((header)->kind.fake.alignment) & ~1)
760#define ZeroFillBit( header ) ((((header)->kind.real.blockSize) & 2))
761#define ClearZeroFillBit( header ) ((((header)->kind.real.blockSize) &= ~2))
762#define MarkZeroFilledBit( header ) ((header)->kind.real.blockSize |= 2)
763#define MmappedBit( header ) ((((header)->kind.real.blockSize) & 4))
764#define MarkMmappedBit( size ) ((size) | 4)
765
766
[116a2ea]767inline __attribute__((always_inline))
768static void fakeHeader( Heap.Storage.Header *& header, size_t & alignment ) {
[19e5d65d]769        if ( unlikely( AlignmentBit( header ) ) ) {                     // fake header ?
770                alignment = ClearAlignmentBit( header );                // clear flag from value
[c4f68dc]771                #ifdef __CFA_DEBUG__
772                checkAlign( alignment );                                                // check alignment
773                #endif // __CFA_DEBUG__
[19e5d65d]774                header = RealHeader( header );                                  // backup from fake to real header
[d5d3a90]775        } else {
[c1f38e6c]776                alignment = libAlign();                                                 // => no fake header
[b6830d74]777        } // if
[c4f68dc]778} // fakeHeader
779
[95eb7cf]780
[116a2ea]781inline __attribute__((always_inline))
782static bool headers( const char name[] __attribute__(( unused )), void * addr, Heap.Storage.Header *& header,
783                                                        Heap.FreeHeader *& freeHead, size_t & size, size_t & alignment ) with( heapMaster, *heapManager ) {
[19e5d65d]784        header = HeaderAddr( addr );
[c4f68dc]785
786        #ifdef __CFA_DEBUG__
[31a5f418]787        checkHeader( header < (Heap.Storage.Header *)heapBegin, name, addr ); // bad low address ?
[c4f68dc]788        #endif // __CFA_DEBUG__
[b6830d74]789
[19e5d65d]790        if ( likely( ! StickyBits( header ) ) ) {                       // no sticky bits ?
791                freeHead = (Heap.FreeHeader *)(header->kind.real.home);
792                alignment = libAlign();
793        } else {
794                fakeHeader( header, alignment );
[feb999f]795                if ( unlikely( MmappedBit( header ) ) ) {               // mmapped storage ?
[433905a]796                        verify( addr < heapBegin || heapEnd < addr );
[19e5d65d]797                        size = ClearStickyBits( header->kind.real.blockSize ); // mmap size
[feb999f]798                        freeHead = 0p;                                                          // prevent uninitialized warning
[19e5d65d]799                        return true;
800                } // if
801
802                freeHead = (Heap.FreeHeader *)(ClearStickyBits( header->kind.real.home ));
803        } // if
804        size = freeHead->blockSize;
805
[c4f68dc]806        #ifdef __CFA_DEBUG__
[31a5f418]807        checkHeader( header < (Heap.Storage.Header *)heapBegin || (Heap.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]808
[116a2ea]809        Heap * homeManager;
[433905a]810        if ( unlikely( freeHead == 0p || // freed and only free-list node => null link
811                                   // freed and link points at another free block not to a bucket in the bucket array.
[116a2ea]812                                   (homeManager = freeHead->homeManager, freeHead < &homeManager->freeLists[0] ||
813                                        &homeManager->freeLists[NoBucketSizes] <= freeHead ) ) ) {
[433905a]814                abort( "**** Error **** attempt to %s storage %p with corrupted header.\n"
815                           "Possible cause is duplicate free on same block or overwriting of header information.",
816                           name, addr );
817        } // if
[c4f68dc]818        #endif // __CFA_DEBUG__
[19e5d65d]819
[bcb14b5]820        return false;
[c4f68dc]821} // headers
822
823
[116a2ea]824static void * master_extend( size_t size ) with( heapMaster ) {
825        lock( extLock );
[19e5d65d]826
[b6830d74]827        ptrdiff_t rem = heapRemaining - size;
[a7662b8]828        if ( unlikely( rem < 0 ) ) {                                            // negative ?
[c4f68dc]829                // If the size requested is bigger than the current remaining storage, increase the size of the heap.
830
[116a2ea]831                size_t increase = ceiling2( size > heapExpand ? size : heapExpand, libAlign() );
832                if ( unlikely( sbrk( increase ) == (void *)-1 ) ) {     // failed, no memory ?
833                        unlock( extLock );
[0bdfcc3]834                        abort( NO_MEMORY_MSG, size );                           // give up
[92aca37]835                } // if
[7671c6d]836
837                // Make storage executable for thunks.
838                if ( mprotect( (char *)heapEnd + heapRemaining, increase, __map_prot ) ) {
839                        unlock( extLock );
840                        abort( "**** Error **** attempt to make heap storage executable for thunks and mprotect failed with errno %d.", errno );
841                } // if
842
[116a2ea]843                rem = heapRemaining + increase - size;
[19e5d65d]844
[bcb14b5]845                #ifdef __STATISTICS__
[c4f68dc]846                sbrk_calls += 1;
847                sbrk_storage += increase;
[bcb14b5]848                #endif // __STATISTICS__
[b6830d74]849        } // if
[c4f68dc]850
[31a5f418]851        Heap.Storage * block = (Heap.Storage *)heapEnd;
[b6830d74]852        heapRemaining = rem;
853        heapEnd = (char *)heapEnd + size;
[116a2ea]854
855        unlock( extLock );
856        return block;
857} // master_extend
858
859
860__attribute__(( noinline ))
861static void * manager_extend( size_t size ) with( *heapManager ) {
862        ptrdiff_t rem = heapReserve - size;
863
[a7662b8]864        if ( unlikely( rem < 0 ) ) {                                            // negative ?
[116a2ea]865                // If the size requested is bigger than the current remaining reserve, use the current reserve to populate
866                // smaller freeLists, and increase the reserve.
867
868                rem = heapReserve;                                                              // positive
869
[a7662b8]870                if ( (unsigned int)rem >= bucketSizes[0] ) {    // minimal size ? otherwise ignore
[116a2ea]871                        size_t bucket;
872                        #ifdef FASTLOOKUP
873                        if ( likely( rem < LookupSizes ) ) bucket = lookup[rem];
874                        #endif // FASTLOOKUP
875                                bucket = Bsearchl( rem, bucketSizes, heapMaster.maxBucketsUsed );
876                        verify( 0 <= bucket && bucket <= heapMaster.maxBucketsUsed );
877                        Heap.FreeHeader * freeHead = &(freeLists[bucket]);
878
[a7662b8]879                        // The remaining storage may not be bucket size, whereas all other allocations are. Round down to previous
[116a2ea]880                        // bucket size in this case.
