source: libcfa/src/heap.cfa@ 6f84007

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 6f84007 was 13fece5, checked in by Peter A. Buhr <pabuhr@…>, 5 years ago

modify location of mmapped storage to either side of the heap, and fix pattern for memory scrubbing

  • Property mode set to 100644
File size: 52.5 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
[92aca37]7// heap.cfa --
[73abe95]8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[13fece5]12// Last Modified On : Wed Dec 16 12:28:25 2020
13// Update Count : 1023
[73abe95]14//
[c4f68dc]15
16#include <unistd.h> // sbrk, sysconf
[ad2dced]17#include <stdlib.h> // EXIT_FAILURE
[c4f68dc]18#include <stdbool.h> // true, false
19#include <stdio.h> // snprintf, fileno
20#include <errno.h> // errno
[1e034d9]21#include <string.h> // memset, memcpy
[1076d05]22#include <limits.h> // ULONG_MAX
[ada0246d]23#include <malloc.h> // memalign, malloc_usable_size
[c4f68dc]24#include <sys/mman.h> // mmap, munmap
25
[92aca37]26#include "bits/align.hfa" // libAlign
[bcb14b5]27#include "bits/defs.hfa" // likely, unlikely
28#include "bits/locks.hfa" // __spinlock_t
[73abe95]29#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[7cfef0d]30#include "math.hfa" // ceiling
31#include "bitmanip.hfa" // is_pow2, ceiling2
[c4f68dc]32
[93c2e0a]33static bool traceHeap = false;
[d46ed6e]34
[baf608a]35inline bool traceHeap() { return traceHeap; }
[d46ed6e]36
[93c2e0a]37bool traceHeapOn() {
38 bool temp = traceHeap;
[d46ed6e]39 traceHeap = true;
40 return temp;
41} // traceHeapOn
42
[93c2e0a]43bool traceHeapOff() {
44 bool temp = traceHeap;
[d46ed6e]45 traceHeap = false;
46 return temp;
47} // traceHeapOff
48
[baf608a]49bool traceHeapTerm() { return false; }
50
[d46ed6e]51
[95eb7cf]52static bool prtFree = false;
[d46ed6e]53
[95eb7cf]54inline bool prtFree() {
55 return prtFree;
56} // prtFree
[5d4fa18]57
[95eb7cf]58bool prtFreeOn() {
59 bool temp = prtFree;
60 prtFree = true;
[5d4fa18]61 return temp;
[95eb7cf]62} // prtFreeOn
[5d4fa18]63
[95eb7cf]64bool prtFreeOff() {
65 bool temp = prtFree;
66 prtFree = false;
[5d4fa18]67 return temp;
[95eb7cf]68} // prtFreeOff
[5d4fa18]69
70
[e723100]71enum {
[1e034d9]72 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address,
73 // the brk address is extended by the extension amount.
[ad2dced]74 __CFA_DEFAULT_HEAP_EXPANSION__ = (10 * 1024 * 1024),
[1e034d9]75
76 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;
77 // values greater than or equal to this value are mmap from the operating system.
78 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),
[e723100]79};
80
[dd23e66]81size_t default_mmap_start() __attribute__(( weak )) {
82 return __CFA_DEFAULT_MMAP_START__;
83} // default_mmap_start
84
[e723100]85size_t default_heap_expansion() __attribute__(( weak )) {
86 return __CFA_DEFAULT_HEAP_EXPANSION__;
87} // default_heap_expansion
88
89
[f0b3f51]90#ifdef __CFA_DEBUG__
[92aca37]91static size_t allocUnfreed; // running total of allocations minus frees
[d46ed6e]92
[95eb7cf]93static void prtUnfreed() {
[c1f38e6c]94 if ( allocUnfreed != 0 ) {
[d46ed6e]95 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
[4ea1c6d]96 char helpText[512];
[92aca37]97 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %zu(0x%zx) bytes of storage allocated but not freed.\n"
[4ea1c6d]98 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
[c1f38e6c]99 (long int)getpid(), allocUnfreed, allocUnfreed ); // always print the UNIX pid
[4ea1c6d]100 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[b6830d74]101 } // if
[95eb7cf]102} // prtUnfreed
[d46ed6e]103
104extern "C" {
[bcb14b5]105 void heapAppStart() { // called by __cfaabi_appready_startup
[c1f38e6c]106 allocUnfreed = 0;
[bcb14b5]107 } // heapAppStart
108
109 void heapAppStop() { // called by __cfaabi_appready_startdown
110 fclose( stdin ); fclose( stdout );
[95eb7cf]111 prtUnfreed();
[bcb14b5]112 } // heapAppStop
[d46ed6e]113} // extern "C"
114#endif // __CFA_DEBUG__
115
[1e034d9]116
[e723100]117// statically allocated variables => zero filled.
