source: libcfa/src/heap.cfa@ a3fab47

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since a3fab47 was 61248a4, checked in by Peter A. Buhr <pabuhr@…>, 5 years ago

update comments for public C allocation routines

  • Property mode set to 100644
File size: 49.9 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
7// heap.c --
8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[61248a4]12// Last Modified On : Sat Apr 18 17:43:15 2020
13// Update Count : 718
[73abe95]14//
[c4f68dc]15
16#include <unistd.h> // sbrk, sysconf
17#include <stdbool.h> // true, false
18#include <stdio.h> // snprintf, fileno
19#include <errno.h> // errno
[1e034d9]20#include <string.h> // memset, memcpy
[c4f68dc]21extern "C" {
22#include <sys/mman.h> // mmap, munmap
23} // extern "C"
24
[b6830d74]25// #comment TD : Many of these should be merged into math I believe
[bcb14b5]26#include "bits/align.hfa" // libPow2
27#include "bits/defs.hfa" // likely, unlikely
28#include "bits/locks.hfa" // __spinlock_t
[73abe95]29#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[1e034d9]30//#include "stdlib.hfa" // bsearchl
[c4f68dc]31#include "malloc.h"
32
[95eb7cf]33#define MIN(x, y) (y > x ? x : y)
[c4f68dc]34
[93c2e0a]35static bool traceHeap = false;
[d46ed6e]36
[baf608a]37inline bool traceHeap() { return traceHeap; }
[d46ed6e]38
[93c2e0a]39bool traceHeapOn() {
40 bool temp = traceHeap;
[d46ed6e]41 traceHeap = true;
42 return temp;
43} // traceHeapOn
44
[93c2e0a]45bool traceHeapOff() {
46 bool temp = traceHeap;
[d46ed6e]47 traceHeap = false;
48 return temp;
49} // traceHeapOff
50
[baf608a]51bool traceHeapTerm() { return false; }
52
[d46ed6e]53
[95eb7cf]54static bool prtFree = false;
[d46ed6e]55
[95eb7cf]56inline bool prtFree() {
57 return prtFree;
58} // prtFree
[5d4fa18]59
[95eb7cf]60bool prtFreeOn() {
61 bool temp = prtFree;
62 prtFree = true;
[5d4fa18]63 return temp;
[95eb7cf]64} // prtFreeOn
[5d4fa18]65
[95eb7cf]66bool prtFreeOff() {
67 bool temp = prtFree;
68 prtFree = false;
[5d4fa18]69 return temp;
[95eb7cf]70} // prtFreeOff
[5d4fa18]71
72
[e723100]73enum {
[1e034d9]74 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address,
75 // the brk address is extended by the extension amount.
[e723100]76 __CFA_DEFAULT_HEAP_EXPANSION__ = (1 * 1024 * 1024),
[1e034d9]77
78 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;
79 // values greater than or equal to this value are mmap from the operating system.
80 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),
[e723100]81};
82
83size_t default_mmap_start() __attribute__(( weak )) {
84 return __CFA_DEFAULT_MMAP_START__;
85} // default_mmap_start
86
87size_t default_heap_expansion() __attribute__(( weak )) {
88 return __CFA_DEFAULT_HEAP_EXPANSION__;
89} // default_heap_expansion
90
91
[f0b3f51]92#ifdef __CFA_DEBUG__
[93c2e0a]93static unsigned int allocFree; // running total of allocations minus frees
[d46ed6e]94
[95eb7cf]95static void prtUnfreed() {
[b6830d74]96 if ( allocFree != 0 ) {
[d46ed6e]97 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
[4ea1c6d]98 char helpText[512];
99 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %u(0x%x) bytes of storage allocated but not freed.\n"
100 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
101 (long int)getpid(), allocFree, allocFree ); // always print the UNIX pid
102 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[b6830d74]103 } // if
[95eb7cf]104} // prtUnfreed
[d46ed6e]105
106extern "C" {
[bcb14b5]107 void heapAppStart() { // called by __cfaabi_appready_startup
108 allocFree = 0;
109 } // heapAppStart
110
111 void heapAppStop() { // called by __cfaabi_appready_startdown
112 fclose( stdin ); fclose( stdout );
[95eb7cf]113 prtUnfreed();
[bcb14b5]114 } // heapAppStop
[d46ed6e]115} // extern "C"
116#endif // __CFA_DEBUG__
117
[1e034d9]118
[e723100]119// statically allocated variables => zero filled.
120static size_t pageSize; // architecture pagesize
121static size_t heapExpand; // sbrk advance
122static size_t mmapStart; // cross over point for mmap
123static unsigned int maxBucketsUsed; // maximum number of buckets in use
124
125
126#define SPINLOCK 0
127#define LOCKFREE 1
128#define BUCKETLOCK SPINLOCK
129#if BUCKETLOCK == LOCKFREE
130#include <uStackLF.h>
131#endif // LOCKFREE
132
133// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
134// Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]135enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]136
[c4f68dc]137struct HeapManager {
138// struct FreeHeader; // forward declaration
139
140 struct Storage {
[bcb14b5]141 struct Header { // header
[c4f68dc]142 union Kind {
143 struct RealHeader {
144 union {
[bcb14b5]145 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[f0b3f51]146 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]147 uint32_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]148 #endif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]149
150 union {
151// FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
[cfbc703d]152 // 2nd low-order bit => zero filled
[c4f68dc]153 void * home; // allocated block points back to home locations (must overlay alignment)
154 size_t blockSize; // size for munmap (must overlay alignment)
155 #if BUCKLOCK == SPINLOCK
156 Storage * next; // freed block points next freed block of same size
157 #endif // SPINLOCK
158 };
159
[f0b3f51]160 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]161 uint32_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]162 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]163 };
[bcb14b5]164 // future code
[c4f68dc]165 #if BUCKLOCK == LOCKFREE
166 Stack<Storage>::Link next; // freed block points next freed block of same size (double-wide)
167 #endif // LOCKFREE
168 };
[93c2e0a]169 } real; // RealHeader
[c4f68dc]170 struct FakeHeader {
171 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
[cfbc703d]172 // 1st low-order bit => fake header & alignment
173 uint32_t alignment;
[f0b3f51]174 #endif // __ORDER_LITTLE_ENDIAN__
[c4f68dc]175
176 uint32_t offset;
177
178 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
179 uint32_t alignment; // low-order bits of home/blockSize used for tricks
[f0b3f51]180 #endif // __ORDER_BIG_ENDIAN__
[93c2e0a]181 } fake; // FakeHeader
182 } kind; // Kind
[76e2113]183 size_t size; // allocation size in bytes
[bcb14b5]184 } header; // Header
[95eb7cf]185 char pad[libAlign() - sizeof( Header )];
[bcb14b5]186 char data[0]; // storage
[c4f68dc]187 }; // Storage
188
[95eb7cf]189 static_assert( libAlign() >= sizeof( Storage ), "libAlign() < sizeof( Storage )" );
[c4f68dc]190
191 struct FreeHeader {
192 #if BUCKLOCK == SPINLOCK
[bcb14b5]193 __spinlock_t lock; // must be first field for alignment
194 Storage * freeList;
[c4f68dc]195 #elif BUCKLOCK == LOCKFREE
[bcb14b5]196 // future code
197 StackLF<Storage> freeList;
[c4f68dc]198 #else
[7b149bc]199 #error undefined lock type for bucket lock
[c4f68dc]200 #endif // SPINLOCK
[bcb14b5]201 size_t blockSize; // size of allocations on this list
[c4f68dc]202 }; // FreeHeader
203
204 // must be first fields for alignment
205 __spinlock_t extlock; // protects allocation-buffer extension
206 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
207
208 void * heapBegin; // start of heap
209 void * heapEnd; // logical end of heap
210 size_t heapRemaining; // amount of storage not allocated in the current chunk
211}; // HeapManager
212
[7b149bc]213static inline size_t getKey( const HeapManager.FreeHeader & freeheader ) { return freeheader.blockSize; }
[5d4fa18]214
[e723100]215
216#define FASTLOOKUP
217#define __STATISTICS__
[5d4fa18]218
[1e034d9]219// Bucket size must be multiple of 16.