881                        if ( unlikely( freeHead->blockSize > (size_t)rem ) ) freeHead -= 1;
882                        Heap.Storage * block = (Heap.Storage *)heapBuffer;
883
884                        block->header.kind.real.next = freeHead->freeList; // push on stack
885                        freeHead->freeList = block;
886                } // if
887
888                size_t increase = ceiling( size > ( heapMaster.heapExpand / 10 ) ? size : ( heapMaster.heapExpand / 10 ), libAlign() );
889                heapBuffer = master_extend( increase );
890                rem = increase - size;
891        } // if
892
893        Heap.Storage * block = (Heap.Storage *)heapBuffer;
894        heapReserve = rem;
895        heapBuffer = (char *)heapBuffer + size;
896
[b6830d74]897        return block;
[116a2ea]898} // manager_extend
899
900
901#ifdef __STATISTICS__
902#define STAT_NAME __counter
903#define STAT_PARM , unsigned int STAT_NAME
904#define STAT_ARG( name ) , name
[feb999f]905#define STAT_0_CNT( counter ) heapManager->stats.counters[counter].calls_0 += 1
[116a2ea]906#else
907#define STAT_NAME
908#define STAT_PARM
909#define STAT_ARG( name )
910#define STAT_0_CNT( counter )
911#endif // __STATISTICS__
912
[feb999f]913#define BOOT_HEAP_MANAGER \
914        if ( unlikely( ! heapMasterBootFlag ) ) { \
915                heapManagerCtor(); /* trigger for first heap */ \
916        } /* if */ \
917        verify( heapManager );
918
919#define __NONNULL_0_ALLOC__ /* Uncomment to return non-null address for malloc( 0 ). */
920#ifndef __NONNULL_0_ALLOC__
921#define __NULL_0_ALLOC__( counter, ... ) /* 0 byte allocation returns null pointer */ \
922        if ( unlikely( size == 0 ) ) { \
923                STAT_0_CNT( counter ); \
924                __VA_ARGS__; /* call routine, if specified */ \
925                return 0p; \
926        } /* if */
[07b59ec]927#else
[feb999f]928#define __NULL_0_ALLOC__( counter, ... )
[07b59ec]929#endif // __NONNULL_0_ALLOC__
930
[feb999f]931#ifdef __DEBUG__
932#define __OVERFLOW_MALLOC__( ... ) \
933        if ( unlikely( size > ULONG_MAX - sizeof(Heap.Storage) ) ) { /* error check */ \
934                __VA_ARGS__; /* call routine, if specified */ \
[116a2ea]935                return 0p; \
936        } /* if */
[feb999f]937#else
938#define __OVERFLOW_MALLOC__( ... )
939#endif // __DEBUG__
[116a2ea]940
[feb999f]941#define PROLOG( counter, ... ) \
942        BOOT_HEAP_MANAGER; \
943        __NULL_0_ALLOC__( counter, __VA_ARGS__ ) \
944        __OVERFLOW_MALLOC__( __VA_ARGS__ )
[c4f68dc]945
[116a2ea]946#define SCRUB_SIZE 1024lu
947// Do not use '\xfe' for scrubbing because dereferencing an address composed of it causes a SIGSEGV *without* a valid IP
948// pointer in the interrupt frame.
949#define SCRUB '\xff'
[c4f68dc]950
[116a2ea]951static void * doMalloc( size_t size STAT_PARM ) libcfa_nopreempt with( *heapManager ) {
952        PROLOG( STAT_NAME );
953
954        Heap.Storage * block;                                                           // pointer to new block of storage
[c4f68dc]955
[b6830d74]956        // Look up size in the size list.  Make sure the user request includes space for the header that must be allocated
957        // along with the block and is a multiple of the alignment size.
[31a5f418]958        size_t tsize = size + sizeof(Heap.Storage);
[19e5d65d]959
[116a2ea]960        #ifdef __STATISTICS__
[feb999f]961        #ifdef __NONNULL_0_ALLOC__
962        if ( unlikely( size == 0 ) )                                            // malloc( 0 ) ?
963                stats.counters[STAT_NAME].calls_0 += 1;
964        else
965        #endif // __NONNULL_0_ALLOC__
966                stats.counters[STAT_NAME].calls += 1;
[116a2ea]967        stats.counters[STAT_NAME].request += size;
968        #endif // __STATISTICS__
969
970        #ifdef __CFA_DEBUG__
971        allocUnfreed += size;
972        #endif // __CFA_DEBUG__
973
974        if ( likely( tsize < heapMaster.mmapStart ) ) {         // small size => sbrk
975                size_t bucket;
[e723100]976                #ifdef FASTLOOKUP
[116a2ea]977                if ( likely( tsize < LookupSizes ) ) bucket = lookup[tsize];
[e723100]978                else
979                #endif // FASTLOOKUP
[116a2ea]980                        bucket = Bsearchl( tsize, bucketSizes, heapMaster.maxBucketsUsed );
981                verify( 0 <= bucket && bucket <= heapMaster.maxBucketsUsed );
982                Heap.FreeHeader * freeHead = &freeLists[bucket];
983
984                verify( freeHead <= &freeLists[heapMaster.maxBucketsUsed] ); // subscripting error ?
985                verify( tsize <= freeHead->blockSize );                 // search failure ?
986
987                tsize = freeHead->blockSize;                                    // total space needed for request
988                #ifdef __STATISTICS__
989                stats.counters[STAT_NAME].alloc += tsize;
990                #endif // __STATISTICS__
[c4f68dc]991
[116a2ea]992                block = freeHead->freeList;                                             // remove node from stack
[95eb7cf]993                if ( unlikely( block == 0p ) ) {                                // no free block ?
[8ee54963]994                        // Freelist for this size is empty, so check return list (OWNERSHIP), or carve it out of the heap if there
[7a2057a]995                        // is enough left, or get some more heap storage and carve it off.
[116a2ea]996                        #ifdef OWNERSHIP
[7a2057a]997                        if ( unlikely( freeHead->returnList ) ) {       // race, get next time if lose race
998                                #ifdef RETURNSPIN
999                                lock( freeHead->returnLock );
1000                                block = freeHead->returnList;
1001                                freeHead->returnList = 0p;
1002                                unlock( freeHead->returnLock );
1003                                #else
1004                                block = __atomic_exchange_n( &freeHead->returnList, 0p, __ATOMIC_SEQ_CST );
1005                                #endif // RETURNSPIN
1006
1007                                verify( block );
1008                                #ifdef __STATISTICS__
1009                                stats.return_pulls += 1;
1010                                #endif // __STATISTICS__
1011
1012                                // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
[116a2ea]1013
[7a2057a]1014                                freeHead->freeList = block->header.kind.real.next; // merge returnList into freeHead
1015                        } else {
[116a2ea]1016                        #endif // OWNERSHIP
1017                                // Do not leave kernel thread as manager_extend accesses heapManager.
1018                                disable_interrupts();
1019                                block = (Heap.Storage *)manager_extend( tsize ); // mutual exclusion on call
1020                                enable_interrupts( false );
1021
1022                                // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1023
1024                                #ifdef __CFA_DEBUG__
[7a2057a]1025                                // Scrub new memory so subsequent uninitialized usages might fail. Only scrub the first SCRUB_SIZE bytes.