[ad2dced]118size_t __page_size; // architecture pagesize
119int __map_prot; // common mmap/mprotect protection
[e723100]120static size_t heapExpand; // sbrk advance
121static size_t mmapStart; // cross over point for mmap
122static unsigned int maxBucketsUsed; // maximum number of buckets in use
123
124
125#define SPINLOCK 0
126#define LOCKFREE 1
127#define BUCKETLOCK SPINLOCK
[9c438546]128#if BUCKETLOCK == SPINLOCK
129#elif BUCKETLOCK == LOCKFREE
130#include <stackLockFree.hfa>
131#else
132 #error undefined lock type for bucket lock
[e723100]133#endif // LOCKFREE
134
135// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
136// Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]137enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]138
[c4f68dc]139struct HeapManager {
140 struct Storage {
[bcb14b5]141 struct Header { // header
[c4f68dc]142 union Kind {
143 struct RealHeader {
144 union {
[bcb14b5]145 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[f0b3f51]146 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]147 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]148 #endif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]149
150 union {
[9c438546]151 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
[cfbc703d]152 // 2nd low-order bit => zero filled
[c4f68dc]153 void * home; // allocated block points back to home locations (must overlay alignment)
154 size_t blockSize; // size for munmap (must overlay alignment)
[9c438546]155 #if BUCKETLOCK == SPINLOCK
[c4f68dc]156 Storage * next; // freed block points next freed block of same size
157 #endif // SPINLOCK
158 };
[9c438546]159 size_t size; // allocation size in bytes
[c4f68dc]160
[f0b3f51]161 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]162 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]163 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]164 };
[9c438546]165 #if BUCKETLOCK == LOCKFREE
166 Link(Storage) next; // freed block points next freed block of same size (double-wide)
[c4f68dc]167 #endif // LOCKFREE
168 };
[93c2e0a]169 } real; // RealHeader
[9c438546]170
[c4f68dc]171 struct FakeHeader {
172 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
[9c438546]173 uint32_t alignment; // 1st low-order bit => fake header & alignment
[f0b3f51]174 #endif // __ORDER_LITTLE_ENDIAN__
[c4f68dc]175
176 uint32_t offset;
177
178 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
179 uint32_t alignment; // low-order bits of home/blockSize used for tricks
[f0b3f51]180 #endif // __ORDER_BIG_ENDIAN__
[93c2e0a]181 } fake; // FakeHeader
182 } kind; // Kind
[bcb14b5]183 } header; // Header
[95eb7cf]184 char pad[libAlign() - sizeof( Header )];
[bcb14b5]185 char data[0]; // storage
[c4f68dc]186 }; // Storage
187
[95eb7cf]188 static_assert( libAlign() >= sizeof( Storage ), "libAlign() < sizeof( Storage )" );
[c4f68dc]189
190 struct FreeHeader {
[9c438546]191 #if BUCKETLOCK == SPINLOCK
[bcb14b5]192 __spinlock_t lock; // must be first field for alignment
193 Storage * freeList;
[c4f68dc]194 #else
[9c438546]195 StackLF(Storage) freeList;
196 #endif // BUCKETLOCK
[bcb14b5]197 size_t blockSize; // size of allocations on this list
[c4f68dc]198 }; // FreeHeader
199
200 // must be first fields for alignment
201 __spinlock_t extlock; // protects allocation-buffer extension
202 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
203
204 void * heapBegin; // start of heap
205 void * heapEnd; // logical end of heap
206 size_t heapRemaining; // amount of storage not allocated in the current chunk
207}; // HeapManager
208
[9c438546]209#if BUCKETLOCK == LOCKFREE
[c45d2fa]210static inline {
[8b58bae]211 Link(HeapManager.Storage) * ?`next( HeapManager.Storage * this ) { return &this->header.kind.real.next; }
[c45d2fa]212 void ?{}( HeapManager.FreeHeader & ) {}
213 void ^?{}( HeapManager.FreeHeader & ) {}
214} // distribution
[9c438546]215#endif // LOCKFREE
216
[7b149bc]217static inline size_t getKey( const HeapManager.FreeHeader & freeheader ) { return freeheader.blockSize; }
[5d4fa18]218
[e723100]219
220#define FASTLOOKUP
221#define __STATISTICS__
[5d4fa18]222
[c1f38e6c]223// Size of array must harmonize with NoBucketSizes and individual bucket sizes must be multiple of 16.
