source: libcfa/src/heap.cfa@ 8c9da33

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 8c9da33 was e3fea42, checked in by Peter A. Buhr <pabuhr@…>, 6 years ago

change "const char *" to "const char []"

  • Property mode set to 100644
File size: 43.5 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
7// heap.c --
8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[e3fea42]12// Last Modified On : Tue Feb 4 10:04:51 2020
13// Update Count : 648
[73abe95]14//
[c4f68dc]15
16#include <unistd.h> // sbrk, sysconf
17#include <stdbool.h> // true, false
18#include <stdio.h> // snprintf, fileno
19#include <errno.h> // errno
[1e034d9]20#include <string.h> // memset, memcpy
[c4f68dc]21extern "C" {
22#include <sys/mman.h> // mmap, munmap
23} // extern "C"
24
[b6830d74]25// #comment TD : Many of these should be merged into math I believe
[bcb14b5]26#include "bits/align.hfa" // libPow2
27#include "bits/defs.hfa" // likely, unlikely
28#include "bits/locks.hfa" // __spinlock_t
[73abe95]29#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[1e034d9]30//#include "stdlib.hfa" // bsearchl
[c4f68dc]31#include "malloc.h"
32
[95eb7cf]33#define MIN(x, y) (y > x ? x : y)
[c4f68dc]34
[93c2e0a]35static bool traceHeap = false;
[d46ed6e]36
[baf608a]37inline bool traceHeap() { return traceHeap; }
[d46ed6e]38
[93c2e0a]39bool traceHeapOn() {
40 bool temp = traceHeap;
[d46ed6e]41 traceHeap = true;
42 return temp;
43} // traceHeapOn
44
[93c2e0a]45bool traceHeapOff() {
46 bool temp = traceHeap;
[d46ed6e]47 traceHeap = false;
48 return temp;
49} // traceHeapOff
50
[baf608a]51bool traceHeapTerm() { return false; }
52
[d46ed6e]53
[95eb7cf]54static bool prtFree = false;
[d46ed6e]55
[95eb7cf]56inline bool prtFree() {
57 return prtFree;
58} // prtFree
[5d4fa18]59
[95eb7cf]60bool prtFreeOn() {
61 bool temp = prtFree;
62 prtFree = true;
[5d4fa18]63 return temp;
[95eb7cf]64} // prtFreeOn
[5d4fa18]65
[95eb7cf]66bool prtFreeOff() {
67 bool temp = prtFree;
68 prtFree = false;
[5d4fa18]69 return temp;
[95eb7cf]70} // prtFreeOff
[5d4fa18]71
72
[e723100]73enum {
[1e034d9]74 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address,
75 // the brk address is extended by the extension amount.
[e723100]76 __CFA_DEFAULT_HEAP_EXPANSION__ = (1 * 1024 * 1024),
[1e034d9]77
78 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;
79 // values greater than or equal to this value are mmap from the operating system.
80 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),
[e723100]81};
82
83size_t default_mmap_start() __attribute__(( weak )) {
84 return __CFA_DEFAULT_MMAP_START__;
85} // default_mmap_start
86
87size_t default_heap_expansion() __attribute__(( weak )) {
88 return __CFA_DEFAULT_HEAP_EXPANSION__;
89} // default_heap_expansion
90
91
[f0b3f51]92#ifdef __CFA_DEBUG__
[93c2e0a]93static unsigned int allocFree; // running total of allocations minus frees
[d46ed6e]94
[95eb7cf]95static void prtUnfreed() {
[b6830d74]96 if ( allocFree != 0 ) {
[d46ed6e]97 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
[4ea1c6d]98 char helpText[512];
99 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %u(0x%x) bytes of storage allocated but not freed.\n"
100 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
101 (long int)getpid(), allocFree, allocFree ); // always print the UNIX pid
102 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[b6830d74]103 } // if
[95eb7cf]104} // prtUnfreed
[d46ed6e]105
106extern "C" {
[bcb14b5]107 void heapAppStart() { // called by __cfaabi_appready_startup
108 allocFree = 0;
109 } // heapAppStart
110
111 void heapAppStop() { // called by __cfaabi_appready_startdown
112 fclose( stdin ); fclose( stdout );
[95eb7cf]113 prtUnfreed();
[bcb14b5]114 } // heapAppStop
[d46ed6e]115} // extern "C"
116#endif // __CFA_DEBUG__
117
[1e034d9]118
[e723100]119// statically allocated variables => zero filled.
