source: libcfa/src/heap.cfa@ c8e4b23d

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since c8e4b23d was dd23e66, checked in by Peter A. Buhr <pabuhr@…>, 5 years ago

add default_heap_exhausted, update resize/realloc with alignment, fix cmemalignNoStats to match callocNoStats

  • Property mode set to 100644
File size: 50.6 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
7// heap.c --
8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[dd23e66]12// Last Modified On : Wed Aug 5 22:21:27 2020
13// Update Count : 853
[73abe95]14//
[c4f68dc]15
16#include <unistd.h> // sbrk, sysconf
17#include <stdbool.h> // true, false
18#include <stdio.h> // snprintf, fileno
19#include <errno.h> // errno
[1e034d9]20#include <string.h> // memset, memcpy
[1076d05]21#include <limits.h> // ULONG_MAX
[ada0246d]22#include <malloc.h> // memalign, malloc_usable_size
[c4f68dc]23#include <sys/mman.h> // mmap, munmap
24
[bcb14b5]25#include "bits/align.hfa" // libPow2
26#include "bits/defs.hfa" // likely, unlikely
27#include "bits/locks.hfa" // __spinlock_t
[73abe95]28#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[1e034d9]29//#include "stdlib.hfa" // bsearchl
[1076d05]30#include "bitmanip.hfa" // ceiling
[c4f68dc]31
[95eb7cf]32#define MIN(x, y) (y > x ? x : y)
[c4f68dc]33
[93c2e0a]34static bool traceHeap = false;
[d46ed6e]35
[baf608a]36inline bool traceHeap() { return traceHeap; }
[d46ed6e]37
[93c2e0a]38bool traceHeapOn() {
39 bool temp = traceHeap;
[d46ed6e]40 traceHeap = true;
41 return temp;
42} // traceHeapOn
43
[93c2e0a]44bool traceHeapOff() {
45 bool temp = traceHeap;
[d46ed6e]46 traceHeap = false;
47 return temp;
48} // traceHeapOff
49
[baf608a]50bool traceHeapTerm() { return false; }
51
[d46ed6e]52
[95eb7cf]53static bool prtFree = false;
[d46ed6e]54
[95eb7cf]55inline bool prtFree() {
56 return prtFree;
57} // prtFree
[5d4fa18]58
[95eb7cf]59bool prtFreeOn() {
60 bool temp = prtFree;
61 prtFree = true;
[5d4fa18]62 return temp;
[95eb7cf]63} // prtFreeOn
[5d4fa18]64
[95eb7cf]65bool prtFreeOff() {
66 bool temp = prtFree;
67 prtFree = false;
[5d4fa18]68 return temp;
[95eb7cf]69} // prtFreeOff
[5d4fa18]70
71
[e723100]72enum {
[1e034d9]73 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address,
74 // the brk address is extended by the extension amount.
[e723100]75 __CFA_DEFAULT_HEAP_EXPANSION__ = (1 * 1024 * 1024),
[1e034d9]76
77 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;
78 // values greater than or equal to this value are mmap from the operating system.
79 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),
[e723100]80};
81
[dd23e66]82size_t default_mmap_start() __attribute__(( weak )) {
83 return __CFA_DEFAULT_MMAP_START__;
84} // default_mmap_start
85
[e723100]86size_t default_heap_expansion() __attribute__(( weak )) {
87 return __CFA_DEFAULT_HEAP_EXPANSION__;
88} // default_heap_expansion
89
[dd23e66]90bool default_heap_exhausted() __attribute__(( weak )) { // find and free some storage
91 // Returning false prints "out of heap memory" message and aborts.
92 return false;
93} // default_heap_exhausted
[1076d05]94
[e723100]95
[f0b3f51]96#ifdef __CFA_DEBUG__
[93c2e0a]97static unsigned int allocFree; // running total of allocations minus frees
[d46ed6e]98
[95eb7cf]99static void prtUnfreed() {
[b6830d74]100 if ( allocFree != 0 ) {
[d46ed6e]101 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
[4ea1c6d]102 char helpText[512];
103 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %u(0x%x) bytes of storage allocated but not freed.\n"
104 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
105 (long int)getpid(), allocFree, allocFree ); // always print the UNIX pid
106 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[b6830d74]107 } // if
[95eb7cf]108} // prtUnfreed
[d46ed6e]109
110extern "C" {
[bcb14b5]111 void heapAppStart() { // called by __cfaabi_appready_startup
112 allocFree = 0;
113 } // heapAppStart
114
115 void heapAppStop() { // called by __cfaabi_appready_startdown
116 fclose( stdin ); fclose( stdout );
[95eb7cf]117 prtUnfreed();
[bcb14b5]118 } // heapAppStop
[d46ed6e]119} // extern "C"
120#endif // __CFA_DEBUG__
121
[1e034d9]122
[e723100]123// statically allocated variables => zero filled.
124static size_t pageSize; // architecture pagesize
125static size_t heapExpand; // sbrk advance
126static size_t mmapStart; // cross over point for mmap
127static unsigned int maxBucketsUsed; // maximum number of buckets in use
128
129
130#define SPINLOCK 0
131#define LOCKFREE 1
132#define BUCKETLOCK SPINLOCK
[9c438546]133#if BUCKETLOCK == SPINLOCK
134#elif BUCKETLOCK == LOCKFREE
135#include <stackLockFree.hfa>
136#else
137 #error undefined lock type for bucket lock
[e723100]138#endif // LOCKFREE
139
140// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
141// Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]142enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]143
[c4f68dc]144struct HeapManager {
145 struct Storage {
[bcb14b5]146 struct Header { // header
[c4f68dc]147 union Kind {
148 struct RealHeader {
149 union {
[bcb14b5]150 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[f0b3f51]151 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]152 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]153 #endif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]154
155 union {
[9c438546]156 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
[cfbc703d]157 // 2nd low-order bit => zero filled
[c4f68dc]158 void * home; // allocated block points back to home locations (must overlay alignment)
159 size_t blockSize; // size for munmap (must overlay alignment)
[9c438546]160 #if BUCKETLOCK == SPINLOCK
[c4f68dc]161 Storage * next; // freed block points next freed block of same size
162 #endif // SPINLOCK
163 };
[9c438546]164 size_t size; // allocation size in bytes
[c4f68dc]165