[5d4fa18]220// Powers of 2 are common allocation sizes, so make powers of 2 generate the minimum required size.
[e723100]221static const unsigned int bucketSizes[] @= { // different bucket sizes
[95eb7cf]222 16, 32, 48, 64 + sizeof(HeapManager.Storage), // 4
223 96, 112, 128 + sizeof(HeapManager.Storage), // 3
224 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4
225 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4
226 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4
227 1_536, 2_048 + sizeof(HeapManager.Storage), // 2
228 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4
229 6_144, 8_192 + sizeof(HeapManager.Storage), // 2
230 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8
231 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8
232 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8
233 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8
234 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8
235 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8
236 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4
237 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8
238 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4
[5d4fa18]239};
[e723100]240
241static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0]), "size of bucket array wrong" );
242
[5d4fa18]243#ifdef FASTLOOKUP
[a92a4fe]244enum { LookupSizes = 65_536 + sizeof(HeapManager.Storage) }; // number of fast lookup sizes
[5d4fa18]245static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
246#endif // FASTLOOKUP
247
[95eb7cf]248static int mmapFd = -1; // fake or actual fd for anonymous file
[5d4fa18]249#ifdef __CFA_DEBUG__
[93c2e0a]250static bool heapBoot = 0; // detect recursion during boot
[5d4fa18]251#endif // __CFA_DEBUG__
252static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
253
[c4f68dc]254
255#ifdef __STATISTICS__
[95eb7cf]256// Heap statistics counters.
257static unsigned long long int mmap_storage;
[c4f68dc]258static unsigned int mmap_calls;
259static unsigned long long int munmap_storage;
260static unsigned int munmap_calls;
261static unsigned long long int sbrk_storage;
262static unsigned int sbrk_calls;
263static unsigned long long int malloc_storage;
264static unsigned int malloc_calls;
265static unsigned long long int free_storage;
266static unsigned int free_calls;
[76e2113]267static unsigned long long int aalloc_storage;
268static unsigned int aalloc_calls;
[c4f68dc]269static unsigned long long int calloc_storage;
270static unsigned int calloc_calls;
271static unsigned long long int memalign_storage;
272static unsigned int memalign_calls;
[76e2113]273static unsigned long long int amemalign_storage;
274static unsigned int amemalign_calls;
[c4f68dc]275static unsigned long long int cmemalign_storage;
276static unsigned int cmemalign_calls;
[cfbc703d]277static unsigned long long int resize_storage;
278static unsigned int resize_calls;
[c4f68dc]279static unsigned long long int realloc_storage;
280static unsigned int realloc_calls;
[95eb7cf]281// Statistics file descriptor (changed by malloc_stats_fd).
282static int statfd = STDERR_FILENO; // default stderr
[c4f68dc]283
284// Use "write" because streams may be shutdown when calls are made.
[d46ed6e]285static void printStats() {
[76e2113]286 char helpText[1024];
[95eb7cf]287 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[bcb14b5]288 "\nHeap statistics:\n"
289 " malloc: calls %u / storage %llu\n"
[76e2113]290 " aalloc: calls %u / storage %llu\n"
[bcb14b5]291 " calloc: calls %u / storage %llu\n"
292 " memalign: calls %u / storage %llu\n"
[76e2113]293 " amemalign: calls %u / storage %llu\n"
[bcb14b5]294 " cmemalign: calls %u / storage %llu\n"
[cfbc703d]295 " resize: calls %u / storage %llu\n"
[bcb14b5]296 " realloc: calls %u / storage %llu\n"
297 " free: calls %u / storage %llu\n"
298 " mmap: calls %u / storage %llu\n"
299 " munmap: calls %u / storage %llu\n"
300 " sbrk: calls %u / storage %llu\n",
301 malloc_calls, malloc_storage,
[76e2113]302 aalloc_calls, calloc_storage,
[bcb14b5]303 calloc_calls, calloc_storage,
304 memalign_calls, memalign_storage,
[76e2113]305 amemalign_calls, amemalign_storage,
[bcb14b5]306 cmemalign_calls, cmemalign_storage,
[cfbc703d]307 resize_calls, resize_storage,
[bcb14b5]308 realloc_calls, realloc_storage,
309 free_calls, free_storage,
310 mmap_calls, mmap_storage,
311 munmap_calls, munmap_storage,
312 sbrk_calls, sbrk_storage
[c4f68dc]313 );
[d46ed6e]314} // printStats
[c4f68dc]315
[bcb14b5]316static int printStatsXML( FILE * stream ) { // see malloc_info
[76e2113]317 char helpText[1024];
[b6830d74]318 int len = snprintf( helpText, sizeof(helpText),
[c4f68dc]319 "<malloc version=\"1\">\n"
320 "<heap nr=\"0\">\n"
321 "<sizes>\n"
322 "</sizes>\n"
323 "<total type=\"malloc\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]324 "<total type=\"aalloc\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]325 "<total type=\"calloc\" count=\"%u\" size=\"%llu\"/>\n"
326 "<total type=\"memalign\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]327 "<total type=\"amemalign\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]328 "<total type=\"cmemalign\" count=\"%u\" size=\"%llu\"/>\n"
[cfbc703d]329 "<total type=\"resize\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]330 "<total type=\"realloc\" count=\"%u\" size=\"%llu\"/>\n"
331 "<total type=\"free\" count=\"%u\" size=\"%llu\"/>\n"
332 "<total type=\"mmap\" count=\"%u\" size=\"%llu\"/>\n"
333 "<total type=\"munmap\" count=\"%u\" size=\"%llu\"/>\n"
334 "<total type=\"sbrk\" count=\"%u\" size=\"%llu\"/>\n"
335 "</malloc>",
336 malloc_calls, malloc_storage,
[76e2113]337 aalloc_calls, aalloc_storage,
[c4f68dc]338 calloc_calls, calloc_storage,
339 memalign_calls, memalign_storage,
[76e2113]340 amemalign_calls, amemalign_storage,
[c4f68dc]341 cmemalign_calls, cmemalign_storage,
[cfbc703d]342 resize_calls, resize_storage,
[c4f68dc]343 realloc_calls, realloc_storage,
344 free_calls, free_storage,
345 mmap_calls, mmap_storage,
346 munmap_calls, munmap_storage,
347 sbrk_calls, sbrk_storage
348 );
[95eb7cf]349 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit
350 return len;
[d46ed6e]351} // printStatsXML
[c4f68dc]352#endif // __STATISTICS__
353
[95eb7cf]354
[98d6965d]355// static inline void noMemory() {
356// abort( "Heap memory exhausted at %zu bytes.\n"
357// "Possible cause is very large memory allocation and/or large amount of unfreed storage allocated by the program or system/library routines.",
358// ((char *)(sbrk( 0 )) - (char *)(heapManager.heapBegin)) );
359// } // noMemory
[c4f68dc]360
361
[93c2e0a]362static inline bool setHeapExpand( size_t value ) {
[bcb14b5]363 if ( heapExpand < pageSize ) return true;
[b6830d74]364 heapExpand = value;
365 return false;
[c4f68dc]366} // setHeapExpand
367
368
[1e034d9]369// thunk problem
370size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
371 size_t l = 0, m, h = dim;
372 while ( l < h ) {
373 m = (l + h) / 2;
374 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
375 l = m + 1;
376 } else {
377 h = m;
378 } // if
379 } // while
380 return l;
381} // Bsearchl
382
383
[95eb7cf]384static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
385 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return true;
386 mmapStart = value; // set global
387
388 // find the closest bucket size less than or equal to the mmapStart size
[1e034d9]389 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
[95eb7cf]390 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
391 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
392 return false;
393} // setMmapStart
394
395
[cfbc703d]396// <-------+----------------------------------------------------> bsize (bucket size)
397// |header |addr
398//==================================================================================
399// align/offset |
400// <-----------------<------------+-----------------------------> bsize (bucket size)
401// |fake-header | addr
402#define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))
403#define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset))
404
405// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
406// |header |addr
407//==================================================================================
408// align/offset |
409// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
410// |fake-header |addr
411#define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
412
413
414static inline void checkAlign( size_t alignment ) {
415 if ( alignment < libAlign() || ! libPow2( alignment ) ) {
416 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
417 } // if
418} // checkAlign
419
420
[e3fea42]421static inline void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]422 if ( unlikely( check ) ) { // bad address ?
[c4f68dc]423 abort( "Attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]424 "Possible cause is duplicate free on same block or overwriting of memory.",
425 name, addr );
[b6830d74]426 } // if
[c4f68dc]427} // checkHeader
428
[95eb7cf]429
430static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {
[b6830d74]431 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?
[c4f68dc]432 alignment = header->kind.fake.alignment & -2; // remove flag from value
433 #ifdef __CFA_DEBUG__
434 checkAlign( alignment ); // check alignment
435 #endif // __CFA_DEBUG__
[cfbc703d]436 header = realHeader( header ); // backup from fake to real header
[b6830d74]437 } // if
[c4f68dc]438} // fakeHeader
439
[95eb7cf]440
[e3fea42]441static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem, size_t & size, size_t & alignment ) with ( heapManager ) {
[b6830d74]442 header = headerAddr( addr );
[c4f68dc]443
[b6830d74]444 if ( unlikely( heapEnd < addr ) ) { // mmapped ?
[95eb7cf]445 fakeHeader( header, alignment );
[c4f68dc]446 size = header->kind.real.blockSize & -3; // mmap size
447 return true;
[b6830d74]448 } // if
[c4f68dc]449
450 #ifdef __CFA_DEBUG__
[bcb14b5]451 checkHeader( addr < heapBegin || header < (HeapManager.Storage.Header *)heapBegin, name, addr ); // bad low address ?
[c4f68dc]452 #endif // __CFA_DEBUG__
[b6830d74]453
[bcb14b5]454 // header may be safe to dereference
[95eb7cf]455 fakeHeader( header, alignment );
[c4f68dc]456 #ifdef __CFA_DEBUG__
[bcb14b5]457 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]458 #endif // __CFA_DEBUG__
459
[bcb14b5]460 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);
[c4f68dc]461 #ifdef __CFA_DEBUG__
[bcb14b5]462 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {
463 abort( "Attempt to %s storage %p with corrupted header.\n"
464 "Possible cause is duplicate free on same block or overwriting of header information.",
465 name, addr );
466 } // if
[c4f68dc]467 #endif // __CFA_DEBUG__
[bcb14b5]468 size = freeElem->blockSize;
469 return false;
[c4f68dc]470} // headers
471
472
473static inline void * extend( size_t size ) with ( heapManager ) {
[b6830d74]474 lock( extlock __cfaabi_dbg_ctx2 );
475 ptrdiff_t rem = heapRemaining - size;
476 if ( rem < 0 ) {
[c4f68dc]477 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
478
479 size_t increase = libCeiling( size > heapExpand ? size : heapExpand, libAlign() );
480 if ( sbrk( increase ) == (void *)-1 ) {
481 unlock( extlock );
482 errno = ENOMEM;
[95eb7cf]483 return 0p;
[c4f68dc]484 } // if
[bcb14b5]485 #ifdef __STATISTICS__
[c4f68dc]486 sbrk_calls += 1;
487 sbrk_storage += increase;
[bcb14b5]488 #endif // __STATISTICS__
489 #ifdef __CFA_DEBUG__
[c4f68dc]490 // Set new memory to garbage so subsequent uninitialized usages might fail.
491 memset( (char *)heapEnd + heapRemaining, '\377', increase );
[bcb14b5]492 #endif // __CFA_DEBUG__
[c4f68dc]493 rem = heapRemaining + increase - size;
[b6830d74]494 } // if
[c4f68dc]495
[b6830d74]496 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;
497 heapRemaining = rem;
498 heapEnd = (char *)heapEnd + size;
499 unlock( extlock );
500 return block;
[c4f68dc]501} // extend
502
503
504static inline void * doMalloc( size_t size ) with ( heapManager ) {
[7b149bc]505 HeapManager.Storage * block; // pointer to new block of storage
[c4f68dc]506
[b6830d74]507 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
508 // along with the block and is a multiple of the alignment size.