120static size_t pageSize; // architecture pagesize
121static size_t heapExpand; // sbrk advance
122static size_t mmapStart; // cross over point for mmap
123static unsigned int maxBucketsUsed; // maximum number of buckets in use
124
125
126#define SPINLOCK 0
127#define LOCKFREE 1
128#define BUCKETLOCK SPINLOCK
129#if BUCKETLOCK == LOCKFREE
130#include <uStackLF.h>
131#endif // LOCKFREE
132
133// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
134// Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]135enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]136
[c4f68dc]137struct HeapManager {
138// struct FreeHeader; // forward declaration
139
140 struct Storage {
[bcb14b5]141 struct Header { // header
[c4f68dc]142 union Kind {
143 struct RealHeader {
144 union {
[bcb14b5]145 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[f0b3f51]146 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]147 uint32_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]148 #endif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]149
150 union {
151// FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
152 void * home; // allocated block points back to home locations (must overlay alignment)
153 size_t blockSize; // size for munmap (must overlay alignment)
154 #if BUCKLOCK == SPINLOCK
155 Storage * next; // freed block points next freed block of same size
156 #endif // SPINLOCK
157 };
158
[f0b3f51]159 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]160 uint32_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]161 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]162 };
[bcb14b5]163 // future code
[c4f68dc]164 #if BUCKLOCK == LOCKFREE
165 Stack<Storage>::Link next; // freed block points next freed block of same size (double-wide)
166 #endif // LOCKFREE
167 };
[93c2e0a]168 } real; // RealHeader
[c4f68dc]169 struct FakeHeader {
170 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
171 uint32_t alignment; // low-order bits of home/blockSize used for tricks
[f0b3f51]172 #endif // __ORDER_LITTLE_ENDIAN__
[c4f68dc]173
174 uint32_t offset;
175
176 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
177 uint32_t alignment; // low-order bits of home/blockSize used for tricks
[f0b3f51]178 #endif // __ORDER_BIG_ENDIAN__
[93c2e0a]179 } fake; // FakeHeader
180 } kind; // Kind
[bcb14b5]181 } header; // Header
[95eb7cf]182 char pad[libAlign() - sizeof( Header )];
[bcb14b5]183 char data[0]; // storage
[c4f68dc]184 }; // Storage
185
[95eb7cf]186 static_assert( libAlign() >= sizeof( Storage ), "libAlign() < sizeof( Storage )" );
[c4f68dc]187
188 struct FreeHeader {
189 #if BUCKLOCK == SPINLOCK
[bcb14b5]190 __spinlock_t lock; // must be first field for alignment
191 Storage * freeList;
[c4f68dc]192 #elif BUCKLOCK == LOCKFREE
[bcb14b5]193 // future code
194 StackLF<Storage> freeList;
[c4f68dc]195 #else
[7b149bc]196 #error undefined lock type for bucket lock
[c4f68dc]197 #endif // SPINLOCK
[bcb14b5]198 size_t blockSize; // size of allocations on this list
[c4f68dc]199 }; // FreeHeader
200
201 // must be first fields for alignment
202 __spinlock_t extlock; // protects allocation-buffer extension
203 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
204
205 void * heapBegin; // start of heap
206 void * heapEnd; // logical end of heap
207 size_t heapRemaining; // amount of storage not allocated in the current chunk
208}; // HeapManager
209
[7b149bc]210static inline size_t getKey( const HeapManager.FreeHeader & freeheader ) { return freeheader.blockSize; }
[5d4fa18]211
[e723100]212
213#define FASTLOOKUP
214#define __STATISTICS__
[5d4fa18]215
[1e034d9]216// Bucket size must be multiple of 16.
[5d4fa18]217// Powers of 2 are common allocation sizes, so make powers of 2 generate the minimum required size.
[e723100]218static const unsigned int bucketSizes[] @= { // different bucket sizes
[95eb7cf]219 16, 32, 48, 64 + sizeof(HeapManager.Storage), // 4
220 96, 112, 128 + sizeof(HeapManager.Storage), // 3
221 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4
222 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4
223 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4
224 1_536, 2_048 + sizeof(HeapManager.Storage), // 2
225 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4
226 6_144, 8_192 + sizeof(HeapManager.Storage), // 2
227 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8
228 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8
229 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8
230 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8
231 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8
232 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8
233 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4
234 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8
235 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4
[5d4fa18]236};
[e723100]237
238static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0]), "size of bucket array wrong" );
239
[5d4fa18]240#ifdef FASTLOOKUP
[a92a4fe]241enum { LookupSizes = 65_536 + sizeof(HeapManager.Storage) }; // number of fast lookup sizes
[5d4fa18]242static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
243#endif // FASTLOOKUP
244
[95eb7cf]245static int mmapFd = -1; // fake or actual fd for anonymous file
[5d4fa18]246#ifdef __CFA_DEBUG__
[93c2e0a]247static bool heapBoot = 0; // detect recursion during boot
[5d4fa18]248#endif // __CFA_DEBUG__
249static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
250
[c4f68dc]251
252#ifdef __STATISTICS__
[95eb7cf]253// Heap statistics counters.
254static unsigned long long int mmap_storage;
[c4f68dc]255static unsigned int mmap_calls;
256static unsigned long long int munmap_storage;
257static unsigned int munmap_calls;
258static unsigned long long int sbrk_storage;
259static unsigned int sbrk_calls;
260static unsigned long long int malloc_storage;
261static unsigned int malloc_calls;
262static unsigned long long int free_storage;
263static unsigned int free_calls;
264static unsigned long long int calloc_storage;
265static unsigned int calloc_calls;
266static unsigned long long int memalign_storage;
267static unsigned int memalign_calls;
268static unsigned long long int cmemalign_storage;
269static unsigned int cmemalign_calls;
270static unsigned long long int realloc_storage;
271static unsigned int realloc_calls;
[95eb7cf]272// Statistics file descriptor (changed by malloc_stats_fd).
273static int statfd = STDERR_FILENO; // default stderr
[c4f68dc]274
275// Use "write" because streams may be shutdown when calls are made.
[d46ed6e]276static void printStats() {
[b6830d74]277 char helpText[512];
[95eb7cf]278 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[bcb14b5]279 "\nHeap statistics:\n"
280 " malloc: calls %u / storage %llu\n"
281 " calloc: calls %u / storage %llu\n"
282 " memalign: calls %u / storage %llu\n"
283 " cmemalign: calls %u / storage %llu\n"
284 " realloc: calls %u / storage %llu\n"
285 " free: calls %u / storage %llu\n"
286 " mmap: calls %u / storage %llu\n"