[f0b3f51]166 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]167 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]168 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]169 };
[9c438546]170 #if BUCKETLOCK == LOCKFREE
171 Link(Storage) next; // freed block points next freed block of same size (double-wide)
[c4f68dc]172 #endif // LOCKFREE
173 };
[93c2e0a]174 } real; // RealHeader
[9c438546]175
[c4f68dc]176 struct FakeHeader {
177 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
[9c438546]178 uint32_t alignment; // 1st low-order bit => fake header & alignment
[f0b3f51]179 #endif // __ORDER_LITTLE_ENDIAN__
[c4f68dc]180
181 uint32_t offset;
182
183 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
184 uint32_t alignment; // low-order bits of home/blockSize used for tricks
[f0b3f51]185 #endif // __ORDER_BIG_ENDIAN__
[93c2e0a]186 } fake; // FakeHeader
187 } kind; // Kind
[bcb14b5]188 } header; // Header
[95eb7cf]189 char pad[libAlign() - sizeof( Header )];
[bcb14b5]190 char data[0]; // storage
[c4f68dc]191 }; // Storage
192
[95eb7cf]193 static_assert( libAlign() >= sizeof( Storage ), "libAlign() < sizeof( Storage )" );
[c4f68dc]194
195 struct FreeHeader {
[9c438546]196 #if BUCKETLOCK == SPINLOCK
[bcb14b5]197 __spinlock_t lock; // must be first field for alignment
198 Storage * freeList;
[c4f68dc]199 #else
[9c438546]200 StackLF(Storage) freeList;
201 #endif // BUCKETLOCK
[bcb14b5]202 size_t blockSize; // size of allocations on this list
[c4f68dc]203 }; // FreeHeader
204
205 // must be first fields for alignment
206 __spinlock_t extlock; // protects allocation-buffer extension
207 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
208
209 void * heapBegin; // start of heap
210 void * heapEnd; // logical end of heap
211 size_t heapRemaining; // amount of storage not allocated in the current chunk
212}; // HeapManager
213
[9c438546]214#if BUCKETLOCK == LOCKFREE
[c45d2fa]215static inline {
[8b58bae]216 Link(HeapManager.Storage) * ?`next( HeapManager.Storage * this ) { return &this->header.kind.real.next; }
[c45d2fa]217 void ?{}( HeapManager.FreeHeader & ) {}
218 void ^?{}( HeapManager.FreeHeader & ) {}
219} // distribution
[9c438546]220#endif // LOCKFREE
221
[7b149bc]222static inline size_t getKey( const HeapManager.FreeHeader & freeheader ) { return freeheader.blockSize; }
[5d4fa18]223
[e723100]224
225#define FASTLOOKUP
226#define __STATISTICS__
[5d4fa18]227
[1e034d9]228// Bucket size must be multiple of 16.
[d5d3a90]229// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
230// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
[e723100]231static const unsigned int bucketSizes[] @= { // different bucket sizes
[d5d3a90]232 16 + sizeof(HeapManager.Storage), 32 + sizeof(HeapManager.Storage), 48 + sizeof(HeapManager.Storage), 64 + sizeof(HeapManager.Storage), // 4
233 96 + sizeof(HeapManager.Storage), 112 + sizeof(HeapManager.Storage), 128 + sizeof(HeapManager.Storage), // 3
[95eb7cf]234 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4
235 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4
236 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4
237 1_536, 2_048 + sizeof(HeapManager.Storage), // 2
238 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4
239 6_144, 8_192 + sizeof(HeapManager.Storage), // 2
240 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8
241 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8
242 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8
243 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8
244 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8
245 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8
246 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4
247 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8
248 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4
[5d4fa18]249};
[e723100]250
251static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0]), "size of bucket array wrong" );
252
[5d4fa18]253#ifdef FASTLOOKUP
[a92a4fe]254enum { LookupSizes = 65_536 + sizeof(HeapManager.Storage) }; // number of fast lookup sizes
[5d4fa18]255static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
256#endif // FASTLOOKUP
257
[95eb7cf]258static int mmapFd = -1; // fake or actual fd for anonymous file
[5d4fa18]259#ifdef __CFA_DEBUG__
[93c2e0a]260static bool heapBoot = 0; // detect recursion during boot
[5d4fa18]261#endif // __CFA_DEBUG__
[9c438546]262
263// The constructor for heapManager is called explicitly in memory_startup.
[5d4fa18]264static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
265
[c4f68dc]266
267#ifdef __STATISTICS__
[95eb7cf]268// Heap statistics counters.
269static unsigned long long int mmap_storage;
[c4f68dc]270static unsigned int mmap_calls;
271static unsigned long long int munmap_storage;
272static unsigned int munmap_calls;
273static unsigned long long int sbrk_storage;
274static unsigned int sbrk_calls;
275static unsigned long long int malloc_storage;
276static unsigned int malloc_calls;
277static unsigned long long int free_storage;
278static unsigned int free_calls;
[76e2113]279static unsigned long long int aalloc_storage;
280static unsigned int aalloc_calls;
[c4f68dc]281static unsigned long long int calloc_storage;
282static unsigned int calloc_calls;
283static unsigned long long int memalign_storage;
284static unsigned int memalign_calls;
[76e2113]285static unsigned long long int amemalign_storage;
286static unsigned int amemalign_calls;
[c4f68dc]287static unsigned long long int cmemalign_storage;
288static unsigned int cmemalign_calls;
[cfbc703d]289static unsigned long long int resize_storage;
290static unsigned int resize_calls;
[c4f68dc]291static unsigned long long int realloc_storage;
292static unsigned int realloc_calls;
[95eb7cf]293// Statistics file descriptor (changed by malloc_stats_fd).
294static int statfd = STDERR_FILENO; // default stderr
[c4f68dc]295
296// Use "write" because streams may be shutdown when calls are made.
