source: libcfa/src/heap.cfa@ 8291293

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 8291293 was 8b58bae, checked in by Thierry Delisle <tdelisle@…>, 5 years ago

Merge branch 'master' into relaxed_ready

  • Property mode set to 100644
File size: 49.6 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
7// heap.c --
8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[c45d2fa]12// Last Modified On : Sat Jun 13 22:42:15 2020
13// Update Count : 805
[73abe95]14//
[c4f68dc]15
16#include <unistd.h> // sbrk, sysconf
17#include <stdbool.h> // true, false
18#include <stdio.h> // snprintf, fileno
19#include <errno.h> // errno
[1e034d9]20#include <string.h> // memset, memcpy
[1076d05]21#include <limits.h> // ULONG_MAX
[ada0246d]22#include <malloc.h> // memalign, malloc_usable_size
[c4f68dc]23#include <sys/mman.h> // mmap, munmap
24
[bcb14b5]25#include "bits/align.hfa" // libPow2
26#include "bits/defs.hfa" // likely, unlikely
27#include "bits/locks.hfa" // __spinlock_t
[73abe95]28#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[1e034d9]29//#include "stdlib.hfa" // bsearchl
[1076d05]30#include "bitmanip.hfa" // ceiling
[c4f68dc]31
[95eb7cf]32#define MIN(x, y) (y > x ? x : y)
[c4f68dc]33
[93c2e0a]34static bool traceHeap = false;
[d46ed6e]35
[baf608a]36inline bool traceHeap() { return traceHeap; }
[d46ed6e]37
[93c2e0a]38bool traceHeapOn() {
39 bool temp = traceHeap;
[d46ed6e]40 traceHeap = true;
41 return temp;
42} // traceHeapOn
43
[93c2e0a]44bool traceHeapOff() {
45 bool temp = traceHeap;
[d46ed6e]46 traceHeap = false;
47 return temp;
48} // traceHeapOff
49
[baf608a]50bool traceHeapTerm() { return false; }
51
[d46ed6e]52
[95eb7cf]53static bool prtFree = false;
[d46ed6e]54
[95eb7cf]55inline bool prtFree() {
56 return prtFree;
57} // prtFree
[5d4fa18]58
[95eb7cf]59bool prtFreeOn() {
60 bool temp = prtFree;
61 prtFree = true;
[5d4fa18]62 return temp;
[95eb7cf]63} // prtFreeOn
[5d4fa18]64
[95eb7cf]65bool prtFreeOff() {
66 bool temp = prtFree;
67 prtFree = false;
[5d4fa18]68 return temp;
[95eb7cf]69} // prtFreeOff
[5d4fa18]70
71
[e723100]72enum {
[1e034d9]73 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address,
74 // the brk address is extended by the extension amount.
[e723100]75 __CFA_DEFAULT_HEAP_EXPANSION__ = (1 * 1024 * 1024),
[1e034d9]76
77 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;
78 // values greater than or equal to this value are mmap from the operating system.
79 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),
[e723100]80};
81
82size_t default_heap_expansion() __attribute__(( weak )) {
83 return __CFA_DEFAULT_HEAP_EXPANSION__;
84} // default_heap_expansion
85
[1076d05]86size_t default_mmap_start() __attribute__(( weak )) {
87 return __CFA_DEFAULT_MMAP_START__;
88} // default_mmap_start
89
[e723100]90
[f0b3f51]91#ifdef __CFA_DEBUG__
[93c2e0a]92static unsigned int allocFree; // running total of allocations minus frees
[d46ed6e]93
[95eb7cf]94static void prtUnfreed() {
[b6830d74]95 if ( allocFree != 0 ) {
[d46ed6e]96 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
[4ea1c6d]97 char helpText[512];
98 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %u(0x%x) bytes of storage allocated but not freed.\n"
99 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
100 (long int)getpid(), allocFree, allocFree ); // always print the UNIX pid
101 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[b6830d74]102 } // if
[95eb7cf]103} // prtUnfreed
[d46ed6e]104
105extern "C" {
[bcb14b5]106 void heapAppStart() { // called by __cfaabi_appready_startup
107 allocFree = 0;
108 } // heapAppStart
109
110 void heapAppStop() { // called by __cfaabi_appready_startdown
111 fclose( stdin ); fclose( stdout );
[95eb7cf]112 prtUnfreed();
[bcb14b5]113 } // heapAppStop
[d46ed6e]114} // extern "C"
115#endif // __CFA_DEBUG__
116
[1e034d9]117
[e723100]118// statically allocated variables => zero filled.
119static size_t pageSize; // architecture pagesize
120static size_t heapExpand; // sbrk advance
121static size_t mmapStart; // cross over point for mmap
122static unsigned int maxBucketsUsed; // maximum number of buckets in use
123
124
125#define SPINLOCK 0
126#define LOCKFREE 1
127#define BUCKETLOCK SPINLOCK
[9c438546]128#if BUCKETLOCK == SPINLOCK
129#elif BUCKETLOCK == LOCKFREE
130#include <stackLockFree.hfa>
131#else
132 #error undefined lock type for bucket lock
[e723100]133#endif // LOCKFREE
134
135// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
136// Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]137enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]138
[c4f68dc]139struct HeapManager {
140 struct Storage {
[bcb14b5]141 struct Header { // header
[c4f68dc]142 union Kind {
143 struct RealHeader {
144 union {
[bcb14b5]145 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[f0b3f51]146 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]147 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]148 #endif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]149
150 union {
[9c438546]151 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
[cfbc703d]152 // 2nd low-order bit => zero filled
[c4f68dc]153 void * home; // allocated block points back to home locations (must overlay alignment)
154 size_t blockSize; // size for munmap (must overlay alignment)
[9c438546]155 #if BUCKETLOCK == SPINLOCK
[c4f68dc]156 Storage * next; // freed block points next freed block of same size
157 #endif // SPINLOCK
158 };
[9c438546]159 size_t size; // allocation size in bytes
[c4f68dc]160
[f0b3f51]161 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]162 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]163 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]164 };
[9c438546]165 #if BUCKETLOCK == LOCKFREE
166 Link(Storage) next; // freed block points next freed block of same size (double-wide)
[c4f68dc]167 #endif // LOCKFREE
168 };
[93c2e0a]169 } real; // RealHeader
[9c438546]170
[c4f68dc]171 struct FakeHeader {
172 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
[9c438546]173 uint32_t alignment; // 1st low-order bit => fake header & alignment
[f0b3f51]174 #endif // __ORDER_LITTLE_ENDIAN__
[c4f68dc]175
176 uint32_t offset;
177
178 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
179 uint32_t alignment; // low-order bits of home/blockSize used for tricks
[f0b3f51]180 #endif // __ORDER_BIG_ENDIAN__
[93c2e0a]181 } fake; // FakeHeader
182 } kind; // Kind
[bcb14b5]183 } header; // Header
[95eb7cf]184 char pad[libAlign() - sizeof( Header )];
[bcb14b5]185 char data[0]; // storage
[c4f68dc]186 }; // Storage
187
[95eb7cf]188 static_assert( libAlign() >= sizeof( Storage ), "libAlign() < sizeof( Storage )" );
[c4f68dc]189
190 struct FreeHeader {
[9c438546]191 #if BUCKETLOCK == SPINLOCK
[bcb14b5]192 __spinlock_t lock; // must be first field for alignment
193 Storage * freeList;
[c4f68dc]194 #else
[9c438546]195 StackLF(Storage) freeList;
196 #endif // BUCKETLOCK
[bcb14b5]197 size_t blockSize; // size of allocations on this list
[c4f68dc]198 }; // FreeHeader
199
200 // must be first fields for alignment
201 __spinlock_t extlock; // protects allocation-buffer extension
202 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
203
204 void * heapBegin; // start of heap
205 void * heapEnd; // logical end of heap
206 size_t heapRemaining; // amount of storage not allocated in the current chunk
207}; // HeapManager
208
[9c438546]209#if BUCKETLOCK == LOCKFREE
[c45d2fa]210static inline {
[8b58bae]211 Link(HeapManager.Storage) * ?`next( HeapManager.Storage * this ) { return &this->header.kind.real.next; }
[c45d2fa]212 void ?{}( HeapManager.FreeHeader & ) {}
213 void ^?{}( HeapManager.FreeHeader & ) {}
214} // distribution
[9c438546]215#endif // LOCKFREE
216
[7b149bc]217static inline size_t getKey( const HeapManager.FreeHeader & freeheader ) { return freeheader.blockSize; }
[5d4fa18]218
[e723100]219
220#define FASTLOOKUP
221#define __STATISTICS__
[5d4fa18]222
[1e034d9]223// Bucket size must be multiple of 16.