287 " munmap: calls %u / storage %llu\n"
288 " sbrk: calls %u / storage %llu\n",
289 malloc_calls, malloc_storage,
290 calloc_calls, calloc_storage,
291 memalign_calls, memalign_storage,
292 cmemalign_calls, cmemalign_storage,
293 realloc_calls, realloc_storage,
294 free_calls, free_storage,
295 mmap_calls, mmap_storage,
296 munmap_calls, munmap_storage,
297 sbrk_calls, sbrk_storage
[c4f68dc]298 );
[d46ed6e]299} // printStats
[c4f68dc]300
[bcb14b5]301static int printStatsXML( FILE * stream ) { // see malloc_info
[b6830d74]302 char helpText[512];
303 int len = snprintf( helpText, sizeof(helpText),
[c4f68dc]304 "<malloc version=\"1\">\n"
305 "<heap nr=\"0\">\n"
306 "<sizes>\n"
307 "</sizes>\n"
308 "<total type=\"malloc\" count=\"%u\" size=\"%llu\"/>\n"
309 "<total type=\"calloc\" count=\"%u\" size=\"%llu\"/>\n"
310 "<total type=\"memalign\" count=\"%u\" size=\"%llu\"/>\n"
311 "<total type=\"cmemalign\" count=\"%u\" size=\"%llu\"/>\n"
312 "<total type=\"realloc\" count=\"%u\" size=\"%llu\"/>\n"
313 "<total type=\"free\" count=\"%u\" size=\"%llu\"/>\n"
314 "<total type=\"mmap\" count=\"%u\" size=\"%llu\"/>\n"
315 "<total type=\"munmap\" count=\"%u\" size=\"%llu\"/>\n"
316 "<total type=\"sbrk\" count=\"%u\" size=\"%llu\"/>\n"
317 "</malloc>",
318 malloc_calls, malloc_storage,
319 calloc_calls, calloc_storage,
320 memalign_calls, memalign_storage,
321 cmemalign_calls, cmemalign_storage,
322 realloc_calls, realloc_storage,
323 free_calls, free_storage,
324 mmap_calls, mmap_storage,
325 munmap_calls, munmap_storage,
326 sbrk_calls, sbrk_storage
327 );
[95eb7cf]328 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit
329 return len;
[d46ed6e]330} // printStatsXML
[c4f68dc]331#endif // __STATISTICS__
332
[95eb7cf]333
[98d6965d]334// static inline void noMemory() {
335// abort( "Heap memory exhausted at %zu bytes.\n"
336// "Possible cause is very large memory allocation and/or large amount of unfreed storage allocated by the program or system/library routines.",
337// ((char *)(sbrk( 0 )) - (char *)(heapManager.heapBegin)) );
338// } // noMemory
[c4f68dc]339
340
341static inline void checkAlign( size_t alignment ) {
[95eb7cf]342 if ( alignment < libAlign() || ! libPow2( alignment ) ) {
343 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
[b6830d74]344 } // if
[c4f68dc]345} // checkAlign
346
347
[93c2e0a]348static inline bool setHeapExpand( size_t value ) {
[bcb14b5]349 if ( heapExpand < pageSize ) return true;
[b6830d74]350 heapExpand = value;
351 return false;
[c4f68dc]352} // setHeapExpand
353
354
[1e034d9]355// thunk problem
356size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
357 size_t l = 0, m, h = dim;
358 while ( l < h ) {
359 m = (l + h) / 2;
360 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
361 l = m + 1;
362 } else {
363 h = m;
364 } // if
365 } // while
366 return l;
367} // Bsearchl
368
369
[95eb7cf]370static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
371 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return true;
372 mmapStart = value; // set global
373
374 // find the closest bucket size less than or equal to the mmapStart size
[1e034d9]375 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
[95eb7cf]376 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
377 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
378 return false;
379} // setMmapStart
380
381
[e3fea42]382static inline void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]383 if ( unlikely( check ) ) { // bad address ?
[c4f68dc]384 abort( "Attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]385 "Possible cause is duplicate free on same block or overwriting of memory.",
386 name, addr );
[b6830d74]387 } // if
[c4f68dc]388} // checkHeader
389
[95eb7cf]390
391static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {
[b6830d74]392 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?
[c4f68dc]393 size_t offset = header->kind.fake.offset;
394 alignment = header->kind.fake.alignment & -2; // remove flag from value
395 #ifdef __CFA_DEBUG__
396 checkAlign( alignment ); // check alignment
397 #endif // __CFA_DEBUG__
398 header = (HeapManager.Storage.Header *)((char *)header - offset);
[b6830d74]399 } // if
[c4f68dc]400} // fakeHeader
401
[95eb7cf]402
403// <-------+----------------------------------------------------> bsize (bucket size)
404// |header |addr
405//==================================================================================
406// | alignment
407// <-----------------<------------+-----------------------------> bsize (bucket size)
408// |fake-header | addr
[c4f68dc]409#define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))
410
[95eb7cf]411// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
412// |header |addr
413//==================================================================================
414// | alignment
415// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
416// |fake-header |addr
417#define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
418
419
[e3fea42]420static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem, size_t & size, size_t & alignment ) with ( heapManager ) {
[b6830d74]421 header = headerAddr( addr );
[c4f68dc]422
[b6830d74]423 if ( unlikely( heapEnd < addr ) ) { // mmapped ?
[95eb7cf]424 fakeHeader( header, alignment );
[c4f68dc]425 size = header->kind.real.blockSize & -3; // mmap size
426 return true;
[b6830d74]427 } // if
[c4f68dc]428
429 #ifdef __CFA_DEBUG__
[bcb14b5]430 checkHeader( addr < heapBegin || header < (HeapManager.Storage.Header *)heapBegin, name, addr ); // bad low address ?
[c4f68dc]431 #endif // __CFA_DEBUG__
[b6830d74]432
[bcb14b5]433 // header may be safe to dereference
[95eb7cf]434 fakeHeader( header, alignment );
[c4f68dc]435 #ifdef __CFA_DEBUG__
[bcb14b5]436 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]437 #endif // __CFA_DEBUG__
438
[bcb14b5]439 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);
[c4f68dc]440 #ifdef __CFA_DEBUG__
[bcb14b5]441 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {
442 abort( "Attempt to %s storage %p with corrupted header.\n"
443 "Possible cause is duplicate free on same block or overwriting of header information.",
444 name, addr );
445 } // if
[c4f68dc]446 #endif // __CFA_DEBUG__
[bcb14b5]447 size = freeElem->blockSize;
448 return false;
[c4f68dc]449} // headers
450
451
452static inline void * extend( size_t size ) with ( heapManager ) {
[b6830d74]453 lock( extlock __cfaabi_dbg_ctx2 );
454 ptrdiff_t rem = heapRemaining - size;
455 if ( rem < 0 ) {
[c4f68dc]456 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
457
458 size_t increase = libCeiling( size > heapExpand ? size : heapExpand, libAlign() );
459 if ( sbrk( increase ) == (void *)-1 ) {
460 unlock( extlock );
461 errno = ENOMEM;
[95eb7cf]462 return 0p;
[c4f68dc]463 } // if
[bcb14b5]464 #ifdef __STATISTICS__
[c4f68dc]465 sbrk_calls += 1;
466 sbrk_storage += increase;
[bcb14b5]467 #endif // __STATISTICS__
468 #ifdef __CFA_DEBUG__
[c4f68dc]469 // Set new memory to garbage so subsequent uninitialized usages might fail.