[d46ed6e]297static void printStats() {
[76e2113]298 char helpText[1024];
[95eb7cf]299 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[bcb14b5]300 "\nHeap statistics:\n"
301 " malloc: calls %u / storage %llu\n"
[76e2113]302 " aalloc: calls %u / storage %llu\n"
[bcb14b5]303 " calloc: calls %u / storage %llu\n"
304 " memalign: calls %u / storage %llu\n"
[76e2113]305 " amemalign: calls %u / storage %llu\n"
[bcb14b5]306 " cmemalign: calls %u / storage %llu\n"
[cfbc703d]307 " resize: calls %u / storage %llu\n"
[bcb14b5]308 " realloc: calls %u / storage %llu\n"
309 " free: calls %u / storage %llu\n"
310 " mmap: calls %u / storage %llu\n"
311 " munmap: calls %u / storage %llu\n"
312 " sbrk: calls %u / storage %llu\n",
313 malloc_calls, malloc_storage,
[76e2113]314 aalloc_calls, calloc_storage,
[bcb14b5]315 calloc_calls, calloc_storage,
316 memalign_calls, memalign_storage,
[76e2113]317 amemalign_calls, amemalign_storage,
[bcb14b5]318 cmemalign_calls, cmemalign_storage,
[cfbc703d]319 resize_calls, resize_storage,
[bcb14b5]320 realloc_calls, realloc_storage,
321 free_calls, free_storage,
322 mmap_calls, mmap_storage,
323 munmap_calls, munmap_storage,
324 sbrk_calls, sbrk_storage
[c4f68dc]325 );
[d46ed6e]326} // printStats
[c4f68dc]327
[bcb14b5]328static int printStatsXML( FILE * stream ) { // see malloc_info
[76e2113]329 char helpText[1024];
[b6830d74]330 int len = snprintf( helpText, sizeof(helpText),
[c4f68dc]331 "<malloc version=\"1\">\n"
332 "<heap nr=\"0\">\n"
333 "<sizes>\n"
334 "</sizes>\n"
335 "<total type=\"malloc\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]336 "<total type=\"aalloc\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]337 "<total type=\"calloc\" count=\"%u\" size=\"%llu\"/>\n"
338 "<total type=\"memalign\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]339 "<total type=\"amemalign\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]340 "<total type=\"cmemalign\" count=\"%u\" size=\"%llu\"/>\n"
[cfbc703d]341 "<total type=\"resize\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]342 "<total type=\"realloc\" count=\"%u\" size=\"%llu\"/>\n"
343 "<total type=\"free\" count=\"%u\" size=\"%llu\"/>\n"
344 "<total type=\"mmap\" count=\"%u\" size=\"%llu\"/>\n"
345 "<total type=\"munmap\" count=\"%u\" size=\"%llu\"/>\n"
346 "<total type=\"sbrk\" count=\"%u\" size=\"%llu\"/>\n"
347 "</malloc>",
348 malloc_calls, malloc_storage,
[76e2113]349 aalloc_calls, aalloc_storage,
[c4f68dc]350 calloc_calls, calloc_storage,
351 memalign_calls, memalign_storage,
[76e2113]352 amemalign_calls, amemalign_storage,
[c4f68dc]353 cmemalign_calls, cmemalign_storage,
[cfbc703d]354 resize_calls, resize_storage,
[c4f68dc]355 realloc_calls, realloc_storage,
356 free_calls, free_storage,
357 mmap_calls, mmap_storage,
358 munmap_calls, munmap_storage,
359 sbrk_calls, sbrk_storage
360 );
[95eb7cf]361 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit
362 return len;
[d46ed6e]363} // printStatsXML
[c4f68dc]364#endif // __STATISTICS__
365
[95eb7cf]366
[1e034d9]367// thunk problem
368size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
369 size_t l = 0, m, h = dim;
370 while ( l < h ) {
371 m = (l + h) / 2;
372 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
373 l = m + 1;
374 } else {
375 h = m;
376 } // if
377 } // while
378 return l;
379} // Bsearchl
380
381
[95eb7cf]382static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
[1076d05]383 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]384 mmapStart = value; // set global
385
386 // find the closest bucket size less than or equal to the mmapStart size
[1e034d9]387 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
[95eb7cf]388 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
389 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]390 return true;
[95eb7cf]391} // setMmapStart
392
393
[cfbc703d]394// <-------+----------------------------------------------------> bsize (bucket size)
395// |header |addr
396//==================================================================================
397// align/offset |
398// <-----------------<------------+-----------------------------> bsize (bucket size)
399// |fake-header | addr
400#define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))
401#define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset))
402
403// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
404// |header |addr
405//==================================================================================
406// align/offset |
407// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
408// |fake-header |addr
409#define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
410
411
[9c438546]412// static inline void noMemory() {
413// abort( "Heap memory exhausted at %zu bytes.\n"
414// "Possible cause is very large memory allocation and/or large amount of unfreed storage allocated by the program or system/library routines.",
415// ((char *)(sbrk( 0 )) - (char *)(heapManager.heapBegin)) );
416// } // noMemory
417
418
[cfbc703d]419static inline void checkAlign( size_t alignment ) {
420 if ( alignment < libAlign() || ! libPow2( alignment ) ) {
421 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
422 } // if
423} // checkAlign
424
425
[e3fea42]426static inline void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]427 if ( unlikely( check ) ) { // bad address ?
[c4f68dc]428 abort( "Attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]429 "Possible cause is duplicate free on same block or overwriting of memory.",
430 name, addr );
[b6830d74]431 } // if
[c4f68dc]432} // checkHeader
433
[95eb7cf]434
435static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {
[b6830d74]436 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?
[c4f68dc]437 alignment = header->kind.fake.alignment & -2; // remove flag from value
438 #ifdef __CFA_DEBUG__
439 checkAlign( alignment ); // check alignment
440 #endif // __CFA_DEBUG__
[cfbc703d]441 header = realHeader( header ); // backup from fake to real header
[d5d3a90]442 } else {
443 alignment = 0;
[b6830d74]444 } // if
[c4f68dc]445} // fakeHeader
446
[95eb7cf]447
[9c438546]448static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem,
449 size_t & size, size_t & alignment ) with( heapManager ) {
[b6830d74]450 header = headerAddr( addr );
[c4f68dc]451
[b6830d74]452 if ( unlikely( heapEnd < addr ) ) { // mmapped ?
[95eb7cf]453 fakeHeader( header, alignment );
[c4f68dc]454 size = header->kind.real.blockSize & -3; // mmap size
455 return true;
[b6830d74]456 } // if
[c4f68dc]457
458 #ifdef __CFA_DEBUG__
[1076d05]459 checkHeader( addr < heapBegin, name, addr ); // bad low address ?
[c4f68dc]460 #endif // __CFA_DEBUG__
[b6830d74]461
[bcb14b5]462 // header may be safe to dereference
[95eb7cf]463 fakeHeader( header, alignment );
[c4f68dc]464 #ifdef __CFA_DEBUG__
[bcb14b5]465 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]466 #endif // __CFA_DEBUG__
467
[bcb14b5]468 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);
[c4f68dc]469 #ifdef __CFA_DEBUG__
[bcb14b5]470 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {
471 abort( "Attempt to %s storage %p with corrupted header.\n"
472 "Possible cause is duplicate free on same block or overwriting of header information.",
473 name, addr );
474 } // if
[c4f68dc]475 #endif // __CFA_DEBUG__
[bcb14b5]476 size = freeElem->blockSize;
477 return false;
[c4f68dc]478} // headers
479
[dd23e66]480#define NO_MEMORY_MSG "no heap memory available for allocating %zd new bytes."
[c4f68dc]481
[9c438546]482static inline void * extend( size_t size ) with( heapManager ) {
[b6830d74]483 lock( extlock __cfaabi_dbg_ctx2 );
484 ptrdiff_t rem = heapRemaining - size;
485 if ( rem < 0 ) {
[c4f68dc]486 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
487
488 size_t increase = libCeiling( size > heapExpand ? size : heapExpand, libAlign() );
[dd23e66]489 Succeed:
490 {
491 if ( sbrk( increase ) != (void *)-1 ) break Succeed; // succeed ?
492 if ( default_heap_exhausted() ) { // try fix
493 if ( sbrk( increase ) != (void *)-1 ) break Succeed; // succeed ?
494 } // if
[c4f68dc]495 unlock( extlock );
[dd23e66]496 abort( NO_MEMORY_MSG, size ); // give up
497 }
[bcb14b5]498 #ifdef __STATISTICS__
[c4f68dc]499 sbrk_calls += 1;
500 sbrk_storage += increase;
[bcb14b5]501 #endif // __STATISTICS__
502 #ifdef __CFA_DEBUG__
[c4f68dc]503 // Set new memory to garbage so subsequent uninitialized usages might fail.