[c4f68dc]509
[95eb7cf]510 if ( unlikely( size > ~0ul - sizeof(HeapManager.Storage) ) ) return 0p;
[b6830d74]511 size_t tsize = size + sizeof(HeapManager.Storage);
512 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
[e723100]513 size_t posn;
514 #ifdef FASTLOOKUP
515 if ( tsize < LookupSizes ) posn = lookup[tsize];
516 else
517 #endif // FASTLOOKUP
518 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
519 HeapManager.FreeHeader * freeElem = &freeLists[posn];
520 // #ifdef FASTLOOKUP
521 // if ( tsize < LookupSizes )
522 // freeElem = &freeLists[lookup[tsize]];
523 // else
524 // #endif // FASTLOOKUP
525 // freeElem = bsearchl( tsize, freeLists, (size_t)maxBucketsUsed ); // binary search
526 // HeapManager.FreeHeader * freeElem =
527 // #ifdef FASTLOOKUP
528 // tsize < LookupSizes ? &freeLists[lookup[tsize]] :
529 // #endif // FASTLOOKUP
530 // bsearchl( tsize, freeLists, (size_t)maxBucketsUsed ); // binary search
[c4f68dc]531 assert( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
532 assert( tsize <= freeElem->blockSize ); // search failure ?
533 tsize = freeElem->blockSize; // total space needed for request
534
535 // Spin until the lock is acquired for this particular size of block.
536
537 #if defined( SPINLOCK )
[bcb14b5]538 lock( freeElem->lock __cfaabi_dbg_ctx2 );
539 block = freeElem->freeList; // remove node from stack
[c4f68dc]540 #else
[bcb14b5]541 block = freeElem->freeList.pop();
[c4f68dc]542 #endif // SPINLOCK
[95eb7cf]543 if ( unlikely( block == 0p ) ) { // no free block ?
[c4f68dc]544 #if defined( SPINLOCK )
545 unlock( freeElem->lock );
546 #endif // SPINLOCK
[bcb14b5]547
[c4f68dc]548 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
549 // and then carve it off.
550
551 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call
[95eb7cf]552 if ( unlikely( block == 0p ) ) return 0p;
[1e034d9]553 #if defined( SPINLOCK )
[c4f68dc]554 } else {
555 freeElem->freeList = block->header.kind.real.next;
556 unlock( freeElem->lock );
[1e034d9]557 #endif // SPINLOCK
[c4f68dc]558 } // if
559
560 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
[bcb14b5]561 } else { // large size => mmap
[95eb7cf]562 if ( unlikely( size > ~0ul - pageSize ) ) return 0p;
[c4f68dc]563 tsize = libCeiling( tsize, pageSize ); // must be multiple of page size
564 #ifdef __STATISTICS__
[bcb14b5]565 __atomic_add_fetch( &mmap_calls, 1, __ATOMIC_SEQ_CST );
566 __atomic_add_fetch( &mmap_storage, tsize, __ATOMIC_SEQ_CST );
[c4f68dc]567 #endif // __STATISTICS__
568 block = (HeapManager.Storage *)mmap( 0, tsize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
569 if ( block == (HeapManager.Storage *)MAP_FAILED ) {
570 // Do not call strerror( errno ) as it may call malloc.
571 abort( "(HeapManager &)0x%p.doMalloc() : internal error, mmap failure, size:%zu error:%d.", &heapManager, tsize, errno );
572 } // if
[bcb14b5]573 #ifdef __CFA_DEBUG__
[c4f68dc]574 // Set new memory to garbage so subsequent uninitialized usages might fail.
575 memset( block, '\377', tsize );
[bcb14b5]576 #endif // __CFA_DEBUG__
[c4f68dc]577 block->header.kind.real.blockSize = tsize; // storage size for munmap
[bcb14b5]578 } // if
[c4f68dc]579
[76e2113]580 block->header.size = size; // store allocation size
[95eb7cf]581 void * addr = &(block->data); // adjust off header to user bytes
[c4f68dc]582
583 #ifdef __CFA_DEBUG__
[95eb7cf]584 assert( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[bcb14b5]585 __atomic_add_fetch( &allocFree, tsize, __ATOMIC_SEQ_CST );
586 if ( traceHeap() ) {
587 enum { BufferSize = 64 };
588 char helpText[BufferSize];
[95eb7cf]589 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize );
590 // int len = snprintf( helpText, BufferSize, "Malloc %p %zu\n", addr, size );
591 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]592 } // if
[c4f68dc]593 #endif // __CFA_DEBUG__
594
[95eb7cf]595 return addr;
[c4f68dc]596} // doMalloc
597
598
599static inline void doFree( void * addr ) with ( heapManager ) {
600 #ifdef __CFA_DEBUG__
[95eb7cf]601 if ( unlikely( heapManager.heapBegin == 0p ) ) {
[bcb14b5]602 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
603 } // if
[c4f68dc]604 #endif // __CFA_DEBUG__
605
[b6830d74]606 HeapManager.Storage.Header * header;
607 HeapManager.FreeHeader * freeElem;
608 size_t size, alignment; // not used (see realloc)
[c4f68dc]609
[b6830d74]610 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
[c4f68dc]611 #ifdef __STATISTICS__
[bcb14b5]612 __atomic_add_fetch( &munmap_calls, 1, __ATOMIC_SEQ_CST );
613 __atomic_add_fetch( &munmap_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]614 #endif // __STATISTICS__
615 if ( munmap( header, size ) == -1 ) {
616 #ifdef __CFA_DEBUG__
617 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
[bcb14b5]618 "Possible cause is invalid pointer.",
619 addr );
[c4f68dc]620 #endif // __CFA_DEBUG__
621 } // if
[bcb14b5]622 } else {
[c4f68dc]623 #ifdef __CFA_DEBUG__
[bcb14b5]624 // Set free memory to garbage so subsequent usages might fail.