470 memset( (char *)heapEnd + heapRemaining, '\377', increase );
[bcb14b5]471 #endif // __CFA_DEBUG__
[c4f68dc]472 rem = heapRemaining + increase - size;
[b6830d74]473 } // if
[c4f68dc]474
[b6830d74]475 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;
476 heapRemaining = rem;
477 heapEnd = (char *)heapEnd + size;
478 unlock( extlock );
479 return block;
[c4f68dc]480} // extend
481
482
483static inline void * doMalloc( size_t size ) with ( heapManager ) {
[7b149bc]484 HeapManager.Storage * block; // pointer to new block of storage
[c4f68dc]485
[b6830d74]486 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
487 // along with the block and is a multiple of the alignment size.
[c4f68dc]488
[95eb7cf]489 if ( unlikely( size > ~0ul - sizeof(HeapManager.Storage) ) ) return 0p;
[b6830d74]490 size_t tsize = size + sizeof(HeapManager.Storage);
491 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
[e723100]492 size_t posn;
493 #ifdef FASTLOOKUP
494 if ( tsize < LookupSizes ) posn = lookup[tsize];
495 else
496 #endif // FASTLOOKUP
497 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
498 HeapManager.FreeHeader * freeElem = &freeLists[posn];
499 // #ifdef FASTLOOKUP
500 // if ( tsize < LookupSizes )
501 // freeElem = &freeLists[lookup[tsize]];
502 // else
503 // #endif // FASTLOOKUP
504 // freeElem = bsearchl( tsize, freeLists, (size_t)maxBucketsUsed ); // binary search
505 // HeapManager.FreeHeader * freeElem =
506 // #ifdef FASTLOOKUP
507 // tsize < LookupSizes ? &freeLists[lookup[tsize]] :
508 // #endif // FASTLOOKUP
509 // bsearchl( tsize, freeLists, (size_t)maxBucketsUsed ); // binary search
[c4f68dc]510 assert( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
511 assert( tsize <= freeElem->blockSize ); // search failure ?
512 tsize = freeElem->blockSize; // total space needed for request
513
514 // Spin until the lock is acquired for this particular size of block.
515
516 #if defined( SPINLOCK )
[bcb14b5]517 lock( freeElem->lock __cfaabi_dbg_ctx2 );
518 block = freeElem->freeList; // remove node from stack
[c4f68dc]519 #else
[bcb14b5]520 block = freeElem->freeList.pop();
[c4f68dc]521 #endif // SPINLOCK
[95eb7cf]522 if ( unlikely( block == 0p ) ) { // no free block ?
[c4f68dc]523 #if defined( SPINLOCK )
524 unlock( freeElem->lock );
525 #endif // SPINLOCK
[bcb14b5]526
[c4f68dc]527 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
528 // and then carve it off.
529
530 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call
[95eb7cf]531 if ( unlikely( block == 0p ) ) return 0p;
[1e034d9]532 #if defined( SPINLOCK )
[c4f68dc]533 } else {
534 freeElem->freeList = block->header.kind.real.next;
535 unlock( freeElem->lock );
[1e034d9]536 #endif // SPINLOCK
[c4f68dc]537 } // if
538
539 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
[bcb14b5]540 } else { // large size => mmap
[95eb7cf]541 if ( unlikely( size > ~0ul - pageSize ) ) return 0p;
[c4f68dc]542 tsize = libCeiling( tsize, pageSize ); // must be multiple of page size
543 #ifdef __STATISTICS__
[bcb14b5]544 __atomic_add_fetch( &mmap_calls, 1, __ATOMIC_SEQ_CST );
545 __atomic_add_fetch( &mmap_storage, tsize, __ATOMIC_SEQ_CST );
[c4f68dc]546 #endif // __STATISTICS__
547 block = (HeapManager.Storage *)mmap( 0, tsize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
548 if ( block == (HeapManager.Storage *)MAP_FAILED ) {
549 // Do not call strerror( errno ) as it may call malloc.
550 abort( "(HeapManager &)0x%p.doMalloc() : internal error, mmap failure, size:%zu error:%d.", &heapManager, tsize, errno );
551 } // if
[bcb14b5]552 #ifdef __CFA_DEBUG__
[c4f68dc]553 // Set new memory to garbage so subsequent uninitialized usages might fail.
554 memset( block, '\377', tsize );
[bcb14b5]555 #endif // __CFA_DEBUG__
[c4f68dc]556 block->header.kind.real.blockSize = tsize; // storage size for munmap
[bcb14b5]557 } // if
[c4f68dc]558
[95eb7cf]559 void * addr = &(block->data); // adjust off header to user bytes
[c4f68dc]560
561 #ifdef __CFA_DEBUG__
[95eb7cf]562 assert( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[bcb14b5]563 __atomic_add_fetch( &allocFree, tsize, __ATOMIC_SEQ_CST );
564 if ( traceHeap() ) {
565 enum { BufferSize = 64 };
566 char helpText[BufferSize];
[95eb7cf]567 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize );
568 // int len = snprintf( helpText, BufferSize, "Malloc %p %zu\n", addr, size );
569 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]570 } // if
[c4f68dc]571 #endif // __CFA_DEBUG__
572
[95eb7cf]573 return addr;
[c4f68dc]574} // doMalloc
575
576
577static inline void doFree( void * addr ) with ( heapManager ) {
578 #ifdef __CFA_DEBUG__
[95eb7cf]579 if ( unlikely( heapManager.heapBegin == 0p ) ) {
[bcb14b5]580 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
581 } // if
[c4f68dc]582 #endif // __CFA_DEBUG__
583
[b6830d74]584 HeapManager.Storage.Header * header;
585 HeapManager.FreeHeader * freeElem;
586 size_t size, alignment; // not used (see realloc)
[c4f68dc]587
[b6830d74]588 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
[c4f68dc]589 #ifdef __STATISTICS__
[bcb14b5]590 __atomic_add_fetch( &munmap_calls, 1, __ATOMIC_SEQ_CST );
591 __atomic_add_fetch( &munmap_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]592 #endif // __STATISTICS__
593 if ( munmap( header, size ) == -1 ) {
594 #ifdef __CFA_DEBUG__
595 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
[bcb14b5]596 "Possible cause is invalid pointer.",
597 addr );
[c4f68dc]598 #endif // __CFA_DEBUG__
599 } // if
[bcb14b5]600 } else {
[c4f68dc]601 #ifdef __CFA_DEBUG__
[bcb14b5]602 // Set free memory to garbage so subsequent usages might fail.