504 memset( (char *)heapEnd + heapRemaining, '\377', increase );
[bcb14b5]505 #endif // __CFA_DEBUG__
[c4f68dc]506 rem = heapRemaining + increase - size;
[b6830d74]507 } // if
[c4f68dc]508
[b6830d74]509 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;
510 heapRemaining = rem;
511 heapEnd = (char *)heapEnd + size;
512 unlock( extlock );
513 return block;
[c4f68dc]514} // extend
515
516
[9c438546]517static inline void * doMalloc( size_t size ) with( heapManager ) {
[7b149bc]518 HeapManager.Storage * block; // pointer to new block of storage
[c4f68dc]519
[b6830d74]520 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
521 // along with the block and is a multiple of the alignment size.
[c4f68dc]522
[1076d05]523 if ( unlikely( size > ULONG_MAX - sizeof(HeapManager.Storage) ) ) return 0p;
[b6830d74]524 size_t tsize = size + sizeof(HeapManager.Storage);
525 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
[e723100]526 size_t posn;
527 #ifdef FASTLOOKUP
528 if ( tsize < LookupSizes ) posn = lookup[tsize];
529 else
530 #endif // FASTLOOKUP
531 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
532 HeapManager.FreeHeader * freeElem = &freeLists[posn];
533 // #ifdef FASTLOOKUP
534 // if ( tsize < LookupSizes )
535 // freeElem = &freeLists[lookup[tsize]];
536 // else
537 // #endif // FASTLOOKUP
538 // freeElem = bsearchl( tsize, freeLists, (size_t)maxBucketsUsed ); // binary search
539 // HeapManager.FreeHeader * freeElem =
540 // #ifdef FASTLOOKUP
541 // tsize < LookupSizes ? &freeLists[lookup[tsize]] :
542 // #endif // FASTLOOKUP
543 // bsearchl( tsize, freeLists, (size_t)maxBucketsUsed ); // binary search
[c4f68dc]544 assert( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
545 assert( tsize <= freeElem->blockSize ); // search failure ?
546 tsize = freeElem->blockSize; // total space needed for request
547
548 // Spin until the lock is acquired for this particular size of block.
549
[9c438546]550 #if BUCKETLOCK == SPINLOCK
[bcb14b5]551 lock( freeElem->lock __cfaabi_dbg_ctx2 );
552 block = freeElem->freeList; // remove node from stack
[c4f68dc]553 #else
[9c438546]554 block = pop( freeElem->freeList );
555 #endif // BUCKETLOCK
[95eb7cf]556 if ( unlikely( block == 0p ) ) { // no free block ?
[9c438546]557 #if BUCKETLOCK == SPINLOCK
[c4f68dc]558 unlock( freeElem->lock );
[9c438546]559 #endif // BUCKETLOCK
[bcb14b5]560
[c4f68dc]561 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
562 // and then carve it off.
563
564 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call
[9c438546]565 #if BUCKETLOCK == SPINLOCK
[c4f68dc]566 } else {
567 freeElem->freeList = block->header.kind.real.next;
568 unlock( freeElem->lock );
[9c438546]569 #endif // BUCKETLOCK
[c4f68dc]570 } // if
571
572 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
[bcb14b5]573 } else { // large size => mmap
[1076d05]574 if ( unlikely( size > ULONG_MAX - pageSize ) ) return 0p;
[c4f68dc]575 tsize = libCeiling( tsize, pageSize ); // must be multiple of page size
576 #ifdef __STATISTICS__
[bcb14b5]577 __atomic_add_fetch( &mmap_calls, 1, __ATOMIC_SEQ_CST );
578 __atomic_add_fetch( &mmap_storage, tsize, __ATOMIC_SEQ_CST );
[c4f68dc]579 #endif // __STATISTICS__
[dd23e66]580 Succeed:
581 {
582 block = (HeapManager.Storage *)mmap( 0, tsize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
583 if ( block != (HeapManager.Storage *)MAP_FAILED ) break Succeed; // succeed ?
584 if ( errno == ENOMEM && default_heap_exhausted() ) { // out of memory and try again ?
585 block = (HeapManager.Storage *)mmap( 0, tsize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
586 if ( block != (HeapManager.Storage *)MAP_FAILED ) break Succeed; // succeed ?
587 } // if
588 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize );
[c4f68dc]589 // Do not call strerror( errno ) as it may call malloc.
590 abort( "(HeapManager &)0x%p.doMalloc() : internal error, mmap failure, size:%zu error:%d.", &heapManager, tsize, errno );
[dd23e66]591 }
[bcb14b5]592 #ifdef __CFA_DEBUG__
[c4f68dc]593 // Set new memory to garbage so subsequent uninitialized usages might fail.
594 memset( block, '\377', tsize );
[bcb14b5]595 #endif // __CFA_DEBUG__
[c4f68dc]596 block->header.kind.real.blockSize = tsize; // storage size for munmap
[bcb14b5]597 } // if
[c4f68dc]598
[9c438546]599 block->header.kind.real.size = size; // store allocation size
[95eb7cf]600 void * addr = &(block->data); // adjust off header to user bytes
[c4f68dc]601
602 #ifdef __CFA_DEBUG__
[95eb7cf]603 assert( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[bcb14b5]604 __atomic_add_fetch( &allocFree, tsize, __ATOMIC_SEQ_CST );
605 if ( traceHeap() ) {
606 enum { BufferSize = 64 };
607 char helpText[BufferSize];
[95eb7cf]608 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize );
609 // int len = snprintf( helpText, BufferSize, "Malloc %p %zu\n", addr, size );
610 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]611 } // if
[c4f68dc]612 #endif // __CFA_DEBUG__
613
[95eb7cf]614 return addr;
[c4f68dc]615} // doMalloc
616
617
[9c438546]618static inline void doFree( void * addr ) with( heapManager ) {
[c4f68dc]619 #ifdef __CFA_DEBUG__
[95eb7cf]620 if ( unlikely( heapManager.heapBegin == 0p ) ) {
[bcb14b5]621 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
622 } // if
[c4f68dc]623 #endif // __CFA_DEBUG__
624
[b6830d74]625 HeapManager.Storage.Header * header;
626 HeapManager.FreeHeader * freeElem;
627 size_t size, alignment; // not used (see realloc)
[c4f68dc]628
[b6830d74]629 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
[c4f68dc]630 #ifdef __STATISTICS__
[bcb14b5]631 __atomic_add_fetch( &munmap_calls, 1, __ATOMIC_SEQ_CST );
632 __atomic_add_fetch( &munmap_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]633 #endif // __STATISTICS__
634 if ( munmap( header, size ) == -1 ) {
635 #ifdef __CFA_DEBUG__
636 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
[bcb14b5]637 "Possible cause is invalid pointer.",
638 addr );
[c4f68dc]639 #endif // __CFA_DEBUG__
640 } // if
[bcb14b5]641 } else {
[c4f68dc]642 #ifdef __CFA_DEBUG__
[bcb14b5]643 // Set free memory to garbage so subsequent usages might fail.