625 memset( ((HeapManager.Storage *)header)->data, '\377', freeElem->blockSize - sizeof( HeapManager.Storage ) );
[c4f68dc]626 #endif // __CFA_DEBUG__
627
628 #ifdef __STATISTICS__
[bcb14b5]629 free_storage += size;
[c4f68dc]630 #endif // __STATISTICS__
631 #if defined( SPINLOCK )
[bcb14b5]632 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
633 header->kind.real.next = freeElem->freeList; // push on stack
634 freeElem->freeList = (HeapManager.Storage *)header;
635 unlock( freeElem->lock ); // release spin lock
[c4f68dc]636 #else
[bcb14b5]637 freeElem->freeList.push( *(HeapManager.Storage *)header );
[c4f68dc]638 #endif // SPINLOCK
[bcb14b5]639 } // if
[c4f68dc]640
641 #ifdef __CFA_DEBUG__
[bcb14b5]642 __atomic_add_fetch( &allocFree, -size, __ATOMIC_SEQ_CST );
643 if ( traceHeap() ) {
[7b149bc]644 enum { BufferSize = 64 };
645 char helpText[BufferSize];
[bcb14b5]646 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size );
[95eb7cf]647 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]648 } // if
[c4f68dc]649 #endif // __CFA_DEBUG__
650} // doFree
651
652
[95eb7cf]653size_t prtFree( HeapManager & manager ) with ( manager ) {
[b6830d74]654 size_t total = 0;
[c4f68dc]655 #ifdef __STATISTICS__
[95eb7cf]656 __cfaabi_bits_acquire();
657 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]658 #endif // __STATISTICS__
[b6830d74]659 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
[d46ed6e]660 size_t size = freeLists[i].blockSize;
661 #ifdef __STATISTICS__
662 unsigned int N = 0;
663 #endif // __STATISTICS__
[b6830d74]664
[d46ed6e]665 #if defined( SPINLOCK )
[95eb7cf]666 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]667 #else
[95eb7cf]668 for ( HeapManager.Storage * p = freeLists[i].freeList.top(); p != 0p; p = p->header.kind.real.next.top ) {
[d46ed6e]669 #endif // SPINLOCK
670 total += size;
671 #ifdef __STATISTICS__
672 N += 1;
673 #endif // __STATISTICS__
[b6830d74]674 } // for
675
[d46ed6e]676 #ifdef __STATISTICS__
[95eb7cf]677 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
678 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]679 #endif // __STATISTICS__
680 } // for
681 #ifdef __STATISTICS__
[95eb7cf]682 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
683 __cfaabi_bits_release();
[d46ed6e]684 #endif // __STATISTICS__
685 return (char *)heapEnd - (char *)heapBegin - total;
[95eb7cf]686} // prtFree
687
688
689static void ?{}( HeapManager & manager ) with ( manager ) {
690 pageSize = sysconf( _SC_PAGESIZE );
691
692 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
693 freeLists[i].blockSize = bucketSizes[i];
694 } // for
695
696 #ifdef FASTLOOKUP
697 unsigned int idx = 0;
698 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
699 if ( i > bucketSizes[idx] ) idx += 1;
700 lookup[i] = idx;
701 } // for
702 #endif // FASTLOOKUP
703
704 if ( setMmapStart( default_mmap_start() ) ) {
705 abort( "HeapManager : internal error, mmap start initialization failure." );
706 } // if
707 heapExpand = default_heap_expansion();
708
[1e034d9]709 char * end = (char *)sbrk( 0 );
710 sbrk( (char *)libCeiling( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment
[95eb7cf]711 heapBegin = heapEnd = sbrk( 0 ); // get new start point
712} // HeapManager
713
714
715static void ^?{}( HeapManager & ) {
716 #ifdef __STATISTICS__
[baf608a]717 if ( traceHeapTerm() ) {
718 printStats();
719 // if ( prtfree() ) prtFree( heapManager, true );
720 } // if
[95eb7cf]721 #endif // __STATISTICS__
722} // ~HeapManager
723
724
725static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
726void memory_startup( void ) {
727 #ifdef __CFA_DEBUG__
728 if ( unlikely( heapBoot ) ) { // check for recursion during system boot
729 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
730 abort( "boot() : internal error, recursively invoked during system boot." );
731 } // if
732 heapBoot = true;
733 #endif // __CFA_DEBUG__
734
735 //assert( heapManager.heapBegin != 0 );
736 //heapManager{};
737 if ( heapManager.heapBegin == 0p ) heapManager{};
738} // memory_startup
739
740static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
741void memory_shutdown( void ) {
742 ^heapManager{};
743} // memory_shutdown
[c4f68dc]744
[bcb14b5]745
746static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
[7117ac3]747 //assert( heapManager.heapBegin != 0 );
[95eb7cf]748 if ( unlikely( heapManager.heapBegin == 0p ) ) heapManager{}; // called before memory_startup ?
[76e2113]749#if __SIZEOF_POINTER__ == 8
750 verify( size < ((typeof(size_t))1 << 48) );
751#endif // __SIZEOF_POINTER__ == 8
[95eb7cf]752 void * addr = doMalloc( size );
753 if ( unlikely( addr == 0p ) ) errno = ENOMEM; // POSIX
754 return addr;
[bcb14b5]755} // mallocNoStats
[c4f68dc]756
757
[76e2113]758static inline void * callocNoStats( size_t dim, size_t elemSize ) {
759 size_t size = dim * elemSize;
[95eb7cf]760 char * addr = (char *)mallocNoStats( size );
761 if ( unlikely( addr == 0p ) ) return 0p;
762
763 HeapManager.Storage.Header * header;
764 HeapManager.FreeHeader * freeElem;
765 size_t bsize, alignment;
766 bool mapped __attribute__(( unused )) = headers( "calloc", addr, header, freeElem, bsize, alignment );
767 #ifndef __CFA_DEBUG__
768 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
769 if ( ! mapped )
770 #endif // __CFA_DEBUG__
[1e034d9]771 // Zero entire data space even when > than size => realloc without a new allocation and zero fill works.