603 memset( ((HeapManager.Storage *)header)->data, '\377', freeElem->blockSize - sizeof( HeapManager.Storage ) );
[c4f68dc]604 #endif // __CFA_DEBUG__
605
606 #ifdef __STATISTICS__
[bcb14b5]607 free_storage += size;
[c4f68dc]608 #endif // __STATISTICS__
609 #if defined( SPINLOCK )
[bcb14b5]610 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
611 header->kind.real.next = freeElem->freeList; // push on stack
612 freeElem->freeList = (HeapManager.Storage *)header;
613 unlock( freeElem->lock ); // release spin lock
[c4f68dc]614 #else
[bcb14b5]615 freeElem->freeList.push( *(HeapManager.Storage *)header );
[c4f68dc]616 #endif // SPINLOCK
[bcb14b5]617 } // if
[c4f68dc]618
619 #ifdef __CFA_DEBUG__
[bcb14b5]620 __atomic_add_fetch( &allocFree, -size, __ATOMIC_SEQ_CST );
621 if ( traceHeap() ) {
[7b149bc]622 enum { BufferSize = 64 };
623 char helpText[BufferSize];
[bcb14b5]624 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size );
[95eb7cf]625 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]626 } // if
[c4f68dc]627 #endif // __CFA_DEBUG__
628} // doFree
629
630
[95eb7cf]631size_t prtFree( HeapManager & manager ) with ( manager ) {
[b6830d74]632 size_t total = 0;
[c4f68dc]633 #ifdef __STATISTICS__
[95eb7cf]634 __cfaabi_bits_acquire();
635 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]636 #endif // __STATISTICS__
[b6830d74]637 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
[d46ed6e]638 size_t size = freeLists[i].blockSize;
639 #ifdef __STATISTICS__
640 unsigned int N = 0;
641 #endif // __STATISTICS__
[b6830d74]642
[d46ed6e]643 #if defined( SPINLOCK )
[95eb7cf]644 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]645 #else
[95eb7cf]646 for ( HeapManager.Storage * p = freeLists[i].freeList.top(); p != 0p; p = p->header.kind.real.next.top ) {
[d46ed6e]647 #endif // SPINLOCK
648 total += size;
649 #ifdef __STATISTICS__
650 N += 1;
651 #endif // __STATISTICS__
[b6830d74]652 } // for
653
[d46ed6e]654 #ifdef __STATISTICS__
[95eb7cf]655 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
656 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]657 #endif // __STATISTICS__
658 } // for
659 #ifdef __STATISTICS__
[95eb7cf]660 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
661 __cfaabi_bits_release();
[d46ed6e]662 #endif // __STATISTICS__
663 return (char *)heapEnd - (char *)heapBegin - total;
[95eb7cf]664} // prtFree
665
666
667static void ?{}( HeapManager & manager ) with ( manager ) {
668 pageSize = sysconf( _SC_PAGESIZE );
669
670 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
671 freeLists[i].blockSize = bucketSizes[i];
672 } // for
673
674 #ifdef FASTLOOKUP
675 unsigned int idx = 0;
676 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
677 if ( i > bucketSizes[idx] ) idx += 1;
678 lookup[i] = idx;
679 } // for
680 #endif // FASTLOOKUP
681
682 if ( setMmapStart( default_mmap_start() ) ) {
683 abort( "HeapManager : internal error, mmap start initialization failure." );
684 } // if
685 heapExpand = default_heap_expansion();
686
[1e034d9]687 char * end = (char *)sbrk( 0 );
688 sbrk( (char *)libCeiling( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment
[95eb7cf]689 heapBegin = heapEnd = sbrk( 0 ); // get new start point
690} // HeapManager
691
692
693static void ^?{}( HeapManager & ) {
694 #ifdef __STATISTICS__
[baf608a]695 if ( traceHeapTerm() ) {
696 printStats();
697 // if ( prtfree() ) prtFree( heapManager, true );
698 } // if
[95eb7cf]699 #endif // __STATISTICS__
700} // ~HeapManager
701
702
703static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
704void memory_startup( void ) {
705 #ifdef __CFA_DEBUG__
706 if ( unlikely( heapBoot ) ) { // check for recursion during system boot
707 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
708 abort( "boot() : internal error, recursively invoked during system boot." );
709 } // if
710 heapBoot = true;
711 #endif // __CFA_DEBUG__
712
713 //assert( heapManager.heapBegin != 0 );
714 //heapManager{};
715 if ( heapManager.heapBegin == 0p ) heapManager{};
716} // memory_startup
717
718static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
719void memory_shutdown( void ) {
720 ^heapManager{};
721} // memory_shutdown
[c4f68dc]722
[bcb14b5]723
724static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
[7117ac3]725 //assert( heapManager.heapBegin != 0 );
[95eb7cf]726 if ( unlikely( heapManager.heapBegin == 0p ) ) heapManager{}; // called before memory_startup ?
727 void * addr = doMalloc( size );
728 if ( unlikely( addr == 0p ) ) errno = ENOMEM; // POSIX
729 return addr;
[bcb14b5]730} // mallocNoStats
[c4f68dc]731
732
[95eb7cf]733static inline void * callocNoStats( size_t noOfElems, size_t elemSize ) {
734 size_t size = noOfElems * elemSize;
735 char * addr = (char *)mallocNoStats( size );
736 if ( unlikely( addr == 0p ) ) return 0p;
737
738 HeapManager.Storage.Header * header;
739 HeapManager.FreeHeader * freeElem;
740 size_t bsize, alignment;
741 bool mapped __attribute__(( unused )) = headers( "calloc", addr, header, freeElem, bsize, alignment );
742 #ifndef __CFA_DEBUG__
743 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
744 if ( ! mapped )
745 #endif // __CFA_DEBUG__
[1e034d9]746 // Zero entire data space even when > than size => realloc without a new allocation and zero fill works.