644 memset( ((HeapManager.Storage *)header)->data, '\377', freeElem->blockSize - sizeof( HeapManager.Storage ) );
[c4f68dc]645 #endif // __CFA_DEBUG__
646
647 #ifdef __STATISTICS__
[bcb14b5]648 free_storage += size;
[c4f68dc]649 #endif // __STATISTICS__
[9c438546]650 #if BUCKETLOCK == SPINLOCK
[bcb14b5]651 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
652 header->kind.real.next = freeElem->freeList; // push on stack
653 freeElem->freeList = (HeapManager.Storage *)header;
654 unlock( freeElem->lock ); // release spin lock
[c4f68dc]655 #else
[9c438546]656 push( freeElem->freeList, *(HeapManager.Storage *)header );
657 #endif // BUCKETLOCK
[bcb14b5]658 } // if
[c4f68dc]659
660 #ifdef __CFA_DEBUG__
[bcb14b5]661 __atomic_add_fetch( &allocFree, -size, __ATOMIC_SEQ_CST );
662 if ( traceHeap() ) {
[7b149bc]663 enum { BufferSize = 64 };
664 char helpText[BufferSize];
[bcb14b5]665 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size );
[95eb7cf]666 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]667 } // if
[c4f68dc]668 #endif // __CFA_DEBUG__
669} // doFree
670
671
[9c438546]672size_t prtFree( HeapManager & manager ) with( manager ) {
[b6830d74]673 size_t total = 0;
[c4f68dc]674 #ifdef __STATISTICS__
[95eb7cf]675 __cfaabi_bits_acquire();
676 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]677 #endif // __STATISTICS__
[b6830d74]678 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
[d46ed6e]679 size_t size = freeLists[i].blockSize;
680 #ifdef __STATISTICS__
681 unsigned int N = 0;
682 #endif // __STATISTICS__
[b6830d74]683
[9c438546]684 #if BUCKETLOCK == SPINLOCK
[95eb7cf]685 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]686 #else
[9c438546]687 for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; /* p = getNext( p )->top */) {
[0f89d4f]688 typeof(p) temp = ( p )`next->top; // FIX ME: direct assignent fails, initialization works
[9c438546]689 p = temp;
690 #endif // BUCKETLOCK
[d46ed6e]691 total += size;
692 #ifdef __STATISTICS__
693 N += 1;
694 #endif // __STATISTICS__
[b6830d74]695 } // for
696
[d46ed6e]697 #ifdef __STATISTICS__
[95eb7cf]698 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
699 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]700 #endif // __STATISTICS__
701 } // for
702 #ifdef __STATISTICS__
[95eb7cf]703 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
704 __cfaabi_bits_release();
[d46ed6e]705 #endif // __STATISTICS__
706 return (char *)heapEnd - (char *)heapBegin - total;
[95eb7cf]707} // prtFree
708
709
[9c438546]710static void ?{}( HeapManager & manager ) with( manager ) {
[95eb7cf]711 pageSize = sysconf( _SC_PAGESIZE );
712
713 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
714 freeLists[i].blockSize = bucketSizes[i];
715 } // for
716
717 #ifdef FASTLOOKUP
718 unsigned int idx = 0;
719 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
720 if ( i > bucketSizes[idx] ) idx += 1;
721 lookup[i] = idx;
722 } // for
723 #endif // FASTLOOKUP
724
[1076d05]725 if ( ! setMmapStart( default_mmap_start() ) ) {
[95eb7cf]726 abort( "HeapManager : internal error, mmap start initialization failure." );
727 } // if
728 heapExpand = default_heap_expansion();
729
[1e034d9]730 char * end = (char *)sbrk( 0 );
[1076d05]731 heapBegin = heapEnd = sbrk( (char *)libCeiling( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment
[95eb7cf]732} // HeapManager
733
734
735static void ^?{}( HeapManager & ) {
736 #ifdef __STATISTICS__
[baf608a]737 if ( traceHeapTerm() ) {
738 printStats();
739 // if ( prtfree() ) prtFree( heapManager, true );
740 } // if
[95eb7cf]741 #endif // __STATISTICS__
742} // ~HeapManager
743
744
745static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
746void memory_startup( void ) {
747 #ifdef __CFA_DEBUG__
748 if ( unlikely( heapBoot ) ) { // check for recursion during system boot
749 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
750 abort( "boot() : internal error, recursively invoked during system boot." );
751 } // if
752 heapBoot = true;
753 #endif // __CFA_DEBUG__
754
755 //assert( heapManager.heapBegin != 0 );
756 //heapManager{};
[1076d05]757 if ( heapManager.heapBegin == 0p ) heapManager{}; // sanity check
[95eb7cf]758} // memory_startup
759
760static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
761void memory_shutdown( void ) {
762 ^heapManager{};
763} // memory_shutdown
[c4f68dc]764
[bcb14b5]765
766static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
[d5d3a90]767 verify( heapManager.heapBegin != 0 ); // called before memory_startup ?