[5d4fa18]224// Powers of 2 are common allocation sizes, so make powers of 2 generate the minimum required size.
[e723100]225static const unsigned int bucketSizes[] @= { // different bucket sizes
[95eb7cf]226 16, 32, 48, 64 + sizeof(HeapManager.Storage), // 4
227 96, 112, 128 + sizeof(HeapManager.Storage), // 3
228 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4
229 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4
230 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4
231 1_536, 2_048 + sizeof(HeapManager.Storage), // 2
232 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4
233 6_144, 8_192 + sizeof(HeapManager.Storage), // 2
234 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8
235 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8
236 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8
237 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8
238 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8
239 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8
240 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4
241 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8
242 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4
[5d4fa18]243};
[e723100]244
245static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0]), "size of bucket array wrong" );
246
[5d4fa18]247#ifdef FASTLOOKUP
[a92a4fe]248enum { LookupSizes = 65_536 + sizeof(HeapManager.Storage) }; // number of fast lookup sizes
[5d4fa18]249static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
250#endif // FASTLOOKUP
251
[95eb7cf]252static int mmapFd = -1; // fake or actual fd for anonymous file
[5d4fa18]253#ifdef __CFA_DEBUG__
[93c2e0a]254static bool heapBoot = 0; // detect recursion during boot
[5d4fa18]255#endif // __CFA_DEBUG__
[9c438546]256
257// The constructor for heapManager is called explicitly in memory_startup.
[5d4fa18]258static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
259
[c4f68dc]260
261#ifdef __STATISTICS__
[95eb7cf]262// Heap statistics counters.
263static unsigned long long int mmap_storage;
[c4f68dc]264static unsigned int mmap_calls;
265static unsigned long long int munmap_storage;
266static unsigned int munmap_calls;
267static unsigned long long int sbrk_storage;
268static unsigned int sbrk_calls;
269static unsigned long long int malloc_storage;
270static unsigned int malloc_calls;
271static unsigned long long int free_storage;
272static unsigned int free_calls;
[76e2113]273static unsigned long long int aalloc_storage;
274static unsigned int aalloc_calls;
[c4f68dc]275static unsigned long long int calloc_storage;
276static unsigned int calloc_calls;
277static unsigned long long int memalign_storage;
278static unsigned int memalign_calls;
[76e2113]279static unsigned long long int amemalign_storage;
280static unsigned int amemalign_calls;
[c4f68dc]281static unsigned long long int cmemalign_storage;
282static unsigned int cmemalign_calls;
[cfbc703d]283static unsigned long long int resize_storage;
284static unsigned int resize_calls;
[c4f68dc]285static unsigned long long int realloc_storage;
286static unsigned int realloc_calls;
[95eb7cf]287// Statistics file descriptor (changed by malloc_stats_fd).
288static int statfd = STDERR_FILENO; // default stderr
[c4f68dc]289
290// Use "write" because streams may be shutdown when calls are made.