[116a2ea]1026                                memset( block->data, SCRUB, min( SCRUB_SIZE, tsize - sizeof(Heap.Storage) ) );
1027                                #endif // __CFA_DEBUG__
1028                        #ifdef OWNERSHIP
1029                        } // if
1030                        #endif // OWNERSHIP
[c4f68dc]1031                } else {
[116a2ea]1032                        // Memory is scrubbed in doFree.
1033                        freeHead->freeList = block->header.kind.real.next;
[c4f68dc]1034                } // if
1035
[116a2ea]1036                block->header.kind.real.home = freeHead;                // pointer back to free list of apropriate size
[bcb14b5]1037        } else {                                                                                        // large size => mmap
[ad2dced]1038  if ( unlikely( size > ULONG_MAX - __page_size ) ) return 0p;
1039                tsize = ceiling2( tsize, __page_size );                 // must be multiple of page size
[7a2057a]1040
[c4f68dc]1041                #ifdef __STATISTICS__
[116a2ea]1042                stats.counters[STAT_NAME].alloc += tsize;
1043                stats.mmap_calls += 1;
1044                stats.mmap_storage_request += size;
1045                stats.mmap_storage_alloc += tsize;
[c4f68dc]1046                #endif // __STATISTICS__
[92aca37]1047
[116a2ea]1048                disable_interrupts();
1049                block = (Heap.Storage *)mmap( 0, tsize, __map_prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 );
1050                enable_interrupts( false );
1051
1052                // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1053
1054                if ( unlikely( block == (Heap.Storage *)MAP_FAILED ) ) { // failed ?
[92aca37]1055                        if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize ); // no memory
[c4f68dc]1056                        // Do not call strerror( errno ) as it may call malloc.
[7a2057a]1057                        abort( "**** Error **** attempt to allocate large object (> %zu) of size %zu bytes and mmap failed with errno %d.",
1058                                   size, heapMaster.mmapStart, errno );
[116a2ea]1059                } // if
1060                block->header.kind.real.blockSize = MarkMmappedBit( tsize ); // storage size for munmap
1061
[bcb14b5]1062                #ifdef __CFA_DEBUG__
[7a2057a]1063                // Scrub new memory so subsequent uninitialized usages might fail. Only scrub the first SCRUB_SIZE bytes. The
1064                // rest of the storage set to 0 by mmap.
[116a2ea]1065                memset( block->data, SCRUB, min( SCRUB_SIZE, tsize - sizeof(Heap.Storage) ) );
[bcb14b5]1066                #endif // __CFA_DEBUG__
1067        } // if
[c4f68dc]1068
[9c438546]1069        block->header.kind.real.size = size;                            // store allocation size
[95eb7cf]1070        void * addr = &(block->data);                                           // adjust off header to user bytes
[c1f38e6c]1071        verify( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[c4f68dc]1072
1073        #ifdef __CFA_DEBUG__
[bcb14b5]1074        if ( traceHeap() ) {
[433905a]1075                char helpText[64];
1076                __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
1077                                                                        "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize ); // print debug/nodebug
[bcb14b5]1078        } // if
[c4f68dc]1079        #endif // __CFA_DEBUG__
1080
[116a2ea]1081//      poll_interrupts();                                                                      // call rollforward
1082
[95eb7cf]1083        return addr;
[c4f68dc]1084} // doMalloc
1085
1086
[116a2ea]1087static void doFree( void * addr ) libcfa_nopreempt with( *heapManager ) {
[feb999f]1088        // char buf[64];
1089        // int len = sprintf( buf, "doFree addr %p\n", addr );
1090        // write( 2, buf, len );
1091
[116a2ea]1092        verify( addr );
1093
1094        // detect free after thread-local storage destruction and use global stats in that case
[c4f68dc]1095
[31a5f418]1096        Heap.Storage.Header * header;
[116a2ea]1097        Heap.FreeHeader * freeHead;
1098        size_t size, alignment;
1099
1100        bool mapped = headers( "free", addr, header, freeHead, size, alignment );
1101        #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
1102        size_t rsize = header->kind.real.size;                          // optimization
1103        #endif // __STATISTICS__ || __CFA_DEBUG__
1104
[feb999f]1105        // Do not move these down because heap can be null!
[116a2ea]1106        #ifdef __STATISTICS__
[feb999f]1107        #ifdef __NONNULL_0_ALLOC__
1108        if ( unlikely( rsize == 0 ) )                                           // malloc( 0 ) ?
1109                stats.free_null_0_calls += 1;
1110        else
1111        #endif // __NONNULL_0_ALLOC__
1112                heapManager->stats.free_calls += 1;                             // count free amd implicit frees from resize/realloc
[116a2ea]1113        stats.free_storage_request += rsize;
1114        stats.free_storage_alloc += size;
1115        #endif // __STATISTICS__
1116
1117        #ifdef __CFA_DEBUG__
1118        allocUnfreed -= rsize;
1119        #endif // __CFA_DEBUG__
[c4f68dc]1120
[116a2ea]1121        if ( unlikely( mapped ) ) {                                                     // mmapped ?
[c4f68dc]1122                #ifdef __STATISTICS__
[116a2ea]1123                stats.munmap_calls += 1;
1124                stats.munmap_storage_request += rsize;
1125                stats.munmap_storage_alloc += size;
[c4f68dc]1126                #endif // __STATISTICS__
[116a2ea]1127
1128                // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1129
1130                // Does not matter where this storage is freed.
1131                if ( unlikely( munmap( header, size ) == -1 ) ) {
1132                        // Do not call strerror( errno ) as it may call malloc.
[5951956]1133                        abort( "**** Error **** attempt to deallocate large object %p and munmap failed with errno %d.\n"
[116a2ea]1134                                   "Possible cause is invalid delete pointer: either not allocated or with corrupt header.",
1135                                   addr, errno );
[c4f68dc]1136                } // if
[bcb14b5]1137        } else {
[feb999f]1138                assert( freeHead );
[c4f68dc]1139                #ifdef __CFA_DEBUG__
[116a2ea]1140                // memset is NOT always inlined!
1141                disable_interrupts();
1142                // Scrub old memory so subsequent usages might fail. Only scrub the first/last SCRUB_SIZE bytes.