[dd23e66]768 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[d5d3a90]769
[76e2113]770#if __SIZEOF_POINTER__ == 8
771 verify( size < ((typeof(size_t))1 << 48) );
772#endif // __SIZEOF_POINTER__ == 8
[d5d3a90]773 return doMalloc( size );
[bcb14b5]774} // mallocNoStats
[c4f68dc]775
776
[76e2113]777static inline void * callocNoStats( size_t dim, size_t elemSize ) {
778 size_t size = dim * elemSize;
[dd23e66]779 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[95eb7cf]780 char * addr = (char *)mallocNoStats( size );
781
782 HeapManager.Storage.Header * header;
783 HeapManager.FreeHeader * freeElem;
784 size_t bsize, alignment;
[d5d3a90]785 #ifndef __CFA_DEBUG__
786 bool mapped =
787 #endif // __CFA_DEBUG__
788 headers( "calloc", addr, header, freeElem, bsize, alignment );
[95eb7cf]789 #ifndef __CFA_DEBUG__
[dd23e66]790
[95eb7cf]791 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
792 if ( ! mapped )
793 #endif // __CFA_DEBUG__
[d5d3a90]794 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
[1e034d9]795 // `-header`-addr `-size
[d5d3a90]796 memset( addr, '\0', size ); // set to zeros
[95eb7cf]797
798 header->kind.real.blockSize |= 2; // mark as zero filled
799 return addr;
800} // callocNoStats
801
802
[bcb14b5]803static inline void * memalignNoStats( size_t alignment, size_t size ) { // necessary for malloc statistics
[dd23e66]804 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[d5d3a90]805
[bcb14b5]806 #ifdef __CFA_DEBUG__
[b6830d74]807 checkAlign( alignment ); // check alignment
[bcb14b5]808 #endif // __CFA_DEBUG__
[c4f68dc]809
[b6830d74]810 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
[bcb14b5]811 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
[b6830d74]812
813 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
814 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
815 // .-------------v-----------------v----------------v----------,
816 // | Real Header | ... padding ... | Fake Header | data ... |
817 // `-------------^-----------------^-+--------------^----------'
818 // |<--------------------------------' offset/align |<-- alignment boundary
819
820 // subtract libAlign() because it is already the minimum alignment
821 // add sizeof(Storage) for fake header
[95eb7cf]822 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) );
[b6830d74]823
824 // address in the block of the "next" alignment address
[95eb7cf]825 char * user = (char *)libCeiling( (uintptr_t)(addr + sizeof(HeapManager.Storage)), alignment );
[b6830d74]826
827 // address of header from malloc
[95eb7cf]828 HeapManager.Storage.Header * realHeader = headerAddr( addr );
[4cf617e]829 realHeader->kind.real.size = size; // correct size to eliminate above alignment offset
[b6830d74]830 // address of fake header * before* the alignment location
831 HeapManager.Storage.Header * fakeHeader = headerAddr( user );
832 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
833 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
834 // SKULLDUGGERY: odd alignment imples fake header
835 fakeHeader->kind.fake.alignment = alignment | 1;
836
837 return user;
[bcb14b5]838} // memalignNoStats
[c4f68dc]839
840
[76e2113]841static inline void * cmemalignNoStats( size_t alignment, size_t dim, size_t elemSize ) {
842 size_t size = dim * elemSize;
[dd23e66]843 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[95eb7cf]844 char * addr = (char *)memalignNoStats( alignment, size );
[d5d3a90]845
[95eb7cf]846 HeapManager.Storage.Header * header;
847 HeapManager.FreeHeader * freeElem;
848 size_t bsize;
849 #ifndef __CFA_DEBUG__
[dd23e66]850 bool mapped =
851 #endif // __CFA_DEBUG__
852 headers( "cmemalign", addr, header, freeElem, bsize, alignment );
853 #ifndef __CFA_DEBUG__
854
[95eb7cf]855 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
856 if ( ! mapped )
857 #endif // __CFA_DEBUG__
[dd23e66]858 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
859 // `-header`-addr `-size
860 memset( addr, '\0', size ); // set to zeros
[95eb7cf]861
[cfbc703d]862 header->kind.real.blockSize |= 2; // mark as zero filled
[95eb7cf]863 return addr;
864} // cmemalignNoStats
865
866
[e723100]867// supported mallopt options
868#ifndef M_MMAP_THRESHOLD
869#define M_MMAP_THRESHOLD (-1)
870#endif // M_TOP_PAD
871#ifndef M_TOP_PAD
872#define M_TOP_PAD (-2)
873#endif // M_TOP_PAD
874
875
[c4f68dc]876extern "C" {
[61248a4]877 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
878 // then malloc() returns a unique pointer value that can later be successfully passed to free().
[b6830d74]879 void * malloc( size_t size ) {
[c4f68dc]880 #ifdef __STATISTICS__
[bcb14b5]881 __atomic_add_fetch( &malloc_calls, 1, __ATOMIC_SEQ_CST );
882 __atomic_add_fetch( &malloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]883 #endif // __STATISTICS__
884
[bcb14b5]885 return mallocNoStats( size );
886 } // malloc
[c4f68dc]887
[76e2113]888
[61248a4]889 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[76e2113]890 void * aalloc( size_t dim, size_t elemSize ) {
891 #ifdef __STATISTICS__
892 __atomic_add_fetch( &aalloc_calls, 1, __ATOMIC_SEQ_CST );
893 __atomic_add_fetch( &aalloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
894 #endif // __STATISTICS__
895
[1076d05]896 return mallocNoStats( dim * elemSize );
[76e2113]897 } // aalloc
898
899
[61248a4]900 // Same as aalloc() with memory set to zero.
[76e2113]901 void * calloc( size_t dim, size_t elemSize ) {
[c4f68dc]902 #ifdef __STATISTICS__
[bcb14b5]903 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]904 __atomic_add_fetch( &calloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[c4f68dc]905 #endif // __STATISTICS__
906
[76e2113]907 return callocNoStats( dim, elemSize );
[bcb14b5]908 } // calloc
[c4f68dc]909
[61248a4]910 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
911 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
912 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
913 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[cfbc703d]914 void * resize( void * oaddr, size_t size ) {
915 #ifdef __STATISTICS__
916 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
917 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
918 #endif // __STATISTICS__
919
920 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]921 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[cfbc703d]922 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size );
923
924 HeapManager.Storage.Header * header;
925 HeapManager.FreeHeader * freeElem;
926 size_t bsize, oalign = 0;
927 headers( "resize", oaddr, header, freeElem, bsize, oalign );
928
[76e2113]929 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[cfbc703d]930 // same size, DO NOT preserve STICKY PROPERTIES.
[76e2113]931 if ( oalign == 0 && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[cfbc703d]932 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill
[d5d3a90]933 header->kind.real.size = size; // reset allocation size
[cfbc703d]934 return oaddr;
935 } // if
[0f89d4f]936
[cfbc703d]937 // change size, DO NOT preserve STICKY PROPERTIES.
938 free( oaddr );
[d5d3a90]939 return mallocNoStats( size ); // create new area
[cfbc703d]940 } // resize
941
942
[61248a4]943 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]944 // the old and new sizes.
[95eb7cf]945 void * realloc( void * oaddr, size_t size ) {
[c4f68dc]946 #ifdef __STATISTICS__
[bcb14b5]947 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[cfbc703d]948 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]949 #endif // __STATISTICS__
950
[1f6de372]951 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]952 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[95eb7cf]953 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size );
[c4f68dc]954
955 HeapManager.Storage.Header * header;
956 HeapManager.FreeHeader * freeElem;
[95eb7cf]957 size_t bsize, oalign = 0;
958 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
959
960 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[d5d3a90]961 size_t osize = header->kind.real.size; // old allocation size
962 bool ozfill = (header->kind.real.blockSize & 2) != 0; // old allocation zero filled
963 if ( unlikely( size <= odsize ) && size > odsize / 2 ) { // allow up to 50% wasted storage
964 header->kind.real.size = size; // reset allocation size
965 if ( unlikely( ozfill ) && size > osize ) { // previous request zero fill and larger ?
966 memset( (char *)oaddr + osize, (int)'\0', size - osize ); // initialize added storage
967 } // if
[95eb7cf]968 return oaddr;
[c4f68dc]969 } // if
970
[95eb7cf]971 // change size and copy old content to new storage
972
973 void * naddr;
[d5d3a90]974 if ( likely( oalign == 0 ) ) { // previous request memalign?
975 naddr = mallocNoStats( size ); // create new area
[c4f68dc]976 } else {
[d5d3a90]977 naddr = memalignNoStats( oalign, size ); // create new aligned area
[c4f68dc]978 } // if
[1e034d9]979
[95eb7cf]980 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[d5d3a90]981 memcpy( naddr, oaddr, MIN( osize, size ) ); // copy bytes
[95eb7cf]982 free( oaddr );
[d5d3a90]983
984 if ( unlikely( ozfill ) ) { // previous request zero fill ?