[d46ed6e]291static void printStats() {
[76e2113]292 char helpText[1024];
[95eb7cf]293 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[bcb14b5]294 "\nHeap statistics:\n"
295 " malloc: calls %u / storage %llu\n"
[76e2113]296 " aalloc: calls %u / storage %llu\n"
[bcb14b5]297 " calloc: calls %u / storage %llu\n"
298 " memalign: calls %u / storage %llu\n"
[76e2113]299 " amemalign: calls %u / storage %llu\n"
[bcb14b5]300 " cmemalign: calls %u / storage %llu\n"
[cfbc703d]301 " resize: calls %u / storage %llu\n"
[bcb14b5]302 " realloc: calls %u / storage %llu\n"
303 " free: calls %u / storage %llu\n"
304 " mmap: calls %u / storage %llu\n"
305 " munmap: calls %u / storage %llu\n"
306 " sbrk: calls %u / storage %llu\n",
307 malloc_calls, malloc_storage,
[76e2113]308 aalloc_calls, calloc_storage,
[bcb14b5]309 calloc_calls, calloc_storage,
310 memalign_calls, memalign_storage,
[76e2113]311 amemalign_calls, amemalign_storage,
[bcb14b5]312 cmemalign_calls, cmemalign_storage,
[cfbc703d]313 resize_calls, resize_storage,
[bcb14b5]314 realloc_calls, realloc_storage,
315 free_calls, free_storage,
316 mmap_calls, mmap_storage,
317 munmap_calls, munmap_storage,
318 sbrk_calls, sbrk_storage
[c4f68dc]319 );
[d46ed6e]320} // printStats
[c4f68dc]321
[bcb14b5]322static int printStatsXML( FILE * stream ) { // see malloc_info
[76e2113]323 char helpText[1024];
[b6830d74]324 int len = snprintf( helpText, sizeof(helpText),
[c4f68dc]325 "<malloc version=\"1\">\n"
326 "<heap nr=\"0\">\n"
327 "<sizes>\n"
328 "</sizes>\n"
329 "<total type=\"malloc\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]330 "<total type=\"aalloc\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]331 "<total type=\"calloc\" count=\"%u\" size=\"%llu\"/>\n"
332 "<total type=\"memalign\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]333 "<total type=\"amemalign\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]334 "<total type=\"cmemalign\" count=\"%u\" size=\"%llu\"/>\n"
[cfbc703d]335 "<total type=\"resize\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]336 "<total type=\"realloc\" count=\"%u\" size=\"%llu\"/>\n"
337 "<total type=\"free\" count=\"%u\" size=\"%llu\"/>\n"
338 "<total type=\"mmap\" count=\"%u\" size=\"%llu\"/>\n"
339 "<total type=\"munmap\" count=\"%u\" size=\"%llu\"/>\n"
340 "<total type=\"sbrk\" count=\"%u\" size=\"%llu\"/>\n"
341 "</malloc>",
342 malloc_calls, malloc_storage,
[76e2113]343 aalloc_calls, aalloc_storage,
[c4f68dc]344 calloc_calls, calloc_storage,
345 memalign_calls, memalign_storage,
[76e2113]346 amemalign_calls, amemalign_storage,
[c4f68dc]347 cmemalign_calls, cmemalign_storage,
[cfbc703d]348 resize_calls, resize_storage,
[c4f68dc]349 realloc_calls, realloc_storage,
350 free_calls, free_storage,
351 mmap_calls, mmap_storage,
352 munmap_calls, munmap_storage,
353 sbrk_calls, sbrk_storage
354 );
[95eb7cf]355 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit
356 return len;
[d46ed6e]357} // printStatsXML
[c4f68dc]358#endif // __STATISTICS__
359
[95eb7cf]360
[1e034d9]361// thunk problem
362size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
363 size_t l = 0, m, h = dim;
364 while ( l < h ) {
365 m = (l + h) / 2;
366 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
367 l = m + 1;
368 } else {
369 h = m;
370 } // if
371 } // while
372 return l;
373} // Bsearchl
374
375
[95eb7cf]376static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
[1076d05]377 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]378 mmapStart = value; // set global
379
380 // find the closest bucket size less than or equal to the mmapStart size
[1e034d9]381 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
[95eb7cf]382 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
383 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]384 return true;
[95eb7cf]385} // setMmapStart
386
387
[cfbc703d]388// <-------+----------------------------------------------------> bsize (bucket size)
389// |header |addr
390//==================================================================================
391// align/offset |
392// <-----------------<------------+-----------------------------> bsize (bucket size)
393// |fake-header | addr
394#define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))
395#define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset))
396
397// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
398// |header |addr
399//==================================================================================
400// align/offset |
401// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
402// |fake-header |addr
403#define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
404
405
[9c438546]406// static inline void noMemory() {
407// abort( "Heap memory exhausted at %zu bytes.\n"
408// "Possible cause is very large memory allocation and/or large amount of unfreed storage allocated by the program or system/library routines.",
409// ((char *)(sbrk( 0 )) - (char *)(heapManager.heapBegin)) );
410// } // noMemory
411
412
[cfbc703d]413static inline void checkAlign( size_t alignment ) {
414 if ( alignment < libAlign() || ! libPow2( alignment ) ) {
415 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
416 } // if
417} // checkAlign
418
419
[e3fea42]420static inline void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]421 if ( unlikely( check ) ) { // bad address ?
[c4f68dc]422 abort( "Attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]423 "Possible cause is duplicate free on same block or overwriting of memory.",
424 name, addr );
[b6830d74]425 } // if
[c4f68dc]426} // checkHeader
427
[95eb7cf]428
429static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {
[b6830d74]430 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?
[c4f68dc]431 alignment = header->kind.fake.alignment & -2; // remove flag from value
432 #ifdef __CFA_DEBUG__
433 checkAlign( alignment ); // check alignment
434 #endif // __CFA_DEBUG__
[cfbc703d]435 header = realHeader( header ); // backup from fake to real header
[b6830d74]436 } // if
[c4f68dc]437} // fakeHeader
438
[95eb7cf]439
[9c438546]440static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem,
441 size_t & size, size_t & alignment ) with( heapManager ) {
[b6830d74]442 header = headerAddr( addr );
[c4f68dc]443
[b6830d74]444 if ( unlikely( heapEnd < addr ) ) { // mmapped ?
[95eb7cf]445 fakeHeader( header, alignment );
[c4f68dc]446 size = header->kind.real.blockSize & -3; // mmap size
447 return true;
[b6830d74]448 } // if
[c4f68dc]449
450 #ifdef __CFA_DEBUG__
[1076d05]451 checkHeader( addr < heapBegin, name, addr ); // bad low address ?
[c4f68dc]452 #endif // __CFA_DEBUG__
[b6830d74]453
[bcb14b5]454 // header may be safe to dereference
[95eb7cf]455 fakeHeader( header, alignment );
[c4f68dc]456 #ifdef __CFA_DEBUG__
[bcb14b5]457 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]458 #endif // __CFA_DEBUG__
459
[bcb14b5]460 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);
[c4f68dc]461 #ifdef __CFA_DEBUG__
[bcb14b5]462 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {
463 abort( "Attempt to %s storage %p with corrupted header.\n"
464 "Possible cause is duplicate free on same block or overwriting of header information.",
465 name, addr );
466 } // if
[c4f68dc]467 #endif // __CFA_DEBUG__
[bcb14b5]468 size = freeElem->blockSize;
469 return false;
[c4f68dc]470} // headers
471
472
[9c438546]473static inline void * extend( size_t size ) with( heapManager ) {
[b6830d74]474 lock( extlock __cfaabi_dbg_ctx2 );
475 ptrdiff_t rem = heapRemaining - size;
476 if ( rem < 0 ) {
[c4f68dc]477 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
478
479 size_t increase = libCeiling( size > heapExpand ? size : heapExpand, libAlign() );
480 if ( sbrk( increase ) == (void *)-1 ) {
481 unlock( extlock );
482 errno = ENOMEM;
[95eb7cf]483 return 0p;
[c4f68dc]484 } // if
[bcb14b5]485 #ifdef __STATISTICS__
[c4f68dc]486 sbrk_calls += 1;
487 sbrk_storage += increase;
[bcb14b5]488 #endif // __STATISTICS__
489 #ifdef __CFA_DEBUG__
[c4f68dc]490 // Set new memory to garbage so subsequent uninitialized usages might fail.