[d5d3a90]224// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
225// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
[e723100]226static const unsigned int bucketSizes[] @= { // different bucket sizes
[d5d3a90]227 16 + sizeof(HeapManager.Storage), 32 + sizeof(HeapManager.Storage), 48 + sizeof(HeapManager.Storage), 64 + sizeof(HeapManager.Storage), // 4
228 96 + sizeof(HeapManager.Storage), 112 + sizeof(HeapManager.Storage), 128 + sizeof(HeapManager.Storage), // 3
[95eb7cf]229 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4
230 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4
231 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4
232 1_536, 2_048 + sizeof(HeapManager.Storage), // 2
233 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4
234 6_144, 8_192 + sizeof(HeapManager.Storage), // 2
235 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8
236 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8
237 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8
238 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8
239 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8
240 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8
241 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4
242 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8
243 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4
[5d4fa18]244};
[e723100]245
[c1f38e6c]246static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0] ), "size of bucket array wrong" );
[e723100]247
[5d4fa18]248#ifdef FASTLOOKUP
[a92a4fe]249enum { LookupSizes = 65_536 + sizeof(HeapManager.Storage) }; // number of fast lookup sizes
[5d4fa18]250static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
251#endif // FASTLOOKUP
252
[ad2dced]253static const off_t mmapFd = -1; // fake or actual fd for anonymous file
[5d4fa18]254#ifdef __CFA_DEBUG__
[93c2e0a]255static bool heapBoot = 0; // detect recursion during boot
[5d4fa18]256#endif // __CFA_DEBUG__
[9c438546]257
258// The constructor for heapManager is called explicitly in memory_startup.
[5d4fa18]259static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
260
[c4f68dc]261
262#ifdef __STATISTICS__
[95eb7cf]263// Heap statistics counters.
[c4f68dc]264static unsigned int malloc_calls;
[c1f38e6c]265static unsigned long long int malloc_storage;
[76e2113]266static unsigned int aalloc_calls;
[c1f38e6c]267static unsigned long long int aalloc_storage;
[c4f68dc]268static unsigned int calloc_calls;
[c1f38e6c]269static unsigned long long int calloc_storage;
[c4f68dc]270static unsigned int memalign_calls;
[c1f38e6c]271static unsigned long long int memalign_storage;
[76e2113]272static unsigned int amemalign_calls;
[c1f38e6c]273static unsigned long long int amemalign_storage;
[c4f68dc]274static unsigned int cmemalign_calls;
[c1f38e6c]275static unsigned long long int cmemalign_storage;
[cfbc703d]276static unsigned int resize_calls;
[c1f38e6c]277static unsigned long long int resize_storage;
[c4f68dc]278static unsigned int realloc_calls;
[c1f38e6c]279static unsigned long long int realloc_storage;
280static unsigned int free_calls;
281static unsigned long long int free_storage;
282static unsigned int mmap_calls;
283static unsigned long long int mmap_storage;
284static unsigned int munmap_calls;
285static unsigned long long int munmap_storage;
286static unsigned int sbrk_calls;
287static unsigned long long int sbrk_storage;
[95eb7cf]288// Statistics file descriptor (changed by malloc_stats_fd).
[92aca37]289static int stat_fd = STDERR_FILENO; // default stderr
[c4f68dc]290
291// Use "write" because streams may be shutdown when calls are made.