985 header->kind.real.blockSize |= 2; // mark new request as zero filled
986 if ( size > osize ) { // previous request larger ?
987 memset( (char *)naddr + osize, (int)'\0', size - osize ); // initialize added storage
988 } // if
989 } // if
[95eb7cf]990 return naddr;
[b6830d74]991 } // realloc
[c4f68dc]992
[61248a4]993 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[bcb14b5]994 void * memalign( size_t alignment, size_t size ) {
[c4f68dc]995 #ifdef __STATISTICS__
996 __atomic_add_fetch( &memalign_calls, 1, __ATOMIC_SEQ_CST );
997 __atomic_add_fetch( &memalign_storage, size, __ATOMIC_SEQ_CST );
998 #endif // __STATISTICS__
999
[95eb7cf]1000 return memalignNoStats( alignment, size );
[bcb14b5]1001 } // memalign
[c4f68dc]1002
[95eb7cf]1003
[76e2113]1004 // Same as aalloc() with memory alignment.
1005 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) {
1006 #ifdef __STATISTICS__
1007 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
1008 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
1009 #endif // __STATISTICS__
1010
[1076d05]1011 return memalignNoStats( alignment, dim * elemSize );
[76e2113]1012 } // amemalign
1013
1014
[ca7949b]1015 // Same as calloc() with memory alignment.
[76e2113]1016 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) {
[95eb7cf]1017 #ifdef __STATISTICS__
1018 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]1019 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[95eb7cf]1020 #endif // __STATISTICS__
1021
[76e2113]1022 return cmemalignNoStats( alignment, dim, elemSize );
[95eb7cf]1023 } // cmemalign
1024
[ca7949b]1025 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
1026 // of alignment. This requirement is universally ignored.
[b6830d74]1027 void * aligned_alloc( size_t alignment, size_t size ) {
[c4f68dc]1028 return memalign( alignment, size );
[b6830d74]1029 } // aligned_alloc
[c4f68dc]1030
1031
[ca7949b]1032 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1033 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1034 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1035 // free(3).
[b6830d74]1036 int posix_memalign( void ** memptr, size_t alignment, size_t size ) {
[bcb14b5]1037 if ( alignment < sizeof(void *) || ! libPow2( alignment ) ) return EINVAL; // check alignment
[c4f68dc]1038 * memptr = memalign( alignment, size );
1039 return 0;
[b6830d74]1040 } // posix_memalign
[c4f68dc]1041
[ca7949b]1042 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1043 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[b6830d74]1044 void * valloc( size_t size ) {
[c4f68dc]1045 return memalign( pageSize, size );
[b6830d74]1046 } // valloc
[c4f68dc]1047
1048
[ca7949b]1049 // Same as valloc but rounds size to multiple of page size.
1050 void * pvalloc( size_t size ) {
1051 return memalign( pageSize, libCeiling( size, pageSize ) );
1052 } // pvalloc
1053
1054
1055 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1056 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1057 // 0p, no operation is performed.
[b6830d74]1058 void free( void * addr ) {
[c4f68dc]1059 #ifdef __STATISTICS__
[bcb14b5]1060 __atomic_add_fetch( &free_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]1061 #endif // __STATISTICS__
1062
[95eb7cf]1063 if ( unlikely( addr == 0p ) ) { // special case
1064 // #ifdef __CFA_DEBUG__
1065 // if ( traceHeap() ) {
1066 // #define nullmsg "Free( 0x0 ) size:0\n"
[1e034d9]1067 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
[95eb7cf]1068 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
1069 // } // if
1070 // #endif // __CFA_DEBUG__
[c4f68dc]1071 return;
1072 } // exit
1073
1074 doFree( addr );
[b6830d74]1075 } // free
[93c2e0a]1076
[c4f68dc]1077
[76e2113]1078 // Returns the alignment of an allocation.
[b6830d74]1079 size_t malloc_alignment( void * addr ) {
[95eb7cf]1080 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[1aa6ecb]1081 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1082 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1083 return header->kind.fake.alignment & -2; // remove flag from value
1084 } else {
[cfbc703d]1085 return libAlign(); // minimum alignment
[c4f68dc]1086 } // if
[bcb14b5]1087 } // malloc_alignment
[c4f68dc]1088
[76e2113]1089 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment.
1090 size_t $malloc_alignment_set( void * addr, size_t alignment ) {
1091 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1092 size_t ret;
1093 HeapManager.Storage.Header * header = headerAddr( addr );
1094 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1095 ret = header->kind.fake.alignment & -2; // remove flag from old value
1096 header->kind.fake.alignment = alignment | 1; // add flag to new value
1097 } else {
1098 ret = 0; // => no alignment to change
1099 } // if
1100 return ret;
1101 } // $malloc_alignment_set
1102
[c4f68dc]1103
[76e2113]1104 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[b6830d74]1105 bool malloc_zero_fill( void * addr ) {
[95eb7cf]1106 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[1aa6ecb]1107 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1108 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
[cfbc703d]1109 header = realHeader( header ); // backup from fake to real header
[c4f68dc]1110 } // if
[76e2113]1111 return (header->kind.real.blockSize & 2) != 0; // zero filled ?
[bcb14b5]1112 } // malloc_zero_fill
[c4f68dc]1113
[76e2113]1114 // Set allocation is zero filled and return previous zero filled.
1115 bool $malloc_zero_fill_set( void * addr ) {
1116 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1117 HeapManager.Storage.Header * header = headerAddr( addr );
1118 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1119 header = realHeader( header ); // backup from fake to real header
1120 } // if
1121 bool ret = (header->kind.real.blockSize & 2) != 0; // zero filled ?
1122 header->kind.real.blockSize |= 2; // mark as zero filled
1123 return ret;
1124 } // $malloc_zero_fill_set
1125
[c4f68dc]1126
[76e2113]1127 // Returns original total allocation size (not bucket size) => array size is dimension * sizeif(T).
1128 size_t malloc_size( void * addr ) {
[849fb370]1129 if ( unlikely( addr == 0p ) ) return 0; // null allocation has zero size
[cfbc703d]1130 HeapManager.Storage.Header * header = headerAddr( addr );
1131 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1132 header = realHeader( header ); // backup from fake to real header
1133 } // if
[9c438546]1134 return header->kind.real.size;
[76e2113]1135 } // malloc_size
1136
1137 // Set allocation size and return previous size.
1138 size_t $malloc_size_set( void * addr, size_t size ) {
[849fb370]1139 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
[76e2113]1140 HeapManager.Storage.Header * header = headerAddr( addr );
1141 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1142 header = realHeader( header ); // backup from fake to real header
1143 } // if
[9c438546]1144 size_t ret = header->kind.real.size;
1145 header->kind.real.size = size;
[76e2113]1146 return ret;
1147 } // $malloc_size_set
[cfbc703d]1148
1149
[ca7949b]1150 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1151 // malloc or a related function.