491 memset( (char *)heapEnd + heapRemaining, '\377', increase );
[bcb14b5]492 #endif // __CFA_DEBUG__
[c4f68dc]493 rem = heapRemaining + increase - size;
[b6830d74]494 } // if
[c4f68dc]495
[b6830d74]496 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;
497 heapRemaining = rem;
498 heapEnd = (char *)heapEnd + size;
499 unlock( extlock );
500 return block;
[c4f68dc]501} // extend
502
503
[9c438546]504static inline void * doMalloc( size_t size ) with( heapManager ) {
[7b149bc]505 HeapManager.Storage * block; // pointer to new block of storage
[c4f68dc]506
[b6830d74]507 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
508 // along with the block and is a multiple of the alignment size.
[c4f68dc]509
[1076d05]510 if ( unlikely( size > ULONG_MAX - sizeof(HeapManager.Storage) ) ) return 0p;
[b6830d74]511 size_t tsize = size + sizeof(HeapManager.Storage);
512 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
[e723100]513 size_t posn;
514 #ifdef FASTLOOKUP
515 if ( tsize < LookupSizes ) posn = lookup[tsize];
516 else
517 #endif // FASTLOOKUP
518 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
519 HeapManager.FreeHeader * freeElem = &freeLists[posn];
520 // #ifdef FASTLOOKUP
521 // if ( tsize < LookupSizes )
522 // freeElem = &freeLists[lookup[tsize]];
523 // else
524 // #endif // FASTLOOKUP
525 // freeElem = bsearchl( tsize, freeLists, (size_t)maxBucketsUsed ); // binary search
526 // HeapManager.FreeHeader * freeElem =
527 // #ifdef FASTLOOKUP
528 // tsize < LookupSizes ? &freeLists[lookup[tsize]] :
529 // #endif // FASTLOOKUP
530 // bsearchl( tsize, freeLists, (size_t)maxBucketsUsed ); // binary search
[c4f68dc]531 assert( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
532 assert( tsize <= freeElem->blockSize ); // search failure ?
533 tsize = freeElem->blockSize; // total space needed for request
534
535 // Spin until the lock is acquired for this particular size of block.
536
[9c438546]537 #if BUCKETLOCK == SPINLOCK
[bcb14b5]538 lock( freeElem->lock __cfaabi_dbg_ctx2 );
539 block = freeElem->freeList; // remove node from stack
[c4f68dc]540 #else
[9c438546]541 block = pop( freeElem->freeList );
542 #endif // BUCKETLOCK
[95eb7cf]543 if ( unlikely( block == 0p ) ) { // no free block ?
[9c438546]544 #if BUCKETLOCK == SPINLOCK
[c4f68dc]545 unlock( freeElem->lock );
[9c438546]546 #endif // BUCKETLOCK
[bcb14b5]547
[c4f68dc]548 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
549 // and then carve it off.
550
551 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call
[9c438546]552 if ( unlikely( block == 0p ) ) return 0p;
553 #if BUCKETLOCK == SPINLOCK
[c4f68dc]554 } else {
555 freeElem->freeList = block->header.kind.real.next;
556 unlock( freeElem->lock );
[9c438546]557 #endif // BUCKETLOCK
[c4f68dc]558 } // if
559
560 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
[bcb14b5]561 } else { // large size => mmap
[1076d05]562 if ( unlikely( size > ULONG_MAX - pageSize ) ) return 0p;
[c4f68dc]563 tsize = libCeiling( tsize, pageSize ); // must be multiple of page size
564 #ifdef __STATISTICS__
[bcb14b5]565 __atomic_add_fetch( &mmap_calls, 1, __ATOMIC_SEQ_CST );
566 __atomic_add_fetch( &mmap_storage, tsize, __ATOMIC_SEQ_CST );
[c4f68dc]567 #endif // __STATISTICS__
568 block = (HeapManager.Storage *)mmap( 0, tsize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
569 if ( block == (HeapManager.Storage *)MAP_FAILED ) {
570 // Do not call strerror( errno ) as it may call malloc.
571 abort( "(HeapManager &)0x%p.doMalloc() : internal error, mmap failure, size:%zu error:%d.", &heapManager, tsize, errno );
572 } // if
[bcb14b5]573 #ifdef __CFA_DEBUG__
[c4f68dc]574 // Set new memory to garbage so subsequent uninitialized usages might fail.
575 memset( block, '\377', tsize );
[bcb14b5]576 #endif // __CFA_DEBUG__
[c4f68dc]577 block->header.kind.real.blockSize = tsize; // storage size for munmap
[bcb14b5]578 } // if
[c4f68dc]579
[9c438546]580 block->header.kind.real.size = size; // store allocation size
[95eb7cf]581 void * addr = &(block->data); // adjust off header to user bytes
[c4f68dc]582
583 #ifdef __CFA_DEBUG__
[95eb7cf]584 assert( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[bcb14b5]585 __atomic_add_fetch( &allocFree, tsize, __ATOMIC_SEQ_CST );
586 if ( traceHeap() ) {
587 enum { BufferSize = 64 };
588 char helpText[BufferSize];
[95eb7cf]589 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize );
590 // int len = snprintf( helpText, BufferSize, "Malloc %p %zu\n", addr, size );
591 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]592 } // if
[c4f68dc]593 #endif // __CFA_DEBUG__
594
[95eb7cf]595 return addr;
[c4f68dc]596} // doMalloc
597
598
[9c438546]599static inline void doFree( void * addr ) with( heapManager ) {
[c4f68dc]600 #ifdef __CFA_DEBUG__
[95eb7cf]601 if ( unlikely( heapManager.heapBegin == 0p ) ) {
[bcb14b5]602 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
603 } // if
[c4f68dc]604 #endif // __CFA_DEBUG__
605
[b6830d74]606 HeapManager.Storage.Header * header;
607 HeapManager.FreeHeader * freeElem;
608 size_t size, alignment; // not used (see realloc)
[c4f68dc]609
[b6830d74]610 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
[c4f68dc]611 #ifdef __STATISTICS__
[bcb14b5]612 __atomic_add_fetch( &munmap_calls, 1, __ATOMIC_SEQ_CST );
613 __atomic_add_fetch( &munmap_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]614 #endif // __STATISTICS__
615 if ( munmap( header, size ) == -1 ) {
616 #ifdef __CFA_DEBUG__
617 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
[bcb14b5]618 "Possible cause is invalid pointer.",
619 addr );
[c4f68dc]620 #endif // __CFA_DEBUG__
621 } // if
[bcb14b5]622 } else {
[c4f68dc]623 #ifdef __CFA_DEBUG__
[bcb14b5]624 // Set free memory to garbage so subsequent usages might fail.