[d46ed6e]292static void printStats() {
[76e2113]293 char helpText[1024];
[95eb7cf]294 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[bcb14b5]295 "\nHeap statistics:\n"
296 " malloc: calls %u / storage %llu\n"
[76e2113]297 " aalloc: calls %u / storage %llu\n"
[bcb14b5]298 " calloc: calls %u / storage %llu\n"
299 " memalign: calls %u / storage %llu\n"
[76e2113]300 " amemalign: calls %u / storage %llu\n"
[bcb14b5]301 " cmemalign: calls %u / storage %llu\n"
[cfbc703d]302 " resize: calls %u / storage %llu\n"
[bcb14b5]303 " realloc: calls %u / storage %llu\n"
304 " free: calls %u / storage %llu\n"
305 " mmap: calls %u / storage %llu\n"
306 " munmap: calls %u / storage %llu\n"
307 " sbrk: calls %u / storage %llu\n",
308 malloc_calls, malloc_storage,
[92aca37]309 aalloc_calls, aalloc_storage,
[bcb14b5]310 calloc_calls, calloc_storage,
311 memalign_calls, memalign_storage,
[76e2113]312 amemalign_calls, amemalign_storage,
[bcb14b5]313 cmemalign_calls, cmemalign_storage,
[cfbc703d]314 resize_calls, resize_storage,
[bcb14b5]315 realloc_calls, realloc_storage,
316 free_calls, free_storage,
317 mmap_calls, mmap_storage,
318 munmap_calls, munmap_storage,
319 sbrk_calls, sbrk_storage
[c4f68dc]320 );
[d46ed6e]321} // printStats
[c4f68dc]322
[bcb14b5]323static int printStatsXML( FILE * stream ) { // see malloc_info
[76e2113]324 char helpText[1024];
[b6830d74]325 int len = snprintf( helpText, sizeof(helpText),
[c4f68dc]326 "<malloc version=\"1\">\n"
327 "<heap nr=\"0\">\n"
328 "<sizes>\n"
329 "</sizes>\n"
330 "<total type=\"malloc\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]331 "<total type=\"aalloc\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]332 "<total type=\"calloc\" count=\"%u\" size=\"%llu\"/>\n"
333 "<total type=\"memalign\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]334 "<total type=\"amemalign\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]335 "<total type=\"cmemalign\" count=\"%u\" size=\"%llu\"/>\n"
[cfbc703d]336 "<total type=\"resize\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]337 "<total type=\"realloc\" count=\"%u\" size=\"%llu\"/>\n"
338 "<total type=\"free\" count=\"%u\" size=\"%llu\"/>\n"
339 "<total type=\"mmap\" count=\"%u\" size=\"%llu\"/>\n"
340 "<total type=\"munmap\" count=\"%u\" size=\"%llu\"/>\n"
341 "<total type=\"sbrk\" count=\"%u\" size=\"%llu\"/>\n"
342 "</malloc>",
343 malloc_calls, malloc_storage,
[76e2113]344 aalloc_calls, aalloc_storage,
[c4f68dc]345 calloc_calls, calloc_storage,
346 memalign_calls, memalign_storage,
[76e2113]347 amemalign_calls, amemalign_storage,
[c4f68dc]348 cmemalign_calls, cmemalign_storage,
[cfbc703d]349 resize_calls, resize_storage,
[c4f68dc]350 realloc_calls, realloc_storage,
351 free_calls, free_storage,
352 mmap_calls, mmap_storage,
353 munmap_calls, munmap_storage,
354 sbrk_calls, sbrk_storage
355 );
[95eb7cf]356 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit
357 return len;
[d46ed6e]358} // printStatsXML
[c4f68dc]359#endif // __STATISTICS__
360
[95eb7cf]361
[1e034d9]362// thunk problem
363size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
364 size_t l = 0, m, h = dim;
365 while ( l < h ) {
366 m = (l + h) / 2;
367 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
368 l = m + 1;
369 } else {
370 h = m;
371 } // if
372 } // while
373 return l;
374} // Bsearchl
375
376
[95eb7cf]377static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
[ad2dced]378 if ( value < __page_size || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]379 mmapStart = value; // set global
380
381 // find the closest bucket size less than or equal to the mmapStart size
[1e034d9]382 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
[95eb7cf]383 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
384 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]385 return true;
[95eb7cf]386} // setMmapStart
387
388
[cfbc703d]389// <-------+----------------------------------------------------> bsize (bucket size)
390// |header |addr
391//==================================================================================
392// align/offset |
393// <-----------------<------------+-----------------------------> bsize (bucket size)
394// |fake-header | addr
395#define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))
396#define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset))
397
398// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
399// |header |addr
400//==================================================================================
401// align/offset |
402// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
403// |fake-header |addr
404#define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
405
406
407static inline void checkAlign( size_t alignment ) {
[92aca37]408 if ( alignment < libAlign() || ! is_pow2( alignment ) ) {
[cfbc703d]409 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
410 } // if
411} // checkAlign
412
413
[e3fea42]414static inline void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]415 if ( unlikely( check ) ) { // bad address ?