1143                char * data = ((Heap.Storage *)header)->data;   // data address
1144                size_t dsize = size - sizeof(Heap.Storage);             // data size
1145                if ( dsize <= SCRUB_SIZE * 2 ) {
1146                        memset( data, SCRUB, dsize );                           // scrub all
1147                } else {
1148                        memset( data, SCRUB, SCRUB_SIZE );                      // scrub front
1149                        memset( data + dsize - SCRUB_SIZE, SCRUB, SCRUB_SIZE ); // scrub back
1150                } // if
1151                enable_interrupts( false );
[c4f68dc]1152                #endif // __CFA_DEBUG__
1153
[7a2057a]1154                #ifdef OWNERSHIP
[116a2ea]1155                if ( likely( heapManager == freeHead->homeManager ) ) { // belongs to this thread
1156                        header->kind.real.next = freeHead->freeList; // push on stack
1157                        freeHead->freeList = (Heap.Storage *)header;
1158                } else {                                                                                // return to thread owner
1159                        verify( heapManager );
1160
1161                        #ifdef RETURNSPIN
1162                        lock( freeHead->returnLock );
1163                        header->kind.real.next = freeHead->returnList; // push to bucket return list
1164                        freeHead->returnList = (Heap.Storage *)header;
1165                        unlock( freeHead->returnLock );
1166                        #else                                                                           // lock free
1167                        header->kind.real.next = freeHead->returnList; // link new node to top node
1168                        // CAS resets header->kind.real.next = freeHead->returnList on failure
[7a2057a]1169                        while ( ! __atomic_compare_exchange_n( &freeHead->returnList, &header->kind.real.next, (Heap.Storage *)header,
[116a2ea]1170                                                                                                   false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) );
[8ee54963]1171
1172                        #ifdef __STATISTICS__
1173                        stats.return_pushes += 1;
1174                        stats.return_storage_request += rsize;
1175                        stats.return_storage_alloc += size;
1176                        #endif // __STATISTICS__
[116a2ea]1177                        #endif // RETURNSPIN
[7a2057a]1178                } // if
[116a2ea]1179
[7a2057a]1180                #else                                                                                   // no OWNERSHIP
[116a2ea]1181
[7a2057a]1182                // kind.real.home is address in owner thread's freeLists, so compute the equivalent position in this thread's freeList.
1183                freeHead = &freeLists[ClearStickyBits( (Heap.FreeHeader *)(header->kind.real.home) ) - &freeHead->homeManager->freeLists[0]];
1184                header->kind.real.next = freeHead->freeList;    // push on stack
1185                freeHead->freeList = (Heap.Storage *)header;
1186                #endif // ! OWNERSHIP
[116a2ea]1187
[7a2057a]1188                // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
[bcb14b5]1189        } // if
[c4f68dc]1190
1191        #ifdef __CFA_DEBUG__
[bcb14b5]1192        if ( traceHeap() ) {
[92aca37]1193                char helpText[64];
[433905a]1194                __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
1195                                                                        "Free( %p ) size:%zu\n", addr, size ); // print debug/nodebug
[bcb14b5]1196        } // if
[c4f68dc]1197        #endif // __CFA_DEBUG__
[116a2ea]1198
1199//      poll_interrupts();                                                                      // call rollforward
[c4f68dc]1200} // doFree
1201
1202
[116a2ea]1203size_t prtFree( Heap & manager ) with( manager ) {
[b6830d74]1204        size_t total = 0;
[c4f68dc]1205        #ifdef __STATISTICS__
[95eb7cf]1206        __cfaabi_bits_acquire();
1207        __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]1208        #endif // __STATISTICS__
[116a2ea]1209        for ( unsigned int i = 0; i < heapMaster.maxBucketsUsed; i += 1 ) {
[d46ed6e]1210                size_t size = freeLists[i].blockSize;
1211                #ifdef __STATISTICS__
1212                unsigned int N = 0;
1213                #endif // __STATISTICS__
[b6830d74]1214
[31a5f418]1215                for ( Heap.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]1216                        total += size;
1217                        #ifdef __STATISTICS__
1218                        N += 1;
1219                        #endif // __STATISTICS__
[b6830d74]1220                } // for
1221
[d46ed6e]1222                #ifdef __STATISTICS__
[95eb7cf]1223                __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u  ", size, N );
1224                if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]1225                #endif // __STATISTICS__
1226        } // for
1227        #ifdef __STATISTICS__
[95eb7cf]1228        __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
1229        __cfaabi_bits_release();
[d46ed6e]1230        #endif // __STATISTICS__
[116a2ea]1231        return (char *)heapMaster.heapEnd - (char *)heapMaster.heapBegin - total;
[95eb7cf]1232} // prtFree
1233
1234
[116a2ea]1235#ifdef __STATISTICS__
[8ee54963]1236static void incCalls( size_t statName ) libcfa_nopreempt {
[116a2ea]1237        heapManager->stats.counters[statName].calls += 1;
1238} // incCalls
[d5d3a90]1239
[8ee54963]1240static void incZeroCalls( size_t statName ) libcfa_nopreempt {
[116a2ea]1241        heapManager->stats.counters[statName].calls_0 += 1;
1242} // incZeroCalls
1243#endif // __STATISTICS__
[c4f68dc]1244
[116a2ea]1245#ifdef __CFA_DEBUG__
[5951956]1246static void incUnfreed( intptr_t offset ) libcfa_nopreempt {
[116a2ea]1247        heapManager->allocUnfreed += offset;
1248} // incUnfreed
1249#endif // __CFA_DEBUG__
[c4f68dc]1250
[d5d3a90]1251
[116a2ea]1252static void * memalignNoStats( size_t alignment, size_t size STAT_PARM ) {
[b6830d74]1253        checkAlign( alignment );                                                        // check alignment
[c4f68dc]1254
[116a2ea]1255        // if alignment <= default alignment or size == 0, do normal malloc as two headers are unnecessary
1256  if ( unlikely( alignment <= libAlign() || size == 0 ) ) return doMalloc( size STAT_ARG( STAT_NAME ) );
[b6830d74]1257
1258        // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
1259        // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
1260        //      .-------------v-----------------v----------------v----------,
1261        //      | Real Header | ... padding ... |   Fake Header  | data ... |
1262        //      `-------------^-----------------^-+--------------^----------'
1263        //      |<--------------------------------' offset/align |<-- alignment boundary
1264
1265        // subtract libAlign() because it is already the minimum alignment
1266        // add sizeof(Storage) for fake header
[116a2ea]1267        size_t offset = alignment - libAlign() + sizeof(Heap.Storage);
1268        char * addr = (char *)doMalloc( size + offset STAT_ARG( STAT_NAME ) );
[b6830d74]1269
1270        // address in the block of the "next" alignment address
[31a5f418]1271        char * user = (char *)ceiling2( (uintptr_t)(addr + sizeof(Heap.Storage)), alignment );
[b6830d74]1272
1273        // address of header from malloc
[116a2ea]1274        Heap.Storage.Header * realHeader = HeaderAddr( addr );
1275        realHeader->kind.real.size = size;                                      // correct size to eliminate above alignment offset
1276        #ifdef __CFA_DEBUG__
1277        incUnfreed( -offset );                                                          // adjustment off the offset from call to doMalloc
1278        #endif // __CFA_DEBUG__
1279
1280        // address of fake header *before* the alignment location
[19e5d65d]1281        Heap.Storage.Header * fakeHeader = HeaderAddr( user );
[116a2ea]1282
[b6830d74]1283        // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
[116a2ea]1284        fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
[69ec0fb]1285        // SKULLDUGGERY: odd alignment implies fake header
[19e5d65d]1286        fakeHeader->kind.fake.alignment = MarkAlignmentBit( alignment );
[b6830d74]1287
1288        return user;
[bcb14b5]1289} // memalignNoStats
[c4f68dc]1290
1291
[19e5d65d]1292//####################### Memory Allocation Routines ####################
1293
1294
[c4f68dc]1295extern "C" {
[61248a4]1296        // Allocates size bytes and returns a pointer to the allocated memory.  The contents are undefined. If size is 0,
1297        // then malloc() returns a unique pointer value that can later be successfully passed to free().