625 memset( ((HeapManager.Storage *)header)->data, '\377', freeElem->blockSize - sizeof( HeapManager.Storage ) );
[c4f68dc]626 #endif // __CFA_DEBUG__
627
628 #ifdef __STATISTICS__
[bcb14b5]629 free_storage += size;
[c4f68dc]630 #endif // __STATISTICS__
[9c438546]631 #if BUCKETLOCK == SPINLOCK
[bcb14b5]632 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
633 header->kind.real.next = freeElem->freeList; // push on stack
634 freeElem->freeList = (HeapManager.Storage *)header;
635 unlock( freeElem->lock ); // release spin lock
[c4f68dc]636 #else
[9c438546]637 push( freeElem->freeList, *(HeapManager.Storage *)header );
638 #endif // BUCKETLOCK
[bcb14b5]639 } // if
[c4f68dc]640
641 #ifdef __CFA_DEBUG__
[bcb14b5]642 __atomic_add_fetch( &allocFree, -size, __ATOMIC_SEQ_CST );
643 if ( traceHeap() ) {
[7b149bc]644 enum { BufferSize = 64 };
645 char helpText[BufferSize];
[bcb14b5]646 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size );
[95eb7cf]647 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]648 } // if
[c4f68dc]649 #endif // __CFA_DEBUG__
650} // doFree
651
652
[9c438546]653size_t prtFree( HeapManager & manager ) with( manager ) {
[b6830d74]654 size_t total = 0;
[c4f68dc]655 #ifdef __STATISTICS__
[95eb7cf]656 __cfaabi_bits_acquire();
657 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]658 #endif // __STATISTICS__
[b6830d74]659 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
[d46ed6e]660 size_t size = freeLists[i].blockSize;
661 #ifdef __STATISTICS__
662 unsigned int N = 0;
663 #endif // __STATISTICS__
[b6830d74]664
[9c438546]665 #if BUCKETLOCK == SPINLOCK
[95eb7cf]666 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]667 #else
[9c438546]668 for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; /* p = getNext( p )->top */) {
[0f89d4f]669 typeof(p) temp = ( p )`next->top; // FIX ME: direct assignent fails, initialization works
[9c438546]670 p = temp;
671 #endif // BUCKETLOCK
[d46ed6e]672 total += size;
673 #ifdef __STATISTICS__
674 N += 1;
675 #endif // __STATISTICS__
[b6830d74]676 } // for
677
[d46ed6e]678 #ifdef __STATISTICS__
[95eb7cf]679 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
680 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]681 #endif // __STATISTICS__
682 } // for
683 #ifdef __STATISTICS__
[95eb7cf]684 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
685 __cfaabi_bits_release();
[d46ed6e]686 #endif // __STATISTICS__
687 return (char *)heapEnd - (char *)heapBegin - total;
[95eb7cf]688} // prtFree
689
690
[9c438546]691static void ?{}( HeapManager & manager ) with( manager ) {
[95eb7cf]692 pageSize = sysconf( _SC_PAGESIZE );
693
694 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
695 freeLists[i].blockSize = bucketSizes[i];
696 } // for
697
698 #ifdef FASTLOOKUP
699 unsigned int idx = 0;
700 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
701 if ( i > bucketSizes[idx] ) idx += 1;
702 lookup[i] = idx;
703 } // for
704 #endif // FASTLOOKUP
705
[1076d05]706 if ( ! setMmapStart( default_mmap_start() ) ) {
[95eb7cf]707 abort( "HeapManager : internal error, mmap start initialization failure." );
708 } // if
709 heapExpand = default_heap_expansion();
710
[1e034d9]711 char * end = (char *)sbrk( 0 );
[1076d05]712 heapBegin = heapEnd = sbrk( (char *)libCeiling( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment
[95eb7cf]713} // HeapManager
714
715
716static void ^?{}( HeapManager & ) {
717 #ifdef __STATISTICS__
[baf608a]718 if ( traceHeapTerm() ) {
719 printStats();
720 // if ( prtfree() ) prtFree( heapManager, true );
721 } // if
[95eb7cf]722 #endif // __STATISTICS__
723} // ~HeapManager
724
725
726static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
727void memory_startup( void ) {
728 #ifdef __CFA_DEBUG__
729 if ( unlikely( heapBoot ) ) { // check for recursion during system boot
730 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
731 abort( "boot() : internal error, recursively invoked during system boot." );
732 } // if
733 heapBoot = true;
734 #endif // __CFA_DEBUG__
735
736 //assert( heapManager.heapBegin != 0 );
737 //heapManager{};
[1076d05]738 if ( heapManager.heapBegin == 0p ) heapManager{}; // sanity check
[95eb7cf]739} // memory_startup
740
741static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
742void memory_shutdown( void ) {
743 ^heapManager{};
744} // memory_shutdown
[c4f68dc]745
[bcb14b5]746
747static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
[7117ac3]748 //assert( heapManager.heapBegin != 0 );
[95eb7cf]749 if ( unlikely( heapManager.heapBegin == 0p ) ) heapManager{}; // called before memory_startup ?
[76e2113]750#if __SIZEOF_POINTER__ == 8
751 verify( size < ((typeof(size_t))1 << 48) );
752#endif // __SIZEOF_POINTER__ == 8
[95eb7cf]753 void * addr = doMalloc( size );
754 if ( unlikely( addr == 0p ) ) errno = ENOMEM; // POSIX
755 return addr;
[bcb14b5]756} // mallocNoStats
[c4f68dc]757
758
[76e2113]759static inline void * callocNoStats( size_t dim, size_t elemSize ) {
760 size_t size = dim * elemSize;
[95eb7cf]761 char * addr = (char *)mallocNoStats( size );
762 if ( unlikely( addr == 0p ) ) return 0p;
763
764 HeapManager.Storage.Header * header;
765 HeapManager.FreeHeader * freeElem;
766 size_t bsize, alignment;
767 bool mapped __attribute__(( unused )) = headers( "calloc", addr, header, freeElem, bsize, alignment );
768 #ifndef __CFA_DEBUG__
769 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
770 if ( ! mapped )
771 #endif // __CFA_DEBUG__
[1e034d9]772 // Zero entire data space even when > than size => realloc without a new allocation and zero fill works.