747 // <-------00000000000000000000000000000000000000000000000000000> bsize (bucket size)
748 // `-header`-addr `-size
[95eb7cf]749 memset( addr, '\0', bsize - sizeof(HeapManager.Storage) ); // set to zeros
750
751 header->kind.real.blockSize |= 2; // mark as zero filled
752 return addr;
753} // callocNoStats
754
755
[bcb14b5]756static inline void * memalignNoStats( size_t alignment, size_t size ) { // necessary for malloc statistics
757 #ifdef __CFA_DEBUG__
[b6830d74]758 checkAlign( alignment ); // check alignment
[bcb14b5]759 #endif // __CFA_DEBUG__
[c4f68dc]760
[b6830d74]761 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
[bcb14b5]762 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
[b6830d74]763
764 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
765 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
766 // .-------------v-----------------v----------------v----------,
767 // | Real Header | ... padding ... | Fake Header | data ... |
768 // `-------------^-----------------^-+--------------^----------'
769 // |<--------------------------------' offset/align |<-- alignment boundary
770
771 // subtract libAlign() because it is already the minimum alignment
772 // add sizeof(Storage) for fake header
[95eb7cf]773 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) );
774 if ( unlikely( addr == 0p ) ) return addr;
[b6830d74]775
776 // address in the block of the "next" alignment address
[95eb7cf]777 char * user = (char *)libCeiling( (uintptr_t)(addr + sizeof(HeapManager.Storage)), alignment );
[b6830d74]778
779 // address of header from malloc
[95eb7cf]780 HeapManager.Storage.Header * realHeader = headerAddr( addr );
[b6830d74]781 // address of fake header * before* the alignment location
782 HeapManager.Storage.Header * fakeHeader = headerAddr( user );
783 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
784 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
785 // SKULLDUGGERY: odd alignment imples fake header
786 fakeHeader->kind.fake.alignment = alignment | 1;
787
788 return user;
[bcb14b5]789} // memalignNoStats
[c4f68dc]790
791
[95eb7cf]792static inline void * cmemalignNoStats( size_t alignment, size_t noOfElems, size_t elemSize ) {
793 size_t size = noOfElems * elemSize;
794 char * addr = (char *)memalignNoStats( alignment, size );
795 if ( unlikely( addr == 0p ) ) return 0p;
796 HeapManager.Storage.Header * header;
797 HeapManager.FreeHeader * freeElem;
798 size_t bsize;
799 bool mapped __attribute__(( unused )) = headers( "cmemalign", addr, header, freeElem, bsize, alignment );
800 #ifndef __CFA_DEBUG__
801 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
802 if ( ! mapped )
803 #endif // __CFA_DEBUG__
804 memset( addr, '\0', dataStorage( bsize, addr, header ) ); // set to zeros
805 header->kind.real.blockSize |= 2; // mark as zero filled
806
807 return addr;
808} // cmemalignNoStats
809
810
[e723100]811// supported mallopt options
812#ifndef M_MMAP_THRESHOLD
813#define M_MMAP_THRESHOLD (-1)
814#endif // M_TOP_PAD
815#ifndef M_TOP_PAD
816#define M_TOP_PAD (-2)
817#endif // M_TOP_PAD
818
819
[c4f68dc]820extern "C" {
[bcb14b5]821 // The malloc() function allocates size bytes and returns a pointer to the allocated memory. The memory is not
[95eb7cf]822 // initialized. If size is 0, then malloc() returns either 0p, or a unique pointer value that can later be
[bcb14b5]823 // successfully passed to free().
[b6830d74]824 void * malloc( size_t size ) {
[c4f68dc]825 #ifdef __STATISTICS__
[bcb14b5]826 __atomic_add_fetch( &malloc_calls, 1, __ATOMIC_SEQ_CST );
827 __atomic_add_fetch( &malloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]828 #endif // __STATISTICS__
829
[bcb14b5]830 return mallocNoStats( size );
831 } // malloc
[c4f68dc]832
[bcb14b5]833 // The calloc() function allocates memory for an array of nmemb elements of size bytes each and returns a pointer to
[95eb7cf]834 // the allocated memory. The memory is set to zero. If nmemb or size is 0, then calloc() returns either 0p, or a
[bcb14b5]835 // unique pointer value that can later be successfully passed to free().
836 void * calloc( size_t noOfElems, size_t elemSize ) {
[c4f68dc]837 #ifdef __STATISTICS__
[bcb14b5]838 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST );
[95eb7cf]839 __atomic_add_fetch( &calloc_storage, noOfElems * elemSize, __ATOMIC_SEQ_CST );
[c4f68dc]840 #endif // __STATISTICS__
841
[95eb7cf]842 return callocNoStats( noOfElems, elemSize );
[bcb14b5]843 } // calloc
[c4f68dc]844
[bcb14b5]845 // The realloc() function changes the size of the memory block pointed to by ptr to size bytes. The contents will be
846 // unchanged in the range from the start of the region up to the minimum of the old and new sizes. If the new size
[95eb7cf]847 // is larger than the old size, the added memory will not be initialized. If ptr is 0p, then the call is
848 // equivalent to malloc(size), for all values of size; if size is equal to zero, and ptr is not 0p, then the call
849 // is equivalent to free(ptr). Unless ptr is 0p, it must have been returned by an earlier call to malloc(),
[bcb14b5]850 // calloc() or realloc(). If the area pointed to was moved, a free(ptr) is done.
[95eb7cf]851 void * realloc( void * oaddr, size_t size ) {
[c4f68dc]852 #ifdef __STATISTICS__
[bcb14b5]853 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]854 #endif // __STATISTICS__
855
[1f6de372]856 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
857 if ( unlikely( size == 0 ) ) { free( oaddr ); return mallocNoStats( size ); } // special cases
[95eb7cf]858 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size );
[c4f68dc]859
860 HeapManager.Storage.Header * header;
861 HeapManager.FreeHeader * freeElem;
[95eb7cf]862 size_t bsize, oalign = 0;
863 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
864
865 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
866 if ( size <= odsize && odsize <= size * 2 ) { // allow up to 50% wasted storage in smaller size
867 // Do not know size of original allocation => cannot do 0 fill for any additional space because do not know
868 // where to start filling, i.e., do not overwrite existing values in space.