772 // <-------00000000000000000000000000000000000000000000000000000> bsize (bucket size)
773 // `-header`-addr `-size
[95eb7cf]774 memset( addr, '\0', bsize - sizeof(HeapManager.Storage) ); // set to zeros
775
776 header->kind.real.blockSize |= 2; // mark as zero filled
777 return addr;
778} // callocNoStats
779
780
[bcb14b5]781static inline void * memalignNoStats( size_t alignment, size_t size ) { // necessary for malloc statistics
782 #ifdef __CFA_DEBUG__
[b6830d74]783 checkAlign( alignment ); // check alignment
[bcb14b5]784 #endif // __CFA_DEBUG__
[c4f68dc]785
[b6830d74]786 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
[bcb14b5]787 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
[b6830d74]788
789 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
790 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
791 // .-------------v-----------------v----------------v----------,
792 // | Real Header | ... padding ... | Fake Header | data ... |
793 // `-------------^-----------------^-+--------------^----------'
794 // |<--------------------------------' offset/align |<-- alignment boundary
795
796 // subtract libAlign() because it is already the minimum alignment
797 // add sizeof(Storage) for fake header
[95eb7cf]798 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) );
799 if ( unlikely( addr == 0p ) ) return addr;
[b6830d74]800
801 // address in the block of the "next" alignment address
[95eb7cf]802 char * user = (char *)libCeiling( (uintptr_t)(addr + sizeof(HeapManager.Storage)), alignment );
[b6830d74]803
804 // address of header from malloc
[95eb7cf]805 HeapManager.Storage.Header * realHeader = headerAddr( addr );
[b6830d74]806 // address of fake header * before* the alignment location
807 HeapManager.Storage.Header * fakeHeader = headerAddr( user );
808 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
809 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
810 // SKULLDUGGERY: odd alignment imples fake header
811 fakeHeader->kind.fake.alignment = alignment | 1;
812
813 return user;
[bcb14b5]814} // memalignNoStats
[c4f68dc]815
816
[76e2113]817static inline void * cmemalignNoStats( size_t alignment, size_t dim, size_t elemSize ) {
818 size_t size = dim * elemSize;
[95eb7cf]819 char * addr = (char *)memalignNoStats( alignment, size );
820 if ( unlikely( addr == 0p ) ) return 0p;
821 HeapManager.Storage.Header * header;
822 HeapManager.FreeHeader * freeElem;
823 size_t bsize;
824 bool mapped __attribute__(( unused )) = headers( "cmemalign", addr, header, freeElem, bsize, alignment );
825 #ifndef __CFA_DEBUG__
826 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
827 if ( ! mapped )
828 #endif // __CFA_DEBUG__
829 memset( addr, '\0', dataStorage( bsize, addr, header ) ); // set to zeros
830
[cfbc703d]831 header->kind.real.blockSize |= 2; // mark as zero filled
[95eb7cf]832 return addr;
833} // cmemalignNoStats
834
835
[e723100]836// supported mallopt options
837#ifndef M_MMAP_THRESHOLD
838#define M_MMAP_THRESHOLD (-1)
839#endif // M_TOP_PAD
840#ifndef M_TOP_PAD
841#define M_TOP_PAD (-2)
842#endif // M_TOP_PAD
843
844
[c4f68dc]845extern "C" {
[61248a4]846 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
847 // then malloc() returns a unique pointer value that can later be successfully passed to free().
[b6830d74]848 void * malloc( size_t size ) {
[c4f68dc]849 #ifdef __STATISTICS__
[bcb14b5]850 __atomic_add_fetch( &malloc_calls, 1, __ATOMIC_SEQ_CST );
851 __atomic_add_fetch( &malloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]852 #endif // __STATISTICS__
853
[bcb14b5]854 return mallocNoStats( size );
855 } // malloc
[c4f68dc]856
[76e2113]857
[61248a4]858 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[76e2113]859 void * aalloc( size_t dim, size_t elemSize ) {
860 #ifdef __STATISTICS__
861 __atomic_add_fetch( &aalloc_calls, 1, __ATOMIC_SEQ_CST );
862 __atomic_add_fetch( &aalloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
863 #endif // __STATISTICS__
864
865 size_t size = dim * elemSize;
866 char * addr = (char *)mallocNoStats( size );
867 if ( unlikely( addr == 0p ) ) return 0p;
868
869 HeapManager.Storage.Header * header;
870 HeapManager.FreeHeader * freeElem;
871 size_t bsize, alignment;
872 headers( "aalloc", addr, header, freeElem, bsize, alignment );
873
874 header->kind.real.blockSize |= 2; // mark as zero filled
875 return addr;
876 } // aalloc
877
878
[61248a4]879 // Same as aalloc() with memory set to zero.
[76e2113]880 void * calloc( size_t dim, size_t elemSize ) {
[c4f68dc]881 #ifdef __STATISTICS__
[bcb14b5]882 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]883 __atomic_add_fetch( &calloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[c4f68dc]884 #endif // __STATISTICS__
885
[76e2113]886 return callocNoStats( dim, elemSize );
[bcb14b5]887 } // calloc
[c4f68dc]888
[61248a4]889 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
890 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
891 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
892 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[cfbc703d]893 void * resize( void * oaddr, size_t size ) {
894 #ifdef __STATISTICS__
895 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
896 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
897 #endif // __STATISTICS__
898
899 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
900 if ( unlikely( size == 0 ) ) { free( oaddr ); return mallocNoStats( size ); } // special cases
901 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size );
902
903 HeapManager.Storage.Header * header;
904 HeapManager.FreeHeader * freeElem;
905 size_t bsize, oalign = 0;
906 headers( "resize", oaddr, header, freeElem, bsize, oalign );
907
[76e2113]908 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[cfbc703d]909 // same size, DO NOT preserve STICKY PROPERTIES.
[76e2113]910 if ( oalign == 0 && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[cfbc703d]911 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill
912 return oaddr;
913 } // if
914
915 // change size, DO NOT preserve STICKY PROPERTIES.
916 void * naddr = mallocNoStats( size ); // create new area
917 free( oaddr );
918 return naddr;
919 } // resize
920
921
[61248a4]922 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]923 // the old and new sizes.
[95eb7cf]924 void * realloc( void * oaddr, size_t size ) {
[c4f68dc]925 #ifdef __STATISTICS__
[bcb14b5]926 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[cfbc703d]927 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]928 #endif // __STATISTICS__
929
[1f6de372]930 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
931 if ( unlikely( size == 0 ) ) { free( oaddr ); return mallocNoStats( size ); } // special cases
[95eb7cf]932 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size );
[c4f68dc]933
934 HeapManager.Storage.Header * header;
935 HeapManager.FreeHeader * freeElem;
[95eb7cf]936 size_t bsize, oalign = 0;
937 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
938
939 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
940 if ( size <= odsize && odsize <= size * 2 ) { // allow up to 50% wasted storage in smaller size
941 // Do not know size of original allocation => cannot do 0 fill for any additional space because do not know
942 // where to start filling, i.e., do not overwrite existing values in space.
943 return oaddr;
[c4f68dc]944 } // if
945
[95eb7cf]946 // change size and copy old content to new storage
947
948 void * naddr;
949 if ( unlikely( oalign != 0 ) ) { // previous request memalign?
950 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
951 naddr = cmemalignNoStats( oalign, 1, size ); // create new aligned area
952 } else {
953 naddr = memalignNoStats( oalign, size ); // create new aligned area
954 } // if
[c4f68dc]955 } else {
[95eb7cf]956 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
957 naddr = callocNoStats( 1, size ); // create new area
958 } else {
959 naddr = mallocNoStats( size ); // create new area
960 } // if
[c4f68dc]961 } // if
[95eb7cf]962 if ( unlikely( naddr == 0p ) ) return 0p;
[1e034d9]963
[95eb7cf]964 headers( "realloc", naddr, header, freeElem, bsize, oalign );
965 size_t ndsize = dataStorage( bsize, naddr, header ); // data storage avilable in bucket
966 // To preserve prior fill, the entire bucket must be copied versus the size.