773 // <-------00000000000000000000000000000000000000000000000000000> bsize (bucket size)
774 // `-header`-addr `-size
[95eb7cf]775 memset( addr, '\0', bsize - sizeof(HeapManager.Storage) ); // set to zeros
776
777 header->kind.real.blockSize |= 2; // mark as zero filled
778 return addr;
779} // callocNoStats
780
781
[bcb14b5]782static inline void * memalignNoStats( size_t alignment, size_t size ) { // necessary for malloc statistics
783 #ifdef __CFA_DEBUG__
[b6830d74]784 checkAlign( alignment ); // check alignment
[bcb14b5]785 #endif // __CFA_DEBUG__
[c4f68dc]786
[b6830d74]787 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
[bcb14b5]788 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
[b6830d74]789
790 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
791 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
792 // .-------------v-----------------v----------------v----------,
793 // | Real Header | ... padding ... | Fake Header | data ... |
794 // `-------------^-----------------^-+--------------^----------'
795 // |<--------------------------------' offset/align |<-- alignment boundary
796
797 // subtract libAlign() because it is already the minimum alignment
798 // add sizeof(Storage) for fake header
[95eb7cf]799 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) );
800 if ( unlikely( addr == 0p ) ) return addr;
[b6830d74]801
802 // address in the block of the "next" alignment address
[95eb7cf]803 char * user = (char *)libCeiling( (uintptr_t)(addr + sizeof(HeapManager.Storage)), alignment );
[b6830d74]804
805 // address of header from malloc
[95eb7cf]806 HeapManager.Storage.Header * realHeader = headerAddr( addr );
[b6830d74]807 // address of fake header * before* the alignment location
808 HeapManager.Storage.Header * fakeHeader = headerAddr( user );
809 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
810 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
811 // SKULLDUGGERY: odd alignment imples fake header
812 fakeHeader->kind.fake.alignment = alignment | 1;
813
814 return user;
[bcb14b5]815} // memalignNoStats
[c4f68dc]816
817
[76e2113]818static inline void * cmemalignNoStats( size_t alignment, size_t dim, size_t elemSize ) {
819 size_t size = dim * elemSize;
[95eb7cf]820 char * addr = (char *)memalignNoStats( alignment, size );
821 if ( unlikely( addr == 0p ) ) return 0p;
822 HeapManager.Storage.Header * header;
823 HeapManager.FreeHeader * freeElem;
824 size_t bsize;
825 bool mapped __attribute__(( unused )) = headers( "cmemalign", addr, header, freeElem, bsize, alignment );
826 #ifndef __CFA_DEBUG__
827 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
828 if ( ! mapped )
829 #endif // __CFA_DEBUG__
830 memset( addr, '\0', dataStorage( bsize, addr, header ) ); // set to zeros
831
[cfbc703d]832 header->kind.real.blockSize |= 2; // mark as zero filled
[95eb7cf]833 return addr;
834} // cmemalignNoStats
835
836
[e723100]837// supported mallopt options
838#ifndef M_MMAP_THRESHOLD
839#define M_MMAP_THRESHOLD (-1)
840#endif // M_TOP_PAD
841#ifndef M_TOP_PAD
842#define M_TOP_PAD (-2)
843#endif // M_TOP_PAD
844
845
[c4f68dc]846extern "C" {
[61248a4]847 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
848 // then malloc() returns a unique pointer value that can later be successfully passed to free().
[b6830d74]849 void * malloc( size_t size ) {
[c4f68dc]850 #ifdef __STATISTICS__
[bcb14b5]851 __atomic_add_fetch( &malloc_calls, 1, __ATOMIC_SEQ_CST );
852 __atomic_add_fetch( &malloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]853 #endif // __STATISTICS__
854
[bcb14b5]855 return mallocNoStats( size );
856 } // malloc
[c4f68dc]857
[76e2113]858
[61248a4]859 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[76e2113]860 void * aalloc( size_t dim, size_t elemSize ) {
861 #ifdef __STATISTICS__
862 __atomic_add_fetch( &aalloc_calls, 1, __ATOMIC_SEQ_CST );
863 __atomic_add_fetch( &aalloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
864 #endif // __STATISTICS__
865
[1076d05]866 return mallocNoStats( dim * elemSize );
[76e2113]867 } // aalloc
868
869
[61248a4]870 // Same as aalloc() with memory set to zero.
[76e2113]871 void * calloc( size_t dim, size_t elemSize ) {
[c4f68dc]872 #ifdef __STATISTICS__
[bcb14b5]873 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]874 __atomic_add_fetch( &calloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[c4f68dc]875 #endif // __STATISTICS__
876
[76e2113]877 return callocNoStats( dim, elemSize );
[bcb14b5]878 } // calloc
[c4f68dc]879
[61248a4]880 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
881 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
882 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
883 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[cfbc703d]884 void * resize( void * oaddr, size_t size ) {
885 #ifdef __STATISTICS__
886 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
887 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
888 #endif // __STATISTICS__
889
890 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
891 if ( unlikely( size == 0 ) ) { free( oaddr ); return mallocNoStats( size ); } // special cases
892 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size );
893
894 HeapManager.Storage.Header * header;
895 HeapManager.FreeHeader * freeElem;
896 size_t bsize, oalign = 0;
897 headers( "resize", oaddr, header, freeElem, bsize, oalign );
898
[76e2113]899 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[cfbc703d]900 // same size, DO NOT preserve STICKY PROPERTIES.
[76e2113]901 if ( oalign == 0 && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[cfbc703d]902 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill
903 return oaddr;
904 } // if
[0f89d4f]905
[cfbc703d]906 // change size, DO NOT preserve STICKY PROPERTIES.
907 free( oaddr );
[1076d05]908 void * naddr = mallocNoStats( size ); // create new area
[cfbc703d]909 return naddr;
910 } // resize
911
912
[61248a4]913 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]914 // the old and new sizes.
[95eb7cf]915 void * realloc( void * oaddr, size_t size ) {
[c4f68dc]916 #ifdef __STATISTICS__
[bcb14b5]917 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[cfbc703d]918 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]919 #endif // __STATISTICS__
920
[1f6de372]921 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
922 if ( unlikely( size == 0 ) ) { free( oaddr ); return mallocNoStats( size ); } // special cases
[95eb7cf]923 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size );
[c4f68dc]924
925 HeapManager.Storage.Header * header;
926 HeapManager.FreeHeader * freeElem;
[95eb7cf]927 size_t bsize, oalign = 0;
928 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
929
930 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
931 if ( size <= odsize && odsize <= size * 2 ) { // allow up to 50% wasted storage in smaller size
932 // Do not know size of original allocation => cannot do 0 fill for any additional space because do not know
933 // where to start filling, i.e., do not overwrite existing values in space.
934 return oaddr;
[c4f68dc]935 } // if
936
[95eb7cf]937 // change size and copy old content to new storage
938
939 void * naddr;
940 if ( unlikely( oalign != 0 ) ) { // previous request memalign?
941 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
942 naddr = cmemalignNoStats( oalign, 1, size ); // create new aligned area
943 } else {
944 naddr = memalignNoStats( oalign, size ); // create new aligned area
945 } // if
[c4f68dc]946 } else {
[95eb7cf]947 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
948 naddr = callocNoStats( 1, size ); // create new area
949 } else {
950 naddr = mallocNoStats( size ); // create new area
951 } // if
[c4f68dc]952 } // if
[95eb7cf]953 if ( unlikely( naddr == 0p ) ) return 0p;
[1e034d9]954
[95eb7cf]955 headers( "realloc", naddr, header, freeElem, bsize, oalign );
956 size_t ndsize = dataStorage( bsize, naddr, header ); // data storage avilable in bucket
957 // To preserve prior fill, the entire bucket must be copied versus the size.