869 //
[c4f68dc]870 // This case does not result in a new profiler entry because the previous one still exists and it must match with
871 // the free for this memory. Hence, this realloc does not appear in the profiler output.
[95eb7cf]872 return oaddr;
[c4f68dc]873 } // if
874
875 #ifdef __STATISTICS__
[bcb14b5]876 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]877 #endif // __STATISTICS__
878
[95eb7cf]879 // change size and copy old content to new storage
880
881 void * naddr;
882 if ( unlikely( oalign != 0 ) ) { // previous request memalign?
883 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
884 naddr = cmemalignNoStats( oalign, 1, size ); // create new aligned area
885 } else {
886 naddr = memalignNoStats( oalign, size ); // create new aligned area
887 } // if
[c4f68dc]888 } else {
[95eb7cf]889 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
890 naddr = callocNoStats( 1, size ); // create new area
891 } else {
892 naddr = mallocNoStats( size ); // create new area
893 } // if
[c4f68dc]894 } // if
[95eb7cf]895 if ( unlikely( naddr == 0p ) ) return 0p;
[1e034d9]896
[95eb7cf]897 headers( "realloc", naddr, header, freeElem, bsize, oalign );
898 size_t ndsize = dataStorage( bsize, naddr, header ); // data storage avilable in bucket
899 // To preserve prior fill, the entire bucket must be copied versus the size.
900 memcpy( naddr, oaddr, MIN( odsize, ndsize ) ); // copy bytes
901 free( oaddr );
902 return naddr;
[b6830d74]903 } // realloc
[c4f68dc]904
[bcb14b5]905 // The obsolete function memalign() allocates size bytes and returns a pointer to the allocated memory. The memory
906 // address will be a multiple of alignment, which must be a power of two.
907 void * memalign( size_t alignment, size_t size ) {
[c4f68dc]908 #ifdef __STATISTICS__
909 __atomic_add_fetch( &memalign_calls, 1, __ATOMIC_SEQ_CST );
910 __atomic_add_fetch( &memalign_storage, size, __ATOMIC_SEQ_CST );
911 #endif // __STATISTICS__
912
[95eb7cf]913 return memalignNoStats( alignment, size );
[bcb14b5]914 } // memalign
[c4f68dc]915
[95eb7cf]916
917 // The cmemalign() function is the same as calloc() with memory alignment.
918 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ) {
919 #ifdef __STATISTICS__
920 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
921 __atomic_add_fetch( &cmemalign_storage, noOfElems * elemSize, __ATOMIC_SEQ_CST );
922 #endif // __STATISTICS__
923
924 return cmemalignNoStats( alignment, noOfElems, elemSize );
925 } // cmemalign
926
[bcb14b5]927 // The function aligned_alloc() is the same as memalign(), except for the added restriction that size should be a
928 // multiple of alignment.
[b6830d74]929 void * aligned_alloc( size_t alignment, size_t size ) {
[c4f68dc]930 return memalign( alignment, size );
[b6830d74]931 } // aligned_alloc
[c4f68dc]932
933
[bcb14b5]934 // The function posix_memalign() allocates size bytes and places the address of the allocated memory in *memptr. The
935 // address of the allocated memory will be a multiple of alignment, which must be a power of two and a multiple of
[95eb7cf]936 // sizeof(void *). If size is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later
[bcb14b5]937 // be successfully passed to free(3).
[b6830d74]938 int posix_memalign( void ** memptr, size_t alignment, size_t size ) {
[bcb14b5]939 if ( alignment < sizeof(void *) || ! libPow2( alignment ) ) return EINVAL; // check alignment
[c4f68dc]940 * memptr = memalign( alignment, size );
[95eb7cf]941 if ( unlikely( * memptr == 0p ) ) return ENOMEM;
[c4f68dc]942 return 0;
[b6830d74]943 } // posix_memalign
[c4f68dc]944
[bcb14b5]945 // The obsolete function valloc() allocates size bytes and returns a pointer to the allocated memory. The memory
946 // address will be a multiple of the page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[b6830d74]947 void * valloc( size_t size ) {
[c4f68dc]948 return memalign( pageSize, size );
[b6830d74]949 } // valloc
[c4f68dc]950
951
[bcb14b5]952 // The free() function frees the memory space pointed to by ptr, which must have been returned by a previous call to
953 // malloc(), calloc() or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behavior
[95eb7cf]954 // occurs. If ptr is 0p, no operation is performed.
[b6830d74]955 void free( void * addr ) {
[c4f68dc]956 #ifdef __STATISTICS__
[bcb14b5]957 __atomic_add_fetch( &free_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]958 #endif // __STATISTICS__
959
[95eb7cf]960 if ( unlikely( addr == 0p ) ) { // special case
961 // #ifdef __CFA_DEBUG__
962 // if ( traceHeap() ) {
963 // #define nullmsg "Free( 0x0 ) size:0\n"
[1e034d9]964 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
[95eb7cf]965 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
966 // } // if
967 // #endif // __CFA_DEBUG__
[c4f68dc]968 return;
969 } // exit
970
971 doFree( addr );
[b6830d74]972 } // free
[93c2e0a]973
[c4f68dc]974
[1e034d9]975 // The malloc_alignment() function returns the alignment of the allocation.
[b6830d74]976 size_t malloc_alignment( void * addr ) {
[95eb7cf]977 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[1aa6ecb]978 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]979 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
980 return header->kind.fake.alignment & -2; // remove flag from value
981 } else {
982 return libAlign (); // minimum alignment
983 } // if
[bcb14b5]984 } // malloc_alignment
[c4f68dc]985
986
[1e034d9]987 // The malloc_zero_fill() function returns true if the allocation is zero filled, i.e., initially allocated by calloc().
[b6830d74]988 bool malloc_zero_fill( void * addr ) {
[95eb7cf]989 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[1aa6ecb]990 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]991 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
992 header = (HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset);
993 } // if
994 return (header->kind.real.blockSize & 2) != 0; // zero filled (calloc/cmemalign) ?
[bcb14b5]995 } // malloc_zero_fill
[c4f68dc]996
997
[95eb7cf]998 // The malloc_usable_size() function returns the number of usable bytes in the block pointed to by ptr, a pointer to
999 // a block of memory allocated by malloc(3) or a related function.