967 memcpy( naddr, oaddr, MIN( odsize, ndsize ) ); // copy bytes
968 free( oaddr );
969 return naddr;
[b6830d74]970 } // realloc
[c4f68dc]971
[61248a4]972 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[bcb14b5]973 void * memalign( size_t alignment, size_t size ) {
[c4f68dc]974 #ifdef __STATISTICS__
975 __atomic_add_fetch( &memalign_calls, 1, __ATOMIC_SEQ_CST );
976 __atomic_add_fetch( &memalign_storage, size, __ATOMIC_SEQ_CST );
977 #endif // __STATISTICS__
978
[95eb7cf]979 return memalignNoStats( alignment, size );
[bcb14b5]980 } // memalign
[c4f68dc]981
[95eb7cf]982
[76e2113]983 // Same as aalloc() with memory alignment.
984 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) {
985 #ifdef __STATISTICS__
986 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
987 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
988 #endif // __STATISTICS__
989
990 size_t size = dim * elemSize;
991 char * addr = (char *)memalignNoStats( alignment, size );
992 if ( unlikely( addr == 0p ) ) return 0p;
993 HeapManager.Storage.Header * header;
994 HeapManager.FreeHeader * freeElem;
995 size_t bsize;
996 headers( "amemalign", addr, header, freeElem, bsize, alignment );
997
998 header->kind.real.blockSize |= 2; // mark as zero filled
999 return addr;
1000 } // amemalign
1001
1002
[ca7949b]1003 // Same as calloc() with memory alignment.
[76e2113]1004 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) {
[95eb7cf]1005 #ifdef __STATISTICS__
1006 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]1007 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[95eb7cf]1008 #endif // __STATISTICS__
1009
[76e2113]1010 return cmemalignNoStats( alignment, dim, elemSize );
[95eb7cf]1011 } // cmemalign
1012
[ca7949b]1013 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
1014 // of alignment. This requirement is universally ignored.
[b6830d74]1015 void * aligned_alloc( size_t alignment, size_t size ) {
[c4f68dc]1016 return memalign( alignment, size );
[b6830d74]1017 } // aligned_alloc
[c4f68dc]1018
1019
[ca7949b]1020 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1021 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1022 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1023 // free(3).
[b6830d74]1024 int posix_memalign( void ** memptr, size_t alignment, size_t size ) {
[bcb14b5]1025 if ( alignment < sizeof(void *) || ! libPow2( alignment ) ) return EINVAL; // check alignment
[c4f68dc]1026 * memptr = memalign( alignment, size );
[95eb7cf]1027 if ( unlikely( * memptr == 0p ) ) return ENOMEM;
[c4f68dc]1028 return 0;
[b6830d74]1029 } // posix_memalign
[c4f68dc]1030
[ca7949b]1031 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1032 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[b6830d74]1033 void * valloc( size_t size ) {
[c4f68dc]1034 return memalign( pageSize, size );
[b6830d74]1035 } // valloc
[c4f68dc]1036
1037
[ca7949b]1038 // Same as valloc but rounds size to multiple of page size.
1039 void * pvalloc( size_t size ) {
1040 return memalign( pageSize, libCeiling( size, pageSize ) );
1041 } // pvalloc
1042
1043
1044 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
1045 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behavior occurs. If ptr is
1046 // 0p, no operation is performed.
[b6830d74]1047 void free( void * addr ) {
[c4f68dc]1048 #ifdef __STATISTICS__
[bcb14b5]1049 __atomic_add_fetch( &free_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]1050 #endif // __STATISTICS__
1051
[95eb7cf]1052 if ( unlikely( addr == 0p ) ) { // special case
1053 // #ifdef __CFA_DEBUG__
1054 // if ( traceHeap() ) {
1055 // #define nullmsg "Free( 0x0 ) size:0\n"
[1e034d9]1056 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
[95eb7cf]1057 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
1058 // } // if
1059 // #endif // __CFA_DEBUG__
[c4f68dc]1060 return;
1061 } // exit
1062
1063 doFree( addr );
[b6830d74]1064 } // free
[93c2e0a]1065
[c4f68dc]1066
[76e2113]1067 // Returns the alignment of an allocation.
[b6830d74]1068 size_t malloc_alignment( void * addr ) {
[95eb7cf]1069 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[1aa6ecb]1070 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1071 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1072 return header->kind.fake.alignment & -2; // remove flag from value
1073 } else {
[cfbc703d]1074 return libAlign(); // minimum alignment
[c4f68dc]1075 } // if
[bcb14b5]1076 } // malloc_alignment
[c4f68dc]1077
[76e2113]1078 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment.
1079 size_t $malloc_alignment_set( void * addr, size_t alignment ) {
1080 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1081 size_t ret;
1082 HeapManager.Storage.Header * header = headerAddr( addr );
1083 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1084 ret = header->kind.fake.alignment & -2; // remove flag from old value
1085 header->kind.fake.alignment = alignment | 1; // add flag to new value
1086 } else {
1087 ret = 0; // => no alignment to change
1088 } // if
1089 return ret;
1090 } // $malloc_alignment_set
1091
[c4f68dc]1092
[76e2113]1093 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[b6830d74]1094 bool malloc_zero_fill( void * addr ) {
[95eb7cf]1095 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[1aa6ecb]1096 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1097 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
[cfbc703d]1098 header = realHeader( header ); // backup from fake to real header
[c4f68dc]1099 } // if
[76e2113]1100 return (header->kind.real.blockSize & 2) != 0; // zero filled ?
[bcb14b5]1101 } // malloc_zero_fill
[c4f68dc]1102
[76e2113]1103 // Set allocation is zero filled and return previous zero filled.
1104 bool $malloc_zero_fill_set( void * addr ) {
1105 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1106 HeapManager.Storage.Header * header = headerAddr( addr );
1107 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1108 header = realHeader( header ); // backup from fake to real header
1109 } // if
1110 bool ret = (header->kind.real.blockSize & 2) != 0; // zero filled ?
1111 header->kind.real.blockSize |= 2; // mark as zero filled
1112 return ret;
1113 } // $malloc_zero_fill_set
1114
[c4f68dc]1115
[76e2113]1116 // Returns original total allocation size (not bucket size) => array size is dimension * sizeif(T).
1117 size_t malloc_size( void * addr ) {
[cfbc703d]1118 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1119 HeapManager.Storage.Header * header = headerAddr( addr );
1120 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1121 header = realHeader( header ); // backup from fake to real header
1122 } // if
[76e2113]1123 return header->size;
1124 } // malloc_size
1125
1126 // Set allocation size and return previous size.
1127 size_t $malloc_size_set( void * addr, size_t size ) {
1128 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1129 HeapManager.Storage.Header * header = headerAddr( addr );
1130 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1131 header = realHeader( header ); // backup from fake to real header
1132 } // if
1133 size_t ret = header->size;
1134 header->size = size;
1135 return ret;
1136 } // $malloc_size_set
[cfbc703d]1137
1138
[ca7949b]1139 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1140 // malloc or a related function.