958 memcpy( naddr, oaddr, MIN( odsize, ndsize ) ); // copy bytes
959 free( oaddr );
960 return naddr;
[b6830d74]961 } // realloc
[c4f68dc]962
[61248a4]963 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[bcb14b5]964 void * memalign( size_t alignment, size_t size ) {
[c4f68dc]965 #ifdef __STATISTICS__
966 __atomic_add_fetch( &memalign_calls, 1, __ATOMIC_SEQ_CST );
967 __atomic_add_fetch( &memalign_storage, size, __ATOMIC_SEQ_CST );
968 #endif // __STATISTICS__
969
[95eb7cf]970 return memalignNoStats( alignment, size );
[bcb14b5]971 } // memalign
[c4f68dc]972
[95eb7cf]973
[76e2113]974 // Same as aalloc() with memory alignment.
975 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) {
976 #ifdef __STATISTICS__
977 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
978 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
979 #endif // __STATISTICS__
980
[1076d05]981 return memalignNoStats( alignment, dim * elemSize );
[76e2113]982 } // amemalign
983
984
[ca7949b]985 // Same as calloc() with memory alignment.
[76e2113]986 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) {
[95eb7cf]987 #ifdef __STATISTICS__
988 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]989 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[95eb7cf]990 #endif // __STATISTICS__
991
[76e2113]992 return cmemalignNoStats( alignment, dim, elemSize );
[95eb7cf]993 } // cmemalign
994
[ca7949b]995 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
996 // of alignment. This requirement is universally ignored.
[b6830d74]997 void * aligned_alloc( size_t alignment, size_t size ) {
[c4f68dc]998 return memalign( alignment, size );
[b6830d74]999 } // aligned_alloc
[c4f68dc]1000
1001
[ca7949b]1002 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1003 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1004 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1005 // free(3).
[b6830d74]1006 int posix_memalign( void ** memptr, size_t alignment, size_t size ) {
[bcb14b5]1007 if ( alignment < sizeof(void *) || ! libPow2( alignment ) ) return EINVAL; // check alignment
[c4f68dc]1008 * memptr = memalign( alignment, size );
[95eb7cf]1009 if ( unlikely( * memptr == 0p ) ) return ENOMEM;
[c4f68dc]1010 return 0;
[b6830d74]1011 } // posix_memalign
[c4f68dc]1012
[ca7949b]1013 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1014 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[b6830d74]1015 void * valloc( size_t size ) {
[c4f68dc]1016 return memalign( pageSize, size );
[b6830d74]1017 } // valloc
[c4f68dc]1018
1019
[ca7949b]1020 // Same as valloc but rounds size to multiple of page size.
1021 void * pvalloc( size_t size ) {
1022 return memalign( pageSize, libCeiling( size, pageSize ) );
1023 } // pvalloc
1024
1025
1026 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1027 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1028 // 0p, no operation is performed.
[b6830d74]1029 void free( void * addr ) {
[c4f68dc]1030 #ifdef __STATISTICS__
[bcb14b5]1031 __atomic_add_fetch( &free_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]1032 #endif // __STATISTICS__
1033
[95eb7cf]1034 if ( unlikely( addr == 0p ) ) { // special case
1035 // #ifdef __CFA_DEBUG__
1036 // if ( traceHeap() ) {
1037 // #define nullmsg "Free( 0x0 ) size:0\n"
[1e034d9]1038 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
[95eb7cf]1039 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
1040 // } // if
1041 // #endif // __CFA_DEBUG__
[c4f68dc]1042 return;
1043 } // exit
1044
1045 doFree( addr );
[b6830d74]1046 } // free
[93c2e0a]1047
[c4f68dc]1048
[76e2113]1049 // Returns the alignment of an allocation.
[b6830d74]1050 size_t malloc_alignment( void * addr ) {
[95eb7cf]1051 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[1aa6ecb]1052 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1053 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1054 return header->kind.fake.alignment & -2; // remove flag from value
1055 } else {
[cfbc703d]1056 return libAlign(); // minimum alignment
[c4f68dc]1057 } // if
[bcb14b5]1058 } // malloc_alignment
[c4f68dc]1059
[76e2113]1060 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment.
1061 size_t $malloc_alignment_set( void * addr, size_t alignment ) {
1062 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1063 size_t ret;
1064 HeapManager.Storage.Header * header = headerAddr( addr );
1065 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1066 ret = header->kind.fake.alignment & -2; // remove flag from old value
1067 header->kind.fake.alignment = alignment | 1; // add flag to new value
1068 } else {
1069 ret = 0; // => no alignment to change
1070 } // if
1071 return ret;
1072 } // $malloc_alignment_set
1073
[c4f68dc]1074
[76e2113]1075 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[b6830d74]1076 bool malloc_zero_fill( void * addr ) {
[95eb7cf]1077 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[1aa6ecb]1078 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1079 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
[cfbc703d]1080 header = realHeader( header ); // backup from fake to real header
[c4f68dc]1081 } // if
[76e2113]1082 return (header->kind.real.blockSize & 2) != 0; // zero filled ?
[bcb14b5]1083 } // malloc_zero_fill
[c4f68dc]1084
[76e2113]1085 // Set allocation is zero filled and return previous zero filled.
1086 bool $malloc_zero_fill_set( void * addr ) {
1087 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1088 HeapManager.Storage.Header * header = headerAddr( addr );
1089 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1090 header = realHeader( header ); // backup from fake to real header
1091 } // if
1092 bool ret = (header->kind.real.blockSize & 2) != 0; // zero filled ?
1093 header->kind.real.blockSize |= 2; // mark as zero filled
1094 return ret;
1095 } // $malloc_zero_fill_set
1096
[c4f68dc]1097
[76e2113]1098 // Returns original total allocation size (not bucket size) => array size is dimension * sizeif(T).
1099 size_t malloc_size( void * addr ) {
[cfbc703d]1100 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1101 HeapManager.Storage.Header * header = headerAddr( addr );
1102 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1103 header = realHeader( header ); // backup from fake to real header
1104 } // if
[9c438546]1105 return header->kind.real.size;
[76e2113]1106 } // malloc_size
1107
1108 // Set allocation size and return previous size.
1109 size_t $malloc_size_set( void * addr, size_t size ) {
1110 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1111 HeapManager.Storage.Header * header = headerAddr( addr );
1112 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1113 header = realHeader( header ); // backup from fake to real header
1114 } // if
[9c438546]1115 size_t ret = header->kind.real.size;
1116 header->kind.real.size = size;
[76e2113]1117 return ret;
1118 } // $malloc_size_set
[cfbc703d]1119
1120
[ca7949b]1121 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1122 // malloc or a related function.