1000 size_t malloc_usable_size( void * addr ) {
1001 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1002 HeapManager.Storage.Header * header;
1003 HeapManager.FreeHeader * freeElem;
1004 size_t bsize, alignment;
1005
1006 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
1007 return dataStorage( bsize, addr, header ); // data storage in bucket
1008 } // malloc_usable_size
1009
1010
[1e034d9]1011 // The malloc_stats() function prints (on default standard error) statistics about memory allocated by malloc(3) and
1012 // related functions.
[b6830d74]1013 void malloc_stats( void ) {
[c4f68dc]1014 #ifdef __STATISTICS__
[bcb14b5]1015 printStats();
[95eb7cf]1016 if ( prtFree() ) prtFree( heapManager );
[c4f68dc]1017 #endif // __STATISTICS__
[bcb14b5]1018 } // malloc_stats
[c4f68dc]1019
[bcb14b5]1020 // The malloc_stats_fd() function changes the file descripter where malloc_stats() writes the statistics.
[95eb7cf]1021 int malloc_stats_fd( int fd __attribute__(( unused )) ) {
[c4f68dc]1022 #ifdef __STATISTICS__
[bcb14b5]1023 int temp = statfd;
1024 statfd = fd;
1025 return temp;
[c4f68dc]1026 #else
[bcb14b5]1027 return -1;
[c4f68dc]1028 #endif // __STATISTICS__
[bcb14b5]1029 } // malloc_stats_fd
[c4f68dc]1030
[95eb7cf]1031
1032 // The mallopt() function adjusts parameters that control the behavior of the memory-allocation functions (see
1033 // malloc(3)). The param argument specifies the parameter to be modified, and value specifies the new value for that
1034 // parameter.
1035 int mallopt( int option, int value ) {
1036 choose( option ) {
1037 case M_TOP_PAD:
1038 if ( setHeapExpand( value ) ) return 1;
1039 case M_MMAP_THRESHOLD:
1040 if ( setMmapStart( value ) ) return 1;
1041 } // switch
1042 return 0; // error, unsupported
1043 } // mallopt
1044
1045 // The malloc_trim() function attempts to release free memory at the top of the heap (by calling sbrk(2) with a
1046 // suitable argument).
1047 int malloc_trim( size_t ) {
1048 return 0; // => impossible to release memory
1049 } // malloc_trim
1050
1051
[bcb14b5]1052 // The malloc_info() function exports an XML string that describes the current state of the memory-allocation
1053 // implementation in the caller. The string is printed on the file stream stream. The exported string includes
1054 // information about all arenas (see malloc(3)).
[c4f68dc]1055 int malloc_info( int options, FILE * stream ) {
[95eb7cf]1056 if ( options != 0 ) { errno = EINVAL; return -1; }
[d46ed6e]1057 return printStatsXML( stream );
[c4f68dc]1058 } // malloc_info
1059
1060
[bcb14b5]1061 // The malloc_get_state() function records the current state of all malloc(3) internal bookkeeping variables (but
1062 // not the actual contents of the heap or the state of malloc_hook(3) functions pointers). The state is recorded in
1063 // a system-dependent opaque data structure dynamically allocated via malloc(3), and a pointer to that data
1064 // structure is returned as the function result. (It is the caller's responsibility to free(3) this memory.)
[c4f68dc]1065 void * malloc_get_state( void ) {
[95eb7cf]1066 return 0p; // unsupported
[c4f68dc]1067 } // malloc_get_state
1068
[bcb14b5]1069
1070 // The malloc_set_state() function restores the state of all malloc(3) internal bookkeeping variables to the values
1071 // recorded in the opaque data structure pointed to by state.
[c4f68dc]1072 int malloc_set_state( void * ptr ) {
[bcb14b5]1073 return 0; // unsupported
[c4f68dc]1074 } // malloc_set_state
1075} // extern "C"
1076
1077
[95eb7cf]1078// Must have CFA linkage to overload with C linkage realloc.
1079void * realloc( void * oaddr, size_t nalign, size_t size ) {
[1e034d9]1080 #ifdef __STATISTICS__
[95eb7cf]1081 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[1e034d9]1082 #endif // __STATISTICS__
[95eb7cf]1083
[1f6de372]1084 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1085 if ( unlikely( size == 0 ) ) { free( oaddr ); return mallocNoStats( size ); } // special cases
[95eb7cf]1086 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size );
1087
[1e034d9]1088 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum
[95eb7cf]1089 #ifdef __CFA_DEBUG__
[1e034d9]1090 else
[95eb7cf]1091 checkAlign( nalign ); // check alignment
1092 #endif // __CFA_DEBUG__
1093
1094 HeapManager.Storage.Header * header;
1095 HeapManager.FreeHeader * freeElem;
1096 size_t bsize, oalign = 0;
1097 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
[1e034d9]1098 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[95eb7cf]1099
1100 if ( oalign != 0 && (uintptr_t)oaddr % nalign == 0 ) { // has alignment and just happens to work out
1101 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1102 return realloc( oaddr, size );
[1e034d9]1103 } // if
[95eb7cf]1104
[1e034d9]1105 #ifdef __STATISTICS__
[95eb7cf]1106 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1107 #endif // __STATISTICS__
1108
1109 // change size and copy old content to new storage
[95eb7cf]1110
[1e034d9]1111 void * naddr;
1112 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
1113 naddr = cmemalignNoStats( nalign, 1, size ); // create new aligned area
1114 } else {
1115 naddr = memalignNoStats( nalign, size ); // create new aligned area
1116 } // if
[95eb7cf]1117
[1e034d9]1118 headers( "realloc", naddr, header, freeElem, bsize, oalign );
1119 size_t ndsize = dataStorage( bsize, naddr, header ); // data storage avilable in bucket
[95eb7cf]1120 // To preserve prior fill, the entire bucket must be copied versus the size.
[1e034d9]1121 memcpy( naddr, oaddr, MIN( odsize, ndsize ) ); // copy bytes
1122 free( oaddr );
1123 return naddr;
[95eb7cf]1124} // realloc
1125
1126
[c4f68dc]1127// Local Variables: //
1128// tab-width: 4 //
[f8cd310]1129// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1130// End: //
Note: See TracBrowser for help on using the repository browser.