[95eb7cf]1141 size_t malloc_usable_size( void * addr ) {
1142 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1143 HeapManager.Storage.Header * header;
1144 HeapManager.FreeHeader * freeElem;
1145 size_t bsize, alignment;
1146
1147 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
1148 return dataStorage( bsize, addr, header ); // data storage in bucket
1149 } // malloc_usable_size
1150
1151
[ca7949b]1152 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[b6830d74]1153 void malloc_stats( void ) {
[c4f68dc]1154 #ifdef __STATISTICS__
[bcb14b5]1155 printStats();
[95eb7cf]1156 if ( prtFree() ) prtFree( heapManager );
[c4f68dc]1157 #endif // __STATISTICS__
[bcb14b5]1158 } // malloc_stats
[c4f68dc]1159
[ca7949b]1160 // Changes the file descripter where malloc_stats() writes statistics.
[95eb7cf]1161 int malloc_stats_fd( int fd __attribute__(( unused )) ) {
[c4f68dc]1162 #ifdef __STATISTICS__
[bcb14b5]1163 int temp = statfd;
1164 statfd = fd;
1165 return temp;
[c4f68dc]1166 #else
[bcb14b5]1167 return -1;
[c4f68dc]1168 #endif // __STATISTICS__
[bcb14b5]1169 } // malloc_stats_fd
[c4f68dc]1170
[95eb7cf]1171
[ca7949b]1172 // Adjusts parameters that control the behavior of the memory-allocation functions (see malloc). The param argument
1173 // specifies the parameter to be modified, and value specifies the new value for that parameter.
[95eb7cf]1174 int mallopt( int option, int value ) {
1175 choose( option ) {
1176 case M_TOP_PAD:
1177 if ( setHeapExpand( value ) ) return 1;
1178 case M_MMAP_THRESHOLD:
1179 if ( setMmapStart( value ) ) return 1;
1180 } // switch
1181 return 0; // error, unsupported
1182 } // mallopt
1183
[ca7949b]1184 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[95eb7cf]1185 int malloc_trim( size_t ) {
1186 return 0; // => impossible to release memory
1187 } // malloc_trim
1188
1189
[ca7949b]1190 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller.
1191 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1192 // malloc).
[c4f68dc]1193 int malloc_info( int options, FILE * stream ) {
[95eb7cf]1194 if ( options != 0 ) { errno = EINVAL; return -1; }
[d46ed6e]1195 return printStatsXML( stream );
[c4f68dc]1196 } // malloc_info
1197
1198
[ca7949b]1199 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1200 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1201 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1202 // result. (The caller must free this memory.)
[c4f68dc]1203 void * malloc_get_state( void ) {
[95eb7cf]1204 return 0p; // unsupported
[c4f68dc]1205 } // malloc_get_state
1206
[bcb14b5]1207
[ca7949b]1208 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1209 // structure pointed to by state.
[c4f68dc]1210 int malloc_set_state( void * ptr ) {
[bcb14b5]1211 return 0; // unsupported
[c4f68dc]1212 } // malloc_set_state
1213} // extern "C"
1214
1215
[95eb7cf]1216// Must have CFA linkage to overload with C linkage realloc.
[cfbc703d]1217void * resize( void * oaddr, size_t nalign, size_t size ) {
[1e034d9]1218 #ifdef __STATISTICS__
[cfbc703d]1219 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
1220 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1221 #endif // __STATISTICS__
[95eb7cf]1222
[1f6de372]1223 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[cfbc703d]1224 if ( unlikely( size == 0 ) ) { free( oaddr ); return memalignNoStats( nalign, size ); } // special cases
1225 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size );
1226
[95eb7cf]1227
[1e034d9]1228 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum
[95eb7cf]1229 #ifdef __CFA_DEBUG__
[1e034d9]1230 else
[95eb7cf]1231 checkAlign( nalign ); // check alignment
1232 #endif // __CFA_DEBUG__
1233
[cfbc703d]1234 HeapManager.Storage.Header * header;
1235 HeapManager.FreeHeader * freeElem;
1236 size_t bsize, oalign = 0;
1237 headers( "resize", oaddr, header, freeElem, bsize, oalign );
1238 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
1239
1240 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match
1241 if ( oalign >= libAlign() ) { // fake header ?
1242 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1243 } // if
1244 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
1245 header->kind.real.blockSize &= -2; // turn off 0 fill
1246 return oaddr;
1247 } // if
1248 } // if
1249
1250 // change size
1251
1252 void * naddr;
1253 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
1254 naddr = cmemalignNoStats( nalign, 1, size ); // create new aligned area
1255 } else {
1256 naddr = memalignNoStats( nalign, size ); // create new aligned area
1257 } // if
1258
1259 free( oaddr );
1260 return naddr;
1261} // resize
1262
1263
1264void * realloc( void * oaddr, size_t nalign, size_t size ) {
1265 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum
1266 #ifdef __CFA_DEBUG__
1267 else
1268 checkAlign( nalign ); // check alignment
1269 #endif // __CFA_DEBUG__
1270
[95eb7cf]1271 HeapManager.Storage.Header * header;
1272 HeapManager.FreeHeader * freeElem;
1273 size_t bsize, oalign = 0;
1274 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
[1e034d9]1275 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[95eb7cf]1276
[cfbc703d]1277 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match
1278 if ( oalign >= libAlign() ) { // fake header ?
1279 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1280 } // if
[95eb7cf]1281 return realloc( oaddr, size );
[1e034d9]1282 } // if
[95eb7cf]1283
[cfbc703d]1284 // change size and copy old content to new storage
1285
[1e034d9]1286 #ifdef __STATISTICS__
[cfbc703d]1287 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[95eb7cf]1288 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1289 #endif // __STATISTICS__
1290
[cfbc703d]1291 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1292 if ( unlikely( size == 0 ) ) { free( oaddr ); return memalignNoStats( nalign, size ); } // special cases
1293 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size );
[95eb7cf]1294
[1e034d9]1295 void * naddr;
1296 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
1297 naddr = cmemalignNoStats( nalign, 1, size ); // create new aligned area
1298 } else {
1299 naddr = memalignNoStats( nalign, size ); // create new aligned area
1300 } // if
[95eb7cf]1301
[1e034d9]1302 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[cfbc703d]1303 size_t ndsize = dataStorage( bsize, naddr, header ); // data storage available in bucket
[95eb7cf]1304 // To preserve prior fill, the entire bucket must be copied versus the size.
[1e034d9]1305 memcpy( naddr, oaddr, MIN( odsize, ndsize ) ); // copy bytes
1306 free( oaddr );
1307 return naddr;
[95eb7cf]1308} // realloc
1309
1310
[c4f68dc]1311// Local Variables: //
1312// tab-width: 4 //
[f8cd310]1313// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1314// End: //
Note: See TracBrowser for help on using the repository browser.