[032234bd]1298        void * malloc( size_t size ) libcfa_public {
[116a2ea]1299                return doMalloc( size STAT_ARG( MALLOC ) );
[bcb14b5]1300        } // malloc
[c4f68dc]1301
[76e2113]1302
[61248a4]1303        // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[032234bd]1304        void * aalloc( size_t dim, size_t elemSize ) libcfa_public {
[116a2ea]1305                return doMalloc( dim * elemSize STAT_ARG( AALLOC ) );
[76e2113]1306        } // aalloc
1307
1308
[61248a4]1309        // Same as aalloc() with memory set to zero.
[032234bd]1310        void * calloc( size_t dim, size_t elemSize ) libcfa_public {
[709b812]1311                size_t size = dim * elemSize;
[116a2ea]1312                char * addr = (char *)doMalloc( size STAT_ARG( CALLOC ) );
[c4f68dc]1313
[116a2ea]1314          if ( unlikely( addr == NULL ) ) return NULL;          // stop further processing if 0p is returned
[709b812]1315
[31a5f418]1316                Heap.Storage.Header * header;
[116a2ea]1317                Heap.FreeHeader * freeHead;
[709b812]1318                size_t bsize, alignment;
1319
1320                #ifndef __CFA_DEBUG__
1321                bool mapped =
1322                        #endif // __CFA_DEBUG__
[116a2ea]1323                        headers( "calloc", addr, header, freeHead, bsize, alignment );
[709b812]1324
1325                #ifndef __CFA_DEBUG__
1326                // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
[116a2ea]1327                if ( likely( ! mapped ) )
[709b812]1328                #endif // __CFA_DEBUG__
1329                        // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1330                        // `-header`-addr                      `-size
1331                        memset( addr, '\0', size );                                     // set to zeros
1332
[19e5d65d]1333                MarkZeroFilledBit( header );                                    // mark as zero fill
[709b812]1334                return addr;
[bcb14b5]1335        } // calloc
[c4f68dc]1336
[92aca37]1337
[61248a4]1338        // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined.  If oaddr is
1339        // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
1340        // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
1341        // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[032234bd]1342        void * resize( void * oaddr, size_t size ) libcfa_public {
[feb999f]1343          if ( unlikely( oaddr == 0p ) ) {                                      // => malloc( size )
[116a2ea]1344                        return doMalloc( size STAT_ARG( RESIZE ) );
[709b812]1345                } // if
[cfbc703d]1346
[116a2ea]1347                PROLOG( RESIZE, doFree( oaddr ) );                              // => free( oaddr )
[cfbc703d]1348
[31a5f418]1349                Heap.Storage.Header * header;
[116a2ea]1350                Heap.FreeHeader * freeHead;
[92aca37]1351                size_t bsize, oalign;
[116a2ea]1352                headers( "resize", oaddr, header, freeHead, bsize, oalign );
[92847f7]1353
[19e5d65d]1354                size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[feb999f]1355                // same size, DO NOT PRESERVE STICKY PROPERTIES.
[92847f7]1356                if ( oalign == libAlign() && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[19e5d65d]1357                        ClearZeroFillBit( header );                                     // no alignment and turn off 0 fill
[116a2ea]1358                        #ifdef __CFA_DEBUG__
1359                        incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1360                        #endif // __CFA_DEBUG__
[d5d3a90]1361                        header->kind.real.size = size;                          // reset allocation size
[116a2ea]1362                        #ifdef __STATISTICS__
1363                        incCalls( RESIZE );
1364                        #endif // __STATISTICS__
[cfbc703d]1365                        return oaddr;
1366                } // if
[0f89d4f]1367
[feb999f]1368                // change size, DO NOT PRESERVE STICKY PROPERTIES.
[116a2ea]1369                doFree( oaddr );                                                                // free previous storage
1370
1371                return doMalloc( size STAT_ARG( RESIZE ) );             // create new area
[cfbc703d]1372        } // resize
1373
1374
[61248a4]1375        // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]1376        // the old and new sizes.
[032234bd]1377        void * realloc( void * oaddr, size_t size ) libcfa_public {
[feb999f]1378                // char buf[64];
1379                // int len = sprintf( buf, "realloc1 oaddr %p size %d\n", oaddr, size );
1380                // write( 2, buf, len );
[116a2ea]1381          if ( unlikely( oaddr == 0p ) ) {                                      // => malloc( size )
1382                  return doMalloc( size STAT_ARG( REALLOC ) );
[709b812]1383                } // if
[c4f68dc]1384
[116a2ea]1385                PROLOG( REALLOC, doFree( oaddr ) );                             // => free( oaddr )
[c4f68dc]1386
[31a5f418]1387                Heap.Storage.Header * header;
[116a2ea]1388                Heap.FreeHeader * freeHead;
[92aca37]1389                size_t bsize, oalign;
[116a2ea]1390                headers( "realloc", oaddr, header, freeHead, bsize, oalign );
[95eb7cf]1391
[19e5d65d]1392                size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[d5d3a90]1393                size_t osize = header->kind.real.size;                  // old allocation size
[19e5d65d]1394                bool ozfill = ZeroFillBit( header );                    // old allocation zero filled
[92847f7]1395          if ( unlikely( size <= odsize ) && odsize <= size * 2 ) { // allow up to 50% wasted storage
[116a2ea]1396                        #ifdef __CFA_DEBUG__
1397                        incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1398                        #endif // __CFA_DEBUG__
1399                        header->kind.real.size = size;                          // reset allocation size
[d5d3a90]1400                        if ( unlikely( ozfill ) && size > osize ) {     // previous request zero fill and larger ?
[e4b6b7d3]1401                                memset( (char *)oaddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1402                        } // if
[116a2ea]1403                        #ifdef __STATISTICS__
1404                        incCalls( REALLOC );
1405                        #endif // __STATISTICS__
[95eb7cf]1406                        return oaddr;
[c4f68dc]1407                } // if
1408
[95eb7cf]1409                // change size and copy old content to new storage
1410
1411                void * naddr;
[116a2ea]1412                if ( likely( oalign <= libAlign() ) ) {                 // previous request not aligned ?