[95eb7cf]1123 size_t malloc_usable_size( void * addr ) {
1124 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1125 HeapManager.Storage.Header * header;
1126 HeapManager.FreeHeader * freeElem;
1127 size_t bsize, alignment;
1128
1129 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
1130 return dataStorage( bsize, addr, header ); // data storage in bucket
1131 } // malloc_usable_size
1132
1133
[ca7949b]1134 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[b6830d74]1135 void malloc_stats( void ) {
[c4f68dc]1136 #ifdef __STATISTICS__
[bcb14b5]1137 printStats();
[95eb7cf]1138 if ( prtFree() ) prtFree( heapManager );
[c4f68dc]1139 #endif // __STATISTICS__
[bcb14b5]1140 } // malloc_stats
[c4f68dc]1141
[ca7949b]1142 // Changes the file descripter where malloc_stats() writes statistics.
[95eb7cf]1143 int malloc_stats_fd( int fd __attribute__(( unused )) ) {
[c4f68dc]1144 #ifdef __STATISTICS__
[bcb14b5]1145 int temp = statfd;
1146 statfd = fd;
1147 return temp;
[c4f68dc]1148 #else
[bcb14b5]1149 return -1;
[c4f68dc]1150 #endif // __STATISTICS__
[bcb14b5]1151 } // malloc_stats_fd
[c4f68dc]1152
[95eb7cf]1153
[1076d05]1154 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1155 // specifies the parameter to be modified, and value specifies the new value for that parameter.
[95eb7cf]1156 int mallopt( int option, int value ) {
1157 choose( option ) {
1158 case M_TOP_PAD:
[1076d05]1159 heapExpand = ceiling( value, pageSize ); return 1;
[95eb7cf]1160 case M_MMAP_THRESHOLD:
1161 if ( setMmapStart( value ) ) return 1;
[1076d05]1162 break;
[95eb7cf]1163 } // switch
1164 return 0; // error, unsupported
1165 } // mallopt
1166
[ca7949b]1167 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[95eb7cf]1168 int malloc_trim( size_t ) {
1169 return 0; // => impossible to release memory
1170 } // malloc_trim
1171
1172
[ca7949b]1173 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller.
1174 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1175 // malloc).
[c4f68dc]1176 int malloc_info( int options, FILE * stream ) {
[95eb7cf]1177 if ( options != 0 ) { errno = EINVAL; return -1; }
[d46ed6e]1178 return printStatsXML( stream );
[c4f68dc]1179 } // malloc_info
1180
1181
[ca7949b]1182 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1183 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1184 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1185 // result. (The caller must free this memory.)
[c4f68dc]1186 void * malloc_get_state( void ) {
[95eb7cf]1187 return 0p; // unsupported
[c4f68dc]1188 } // malloc_get_state
1189
[bcb14b5]1190
[ca7949b]1191 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1192 // structure pointed to by state.
[c4f68dc]1193 int malloc_set_state( void * ptr ) {
[bcb14b5]1194 return 0; // unsupported
[c4f68dc]1195 } // malloc_set_state
1196} // extern "C"
1197
1198
[95eb7cf]1199// Must have CFA linkage to overload with C linkage realloc.
[cfbc703d]1200void * resize( void * oaddr, size_t nalign, size_t size ) {
[1e034d9]1201 #ifdef __STATISTICS__
[cfbc703d]1202 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
1203 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1204 #endif // __STATISTICS__
[95eb7cf]1205
[1f6de372]1206 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[cfbc703d]1207 if ( unlikely( size == 0 ) ) { free( oaddr ); return memalignNoStats( nalign, size ); } // special cases
1208 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size );
1209
[95eb7cf]1210
[1e034d9]1211 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum
[95eb7cf]1212 #ifdef __CFA_DEBUG__
[1e034d9]1213 else
[95eb7cf]1214 checkAlign( nalign ); // check alignment
1215 #endif // __CFA_DEBUG__
1216
[cfbc703d]1217 HeapManager.Storage.Header * header;
1218 HeapManager.FreeHeader * freeElem;
1219 size_t bsize, oalign = 0;
1220 headers( "resize", oaddr, header, freeElem, bsize, oalign );
1221 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
1222
1223 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match
1224 if ( oalign >= libAlign() ) { // fake header ?
1225 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1226 } // if
1227 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
1228 header->kind.real.blockSize &= -2; // turn off 0 fill
1229 return oaddr;
1230 } // if
1231 } // if
1232
1233 // change size
1234
1235 void * naddr;
1236 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
1237 naddr = cmemalignNoStats( nalign, 1, size ); // create new aligned area
1238 } else {
1239 naddr = memalignNoStats( nalign, size ); // create new aligned area
1240 } // if
1241
1242 free( oaddr );
1243 return naddr;
1244} // resize
1245
1246
1247void * realloc( void * oaddr, size_t nalign, size_t size ) {
1248 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum
1249 #ifdef __CFA_DEBUG__
1250 else
1251 checkAlign( nalign ); // check alignment
1252 #endif // __CFA_DEBUG__
1253
[95eb7cf]1254 HeapManager.Storage.Header * header;
1255 HeapManager.FreeHeader * freeElem;
1256 size_t bsize, oalign = 0;
1257 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
[1e034d9]1258 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[95eb7cf]1259
[cfbc703d]1260 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match
1261 if ( oalign >= libAlign() ) { // fake header ?
1262 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1263 } // if
[95eb7cf]1264 return realloc( oaddr, size );
[1e034d9]1265 } // if
[95eb7cf]1266
[cfbc703d]1267 // change size and copy old content to new storage
1268
[1e034d9]1269 #ifdef __STATISTICS__
[cfbc703d]1270 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[95eb7cf]1271 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1272 #endif // __STATISTICS__
1273
[cfbc703d]1274 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1275 if ( unlikely( size == 0 ) ) { free( oaddr ); return memalignNoStats( nalign, size ); } // special cases
1276 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size );
[95eb7cf]1277
[1e034d9]1278 void * naddr;
1279 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
1280 naddr = cmemalignNoStats( nalign, 1, size ); // create new aligned area
1281 } else {
1282 naddr = memalignNoStats( nalign, size ); // create new aligned area
1283 } // if
[95eb7cf]1284
[1e034d9]1285 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[cfbc703d]1286 size_t ndsize = dataStorage( bsize, naddr, header ); // data storage available in bucket
[95eb7cf]1287 // To preserve prior fill, the entire bucket must be copied versus the size.
[1e034d9]1288 memcpy( naddr, oaddr, MIN( odsize, ndsize ) ); // copy bytes
1289 free( oaddr );
1290 return naddr;
[95eb7cf]1291} // realloc
1292
1293
[c4f68dc]1294// Local Variables: //
1295// tab-width: 4 //
[f8cd310]1296// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1297// End: //
Note: See TracBrowser for help on using the repository browser.