[95eb7cf]1152 size_t malloc_usable_size( void * addr ) {
1153 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1154 HeapManager.Storage.Header * header;
1155 HeapManager.FreeHeader * freeElem;
1156 size_t bsize, alignment;
1157
1158 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
[dd23e66]1159 return dataStorage( bsize, addr, header ); // data storage in bucket
[95eb7cf]1160 } // malloc_usable_size
1161
1162
[ca7949b]1163 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[b6830d74]1164 void malloc_stats( void ) {
[c4f68dc]1165 #ifdef __STATISTICS__
[bcb14b5]1166 printStats();
[95eb7cf]1167 if ( prtFree() ) prtFree( heapManager );
[c4f68dc]1168 #endif // __STATISTICS__
[bcb14b5]1169 } // malloc_stats
[c4f68dc]1170
[ca7949b]1171 // Changes the file descripter where malloc_stats() writes statistics.
[95eb7cf]1172 int malloc_stats_fd( int fd __attribute__(( unused )) ) {
[c4f68dc]1173 #ifdef __STATISTICS__
[bcb14b5]1174 int temp = statfd;
1175 statfd = fd;
1176 return temp;
[c4f68dc]1177 #else
[bcb14b5]1178 return -1;
[c4f68dc]1179 #endif // __STATISTICS__
[bcb14b5]1180 } // malloc_stats_fd
[c4f68dc]1181
[95eb7cf]1182
[1076d05]1183 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1184 // specifies the parameter to be modified, and value specifies the new value for that parameter.
[95eb7cf]1185 int mallopt( int option, int value ) {
1186 choose( option ) {
1187 case M_TOP_PAD:
[1076d05]1188 heapExpand = ceiling( value, pageSize ); return 1;
[95eb7cf]1189 case M_MMAP_THRESHOLD:
1190 if ( setMmapStart( value ) ) return 1;
[1076d05]1191 break;
[95eb7cf]1192 } // switch
1193 return 0; // error, unsupported
1194 } // mallopt
1195
[ca7949b]1196 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[95eb7cf]1197 int malloc_trim( size_t ) {
1198 return 0; // => impossible to release memory
1199 } // malloc_trim
1200
1201
[ca7949b]1202 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller.
1203 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1204 // malloc).
[c4f68dc]1205 int malloc_info( int options, FILE * stream ) {
[95eb7cf]1206 if ( options != 0 ) { errno = EINVAL; return -1; }
[d46ed6e]1207 return printStatsXML( stream );
[c4f68dc]1208 } // malloc_info
1209
1210
[ca7949b]1211 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1212 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1213 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1214 // result. (The caller must free this memory.)
[c4f68dc]1215 void * malloc_get_state( void ) {
[95eb7cf]1216 return 0p; // unsupported
[c4f68dc]1217 } // malloc_get_state
1218
[bcb14b5]1219
[ca7949b]1220 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1221 // structure pointed to by state.
[c4f68dc]1222 int malloc_set_state( void * ptr ) {
[bcb14b5]1223 return 0; // unsupported
[c4f68dc]1224 } // malloc_set_state
1225} // extern "C"
1226
1227
[95eb7cf]1228// Must have CFA linkage to overload with C linkage realloc.
[cfbc703d]1229void * resize( void * oaddr, size_t nalign, size_t size ) {
[1e034d9]1230 #ifdef __STATISTICS__
[cfbc703d]1231 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
1232 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1233 #endif // __STATISTICS__
[95eb7cf]1234
[1f6de372]1235 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]1236 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[cfbc703d]1237 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size );
1238
[1e034d9]1239 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum
[95eb7cf]1240 #ifdef __CFA_DEBUG__
[1e034d9]1241 else
[95eb7cf]1242 checkAlign( nalign ); // check alignment
1243 #endif // __CFA_DEBUG__
1244
[cfbc703d]1245 HeapManager.Storage.Header * header;
1246 HeapManager.FreeHeader * freeElem;
1247 size_t bsize, oalign = 0;
1248 headers( "resize", oaddr, header, freeElem, bsize, oalign );
1249 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
1250
1251 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match
1252 if ( oalign >= libAlign() ) { // fake header ?
1253 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1254 } // if
1255 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
1256 header->kind.real.blockSize &= -2; // turn off 0 fill
[dd23e66]1257 header->kind.real.size = size; // reset allocation size
[cfbc703d]1258 return oaddr;
1259 } // if
1260 } // if
1261
[dd23e66]1262 // change size, DO NOT preserve STICKY PROPERTIES.
[cfbc703d]1263 free( oaddr );
[dd23e66]1264 return memalignNoStats( nalign, size ); // create new aligned area
[cfbc703d]1265} // resize
1266
1267
1268void * realloc( void * oaddr, size_t nalign, size_t size ) {
1269 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum
1270 #ifdef __CFA_DEBUG__
1271 else
1272 checkAlign( nalign ); // check alignment
1273 #endif // __CFA_DEBUG__
1274
[95eb7cf]1275 HeapManager.Storage.Header * header;
1276 HeapManager.FreeHeader * freeElem;
1277 size_t bsize, oalign = 0;
1278 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
1279
[cfbc703d]1280 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match
1281 if ( oalign >= libAlign() ) { // fake header ?
1282 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1283 } // if
[95eb7cf]1284 return realloc( oaddr, size );
[1e034d9]1285 } // if
[95eb7cf]1286
[cfbc703d]1287 // change size and copy old content to new storage
1288
[1e034d9]1289 #ifdef __STATISTICS__
[cfbc703d]1290 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[95eb7cf]1291 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1292 #endif // __STATISTICS__
1293
[cfbc703d]1294 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]1295 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[cfbc703d]1296 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size );
[95eb7cf]1297
[dd23e66]1298 size_t osize = header->kind.real.size; // old allocation size
1299 bool ozfill = (header->kind.real.blockSize & 2) != 0; // old allocation zero filled
1300
1301 void * naddr = memalignNoStats( nalign, size ); // create new aligned area
[95eb7cf]1302
[1e034d9]1303 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[d5d3a90]1304 memcpy( naddr, oaddr, MIN( osize, size ) ); // copy bytes
[1e034d9]1305 free( oaddr );
[d5d3a90]1306
1307 if ( unlikely( ozfill ) ) { // previous request zero fill ?
1308 header->kind.real.blockSize |= 2; // mark new request as zero filled
1309 if ( size > osize ) { // previous request larger ?
1310 memset( (char *)naddr + osize, (int)'\0', size - osize ); // initialize added storage
1311 } // if
1312 } // if
[1e034d9]1313 return naddr;
[95eb7cf]1314} // realloc
1315
1316
[c4f68dc]1317// Local Variables: //
1318// tab-width: 4 //
[f8cd310]1319// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1320// End: //
Note: See TracBrowser for help on using the repository browser.