1413                        naddr = doMalloc( size STAT_ARG( REALLOC ) ); // create new area
[c4f68dc]1414                } else {
[116a2ea]1415                        naddr = memalignNoStats( oalign, size STAT_ARG( REALLOC ) ); // create new aligned area
[c4f68dc]1416                } // if
[1e034d9]1417
[116a2ea]1418                headers( "realloc", naddr, header, freeHead, bsize, oalign );
1419                // To preserve prior fill, the entire bucket must be copied versus the size.
[47dd0d2]1420                memcpy( naddr, oaddr, min( osize, size ) );             // copy bytes
[116a2ea]1421                doFree( oaddr );                                                                // free previous storage
[d5d3a90]1422
1423                if ( unlikely( ozfill ) ) {                                             // previous request zero fill ?
[19e5d65d]1424                        MarkZeroFilledBit( header );                            // mark new request as zero filled
[d5d3a90]1425                        if ( size > osize ) {                                           // previous request larger ?
[e4b6b7d3]1426                                memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1427                        } // if
1428                } // if
[95eb7cf]1429                return naddr;
[b6830d74]1430        } // realloc
[c4f68dc]1431
[c1f38e6c]1432
[19e5d65d]1433        // Same as realloc() except the new allocation size is large enough for an array of nelem elements of size elsize.
[032234bd]1434        void * reallocarray( void * oaddr, size_t dim, size_t elemSize ) libcfa_public {
[19e5d65d]1435                return realloc( oaddr, dim * elemSize );
1436        } // reallocarray
1437
1438
[61248a4]1439        // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[032234bd]1440        void * memalign( size_t alignment, size_t size ) libcfa_public {
[116a2ea]1441                return memalignNoStats( alignment, size STAT_ARG( MEMALIGN ) );
[bcb14b5]1442        } // memalign
[c4f68dc]1443
[95eb7cf]1444
[76e2113]1445        // Same as aalloc() with memory alignment.
[032234bd]1446        void * amemalign( size_t alignment, size_t dim, size_t elemSize ) libcfa_public {
[116a2ea]1447                return memalignNoStats( alignment, dim * elemSize STAT_ARG( AMEMALIGN ) );
[76e2113]1448        } // amemalign
1449
1450
[ca7949b]1451        // Same as calloc() with memory alignment.
[032234bd]1452        void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) libcfa_public {
[709b812]1453                size_t size = dim * elemSize;
[116a2ea]1454                char * addr = (char *)memalignNoStats( alignment, size STAT_ARG( CMEMALIGN ) );
[95eb7cf]1455
[116a2ea]1456          if ( unlikely( addr == NULL ) ) return NULL;          // stop further processing if 0p is returned
[709b812]1457
[31a5f418]1458                Heap.Storage.Header * header;
[116a2ea]1459                Heap.FreeHeader * freeHead;
[709b812]1460                size_t bsize;
1461
1462                #ifndef __CFA_DEBUG__
1463                bool mapped =
1464                        #endif // __CFA_DEBUG__
[116a2ea]1465                        headers( "cmemalign", addr, header, freeHead, bsize, alignment );
[709b812]1466
1467                // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
1468                #ifndef __CFA_DEBUG__
1469                if ( ! mapped )
1470                #endif // __CFA_DEBUG__
1471                        // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1472                        // `-header`-addr                      `-size
1473                        memset( addr, '\0', size );                                     // set to zeros
1474
[19e5d65d]1475                MarkZeroFilledBit( header );                                    // mark as zero filled
[709b812]1476                return addr;
[95eb7cf]1477        } // cmemalign
1478
[13fece5]1479
[ca7949b]1480        // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
[19e5d65d]1481        // of alignment. This requirement is universally ignored.
[032234bd]1482        void * aligned_alloc( size_t alignment, size_t size ) libcfa_public {
[c4f68dc]1483                return memalign( alignment, size );
[b6830d74]1484        } // aligned_alloc
[c4f68dc]1485
1486
[ca7949b]1487        // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1488        // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1489        // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1490        // free(3).
[032234bd]1491        int posix_memalign( void ** memptr, size_t alignment, size_t size ) libcfa_public {
[69ec0fb]1492          if ( unlikely( alignment < libAlign() || ! is_pow2( alignment ) ) ) return EINVAL; // check alignment
[19e5d65d]1493                *memptr = memalign( alignment, size );
[c4f68dc]1494                return 0;
[b6830d74]1495        } // posix_memalign
[c4f68dc]1496
[13fece5]1497
[ca7949b]1498        // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1499        // page size.  It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[032234bd]1500        void * valloc( size_t size ) libcfa_public {
[ad2dced]1501                return memalign( __page_size, size );
[b6830d74]1502        } // valloc
[c4f68dc]1503
1504
[ca7949b]1505        // Same as valloc but rounds size to multiple of page size.
[032234bd]1506        void * pvalloc( size_t size ) libcfa_public {
[19e5d65d]1507                return memalign( __page_size, ceiling2( size, __page_size ) ); // round size to multiple of page size
[ca7949b]1508        } // pvalloc
1509
1510
1511        // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1512        // or realloc().  Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1513        // 0p, no operation is performed.
[032234bd]1514        void free( void * addr ) libcfa_public {
[95eb7cf]1515          if ( unlikely( addr == 0p ) ) {                                       // special case
[709b812]1516                        #ifdef __STATISTICS__
[116a2ea]1517                  if ( heapManager )
1518                        incZeroCalls( FREE );
[709b812]1519                        #endif // __STATISTICS__
[c4f68dc]1520                        return;
[116a2ea]1521                } // if
1522
1523                doFree( addr );                                                                 // handles heapManager == nullptr
[b6830d74]1524        } // free
[93c2e0a]1525
[c4f68dc]1526
[76e2113]1527        // Returns the alignment of an allocation.
[032234bd]1528        size_t malloc_alignment( void * addr ) libcfa_public {
[95eb7cf]1529          if ( unlikely( addr == 0p ) ) return libAlign();      // minimum alignment
[19e5d65d]1530                Heap.Storage.Header * header = HeaderAddr( addr );
1531                if ( unlikely( AlignmentBit( header ) ) ) {             // fake header ?
1532                        return ClearAlignmentBit( header );                     // clear flag from value
[c4f68dc]1533                } else {
[cfbc703d]1534                        return libAlign();                                                      // minimum alignment
[c4f68dc]1535                } // if
[bcb14b5]1536        } // malloc_alignment
[c4f68dc]1537
[92aca37]1538
[76e2113]1539        // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[032234bd]1540        bool malloc_zero_fill( void * addr ) libcfa_public {
[95eb7cf]1541          if ( unlikely( addr == 0p ) ) return false;           // null allocation is not zero fill
[19e5d65d]1542                Heap.Storage.Header * header = HeaderAddr( addr );
1543                if ( unlikely( AlignmentBit( header ) ) ) {             // fake header ?
1544                        header = RealHeader( header );                          // backup from fake to real header
[c4f68dc]1545                } // if
[19e5d65d]1546                return ZeroFillBit( header );                                   // zero filled ?
[bcb14b5]1547        } // malloc_zero_fill
[c4f68dc]1548
[19e5d65d]1549
1550        // Returns original total allocation size (not bucket size) => array size is dimension * sizeof(T).
[032234bd]1551        size_t malloc_size( void * addr ) libcfa_public {
[849fb370]1552          if ( unlikely( addr == 0p ) ) return 0;                       // null allocation has zero size
[19e5d65d]1553                Heap.Storage.Header * header = HeaderAddr( addr );
1554                if ( unlikely( AlignmentBit( header ) ) ) {             // fake header ?
1555                        header = RealHeader( header );                          // backup from fake to real header
[cfbc703d]1556                } // if
[9c438546]1557                return header->kind.real.size;
[76e2113]1558        } // malloc_size
1559
[cfbc703d]1560
[ca7949b]1561        // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1562        // malloc or a related function.
[032234bd]1563        size_t malloc_usable_size( void * addr ) libcfa_public {
[95eb7cf]1564          if ( unlikely( addr == 0p ) ) return 0;                       // null allocation has 0 size
[31a5f418]1565                Heap.Storage.Header * header;
[116a2ea]1566                Heap.FreeHeader * freeHead;
[95eb7cf]1567                size_t bsize, alignment;
1568
[116a2ea]1569                headers( "malloc_usable_size", addr, header, freeHead, bsize, alignment );
[19e5d65d]1570                return DataStorage( bsize, addr, header );              // data storage in bucket
[95eb7cf]1571        } // malloc_usable_size
1572
1573
[ca7949b]1574        // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[032234bd]1575        void malloc_stats( void ) libcfa_public {
[c4f68dc]1576                #ifdef __STATISTICS__
[116a2ea]1577                HeapStatistics stats;
1578                HeapStatisticsCtor( stats );
1579                if ( printStats( collectStats( stats ) ) == -1 ) {
1580                #else
1581                #define MALLOC_STATS_MSG "malloc_stats statistics disabled.\n"
1582                if ( write( STDERR_FILENO, MALLOC_STATS_MSG, sizeof( MALLOC_STATS_MSG ) - 1 /* size includes '\0' */ ) == -1 ) {
[c4f68dc]1583                #endif // __STATISTICS__
[5951956]1584                        abort( "**** Error **** write failed in malloc_stats" );
[116a2ea]1585                } // if
[bcb14b5]1586        } // malloc_stats
[c4f68dc]1587
[92aca37]1588
[c58ead7]1589        // Zero the heap master and all active thread heaps.
1590        void malloc_stats_clear() {
1591                #ifdef __STATISTICS__
1592                clearStats();
1593                #else
1594                #define MALLOC_STATS_MSG "malloc_stats statistics disabled.\n"
1595                if ( write( STDERR_FILENO, MALLOC_STATS_MSG, sizeof( MALLOC_STATS_MSG ) - 1 /* size includes '\0' */ ) == -1 ) {
1596                        abort( "**** Error **** write failed in malloc_stats" );
1597                } // if
1598                #endif // __STATISTICS__
1599        } // malloc_stats_clear
1600
[19e5d65d]1601        // Changes the file descriptor where malloc_stats() writes statistics.
[032234bd]1602        int malloc_stats_fd( int fd __attribute__(( unused )) ) libcfa_public {
[c4f68dc]1603                #ifdef __STATISTICS__
[116a2ea]1604                int temp = heapMaster.stats_fd;
1605                heapMaster.stats_fd = fd;
[bcb14b5]1606                return temp;
[c4f68dc]1607                #else
[19e5d65d]1608                return -1;                                                                              // unsupported
[c4f68dc]1609                #endif // __STATISTICS__
[bcb14b5]1610        } // malloc_stats_fd
[c4f68dc]1611
[95eb7cf]1612
[19e5d65d]1613        // Prints an XML string that describes the current state of the memory-allocation implementation in the caller.
1614        // The string is printed on the file stream stream.  The exported string includes information about all arenas (see
1615        // malloc).
[032234bd]1616        int malloc_info( int options, FILE * stream __attribute__(( unused )) ) libcfa_public {
[19e5d65d]1617          if ( options != 0 ) { errno = EINVAL; return -1; }
1618                #ifdef __STATISTICS__
[116a2ea]1619                HeapStatistics stats;
1620                HeapStatisticsCtor( stats );
1621                return printStatsXML( collectStats( stats ), stream ); // returns bytes written or -1
[19e5d65d]1622                #else
1623                return 0;                                                                               // unsupported
1624                #endif // __STATISTICS__
1625        } // malloc_info
1626
1627
[1076d05]1628        // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1629        // specifies the parameter to be modified, and value specifies the new value for that parameter.
[032234bd]1630        int mallopt( int option, int value ) libcfa_public {
[19e5d65d]1631          if ( value < 0 ) return 0;
[95eb7cf]1632                choose( option ) {
1633                  case M_TOP_PAD:
[116a2ea]1634                        heapMaster.heapExpand = ceiling2( value, __page_size );
[19e5d65d]1635                        return 1;
[95eb7cf]1636                  case M_MMAP_THRESHOLD:
1637                        if ( setMmapStart( value ) ) return 1;
[19e5d65d]1638                } // choose
[95eb7cf]1639                return 0;                                                                               // error, unsupported
1640        } // mallopt
1641
[c1f38e6c]1642
[ca7949b]1643        // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[032234bd]1644        int malloc_trim( size_t ) libcfa_public {
[95eb7cf]1645                return 0;                                                                               // => impossible to release memory
1646        } // malloc_trim
1647
1648
[ca7949b]1649        // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1650        // or the state of malloc_hook functions pointers).  The state is recorded in a system-dependent opaque data
1651        // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1652        // result.  (The caller must free this memory.)
[032234bd]1653        void * malloc_get_state( void ) libcfa_public {
[95eb7cf]1654                return 0p;                                                                              // unsupported
[c4f68dc]1655        } // malloc_get_state
1656
[bcb14b5]1657
[ca7949b]1658        // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1659        // structure pointed to by state.
[032234bd]1660        int malloc_set_state( void * ) libcfa_public {
[bcb14b5]1661                return 0;                                                                               // unsupported
[c4f68dc]1662        } // malloc_set_state
[31a5f418]1663
[19e5d65d]1664
[31a5f418]1665        // Sets the amount (bytes) to extend the heap when there is insufficent free storage to service an allocation.
[032234bd]1666        __attribute__((weak)) size_t malloc_expansion() libcfa_public { return __CFA_DEFAULT_HEAP_EXPANSION__; }
[31a5f418]1667
1668        // Sets the crossover point between allocations occuring in the sbrk area or separately mmapped.
[032234bd]1669        __attribute__((weak)) size_t malloc_mmap_start() libcfa_public { return __CFA_DEFAULT_MMAP_START__; }
[31a5f418]1670
1671        // Amount subtracted to adjust for unfreed program storage (debug only).
[032234bd]1672        __attribute__((weak)) size_t malloc_unfreed() libcfa_public { return __CFA_DEFAULT_HEAP_UNFREED__; }
[c4f68dc]1673} // extern "C"
1674
1675
[95eb7cf]1676// Must have CFA linkage to overload with C linkage realloc.
[032234bd]1677void * resize( void * oaddr, size_t nalign, size_t size ) libcfa_public {
[116a2ea]1678  if ( unlikely( oaddr == 0p ) ) {                                              // => malloc( size )
1679                return memalignNoStats( nalign, size STAT_ARG( RESIZE ) );
[709b812]1680        } // if
[95eb7cf]1681
[116a2ea]1682        PROLOG( RESIZE, doFree( oaddr ) );                                      // => free( oaddr )
[cfbc703d]1683
[92847f7]1684        // Attempt to reuse existing alignment.
[19e5d65d]1685        Heap.Storage.Header * header = HeaderAddr( oaddr );
1686        bool isFakeHeader = AlignmentBit( header );                     // old fake header ?
[92847f7]1687        size_t oalign;
[19e5d65d]1688
1689        if ( unlikely( isFakeHeader ) ) {
[116a2ea]1690                checkAlign( nalign );                                                   // check alignment
[19e5d65d]1691                oalign = ClearAlignmentBit( header );                   // old alignment
1692                if ( unlikely( (uintptr_t)oaddr % nalign == 0   // lucky match ?
[92847f7]1693                         && ( oalign <= nalign                                          // going down
1694                                  || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
[19e5d65d]1695                        ) ) {
1696                        HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
[116a2ea]1697                        Heap.FreeHeader * freeHead;
[92847f7]1698                        size_t bsize, oalign;
[116a2ea]1699                        headers( "resize", oaddr, header, freeHead, bsize, oalign );
[19e5d65d]1700                        size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[a3ade94]1701
[92847f7]1702                        if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted data storage
[19e5d65d]1703                                HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
1704                                ClearZeroFillBit( header );                             // turn off 0 fill
[116a2ea]1705                                #ifdef __CFA_DEBUG__
1706                                incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1707                                #endif // __CFA_DEBUG__
[92847f7]1708                                header->kind.real.size = size;                  // reset allocation size
[116a2ea]1709                                #ifdef __STATISTICS__
1710                                incCalls( RESIZE );
1711                                #endif // __STATISTICS__
[92847f7]1712                                return oaddr;
1713                        } // if
[cfbc703d]1714                } // if
[92847f7]1715        } else if ( ! isFakeHeader                                                      // old real header (aligned on libAlign) ?
1716                                && nalign == libAlign() ) {                             // new alignment also on libAlign => no fake header needed
[113d785]1717                return resize( oaddr, size );                                   // duplicate special case checks
[cfbc703d]1718        } // if
1719
[feb999f]1720        // change size, DO NOT PRESERVE STICKY PROPERTIES.
[116a2ea]1721        doFree( oaddr );                                                                        // free previous storage
1722        return memalignNoStats( nalign, size STAT_ARG( RESIZE ) ); // create new aligned area
[cfbc703d]1723} // resize
1724
1725
[032234bd]1726void * realloc( void * oaddr, size_t nalign, size_t size ) libcfa_public {
[feb999f]1727        // char buf[64];
1728        // int len = sprintf( buf, "realloc2 oaddr %p size %d\n", oaddr, size );
1729        // write( 2, buf, len );
[116a2ea]1730  if ( unlikely( oaddr == 0p ) ) {                                              // => malloc( size )
1731                return memalignNoStats( nalign, size STAT_ARG( REALLOC ) );
[709b812]1732        } // if
1733
[116a2ea]1734        PROLOG( REALLOC, doFree( oaddr ) );                                     // => free( oaddr )
[c86f587]1735
[92847f7]1736        // Attempt to reuse existing alignment.
[19e5d65d]1737        Heap.Storage.Header * header = HeaderAddr( oaddr );
1738        bool isFakeHeader = AlignmentBit( header );                     // old fake header ?
[92847f7]1739        size_t oalign;
[19e5d65d]1740        if ( unlikely( isFakeHeader ) ) {
[116a2ea]1741                checkAlign( nalign );                                                   // check alignment
[19e5d65d]1742                oalign = ClearAlignmentBit( header );                   // old alignment
1743                if ( unlikely( (uintptr_t)oaddr % nalign == 0   // lucky match ?
[92847f7]1744                         && ( oalign <= nalign                                          // going down
1745                                  || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
[19e5d65d]1746                        ) ) {
1747                        HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
1748                        return realloc( oaddr, size );                          // duplicate special case checks
[92847f7]1749                } // if
1750        } else if ( ! isFakeHeader                                                      // old real header (aligned on libAlign) ?
[19e5d65d]1751                                && nalign == libAlign() ) {                             // new alignment also on libAlign => no fake header needed
1752                return realloc( oaddr, size );                                  // duplicate special case checks
1753        } // if
[cfbc703d]1754
[116a2ea]1755        Heap.FreeHeader * freeHead;
[92847f7]1756        size_t bsize;
[116a2ea]1757        headers( "realloc", oaddr, header, freeHead, bsize, oalign );
[92847f7]1758
1759        // change size and copy old content to new storage
1760
[dd23e66]1761        size_t osize = header->kind.real.size;                          // old allocation size
[19e5d65d]1762        bool ozfill = ZeroFillBit( header );                            // old allocation zero filled
[dd23e66]1763
[116a2ea]1764        void * naddr = memalignNoStats( nalign, size STAT_ARG( REALLOC ) ); // create new aligned area
[95eb7cf]1765
[116a2ea]1766        headers( "realloc", naddr, header, freeHead, bsize, oalign );
[47dd0d2]1767        memcpy( naddr, oaddr, min( osize, size ) );                     // copy bytes
[116a2ea]1768        doFree( oaddr );                                                                        // free previous storage
[d5d3a90]1769
1770        if ( unlikely( ozfill ) ) {                                                     // previous request zero fill ?
[19e5d65d]1771                MarkZeroFilledBit( header );                                    // mark new request as zero filled
[d5d3a90]1772                if ( size > osize ) {                                                   // previous request larger ?
[e4b6b7d3]1773                        memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1774                } // if
1775        } // if
[1e034d9]1776        return naddr;
[95eb7cf]1777} // realloc
1778
1779
[116a2ea]1780void * reallocarray( void * oaddr, size_t nalign, size_t dim, size_t elemSize ) __THROW {
1781        return realloc( oaddr, nalign, dim * elemSize );
1782} // reallocarray
1783
1784
[c4f68dc]1785// Local Variables: //
1786// tab-width: 4 //
[f8cd310]1787// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1788// End: //
Note: See TracBrowser for help on using the repository browser.