[c4f68dc]416 abort( "Attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]417 "Possible cause is duplicate free on same block or overwriting of memory.",
418 name, addr );
[b6830d74]419 } // if
[c4f68dc]420} // checkHeader
421
[95eb7cf]422
423static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {
[b6830d74]424 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?
[c4f68dc]425 alignment = header->kind.fake.alignment & -2; // remove flag from value
426 #ifdef __CFA_DEBUG__
427 checkAlign( alignment ); // check alignment
428 #endif // __CFA_DEBUG__
[cfbc703d]429 header = realHeader( header ); // backup from fake to real header
[d5d3a90]430 } else {
[c1f38e6c]431 alignment = libAlign(); // => no fake header
[b6830d74]432 } // if
[c4f68dc]433} // fakeHeader
434
[95eb7cf]435
[9c438546]436static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem,
437 size_t & size, size_t & alignment ) with( heapManager ) {
[b6830d74]438 header = headerAddr( addr );
[c4f68dc]439
[13fece5]440 if ( unlikely( addr < heapBegin || heapEnd < addr ) ) { // mmapped ?
[95eb7cf]441 fakeHeader( header, alignment );
[c4f68dc]442 size = header->kind.real.blockSize & -3; // mmap size
443 return true;
[b6830d74]444 } // if
[c4f68dc]445
446 #ifdef __CFA_DEBUG__
[13fece5]447 checkHeader( header < (HeapManager.Storage.Header *)heapBegin, name, addr ); // bad low address ?
[c4f68dc]448 #endif // __CFA_DEBUG__
[b6830d74]449
[bcb14b5]450 // header may be safe to dereference
[95eb7cf]451 fakeHeader( header, alignment );
[c4f68dc]452 #ifdef __CFA_DEBUG__
[bcb14b5]453 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]454 #endif // __CFA_DEBUG__
455
[bcb14b5]456 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);
[c4f68dc]457 #ifdef __CFA_DEBUG__
[bcb14b5]458 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {
459 abort( "Attempt to %s storage %p with corrupted header.\n"
460 "Possible cause is duplicate free on same block or overwriting of header information.",
461 name, addr );
462 } // if
[c4f68dc]463 #endif // __CFA_DEBUG__
[bcb14b5]464 size = freeElem->blockSize;
465 return false;
[c4f68dc]466} // headers
467
[e4b6b7d3]468#ifdef __CFA_DEBUG__
469#if __SIZEOF_POINTER__ == 4
470#define MASK 0xdeadbeef
471#else
472#define MASK 0xdeadbeefdeadbeef
473#endif
474#define STRIDE size_t
475
476static void * Memset( void * addr, STRIDE size ) { // debug only
477 if ( size % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, size %zd not multiple of %zd.", size, sizeof(STRIDE) );
478 if ( (STRIDE)addr % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, addr %p not multiple of %zd.", addr, sizeof(STRIDE) );
479
480 STRIDE * end = (STRIDE *)addr + size / sizeof(STRIDE);
481 for ( STRIDE * p = (STRIDE *)addr; p < end; p += 1 ) *p = MASK;
482 return addr;
483} // Memset
484#endif // __CFA_DEBUG__
485
[13fece5]486
[92aca37]487#define NO_MEMORY_MSG "insufficient heap memory available for allocating %zd new bytes."
[c4f68dc]488
[9c438546]489static inline void * extend( size_t size ) with( heapManager ) {
[b6830d74]490 lock( extlock __cfaabi_dbg_ctx2 );
491 ptrdiff_t rem = heapRemaining - size;
492 if ( rem < 0 ) {
[c4f68dc]493 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
494
[ad2dced]495 size_t increase = ceiling2( size > heapExpand ? size : heapExpand, __page_size );
496 // Do not call abort or strerror( errno ) as they may call malloc.
[92aca37]497 if ( sbrk( increase ) == (void *)-1 ) { // failed, no memory ?
[c4f68dc]498 unlock( extlock );
[ad2dced]499 __cfaabi_bits_print_nolock( STDERR_FILENO, NO_MEMORY_MSG, size );
500 _exit( EXIT_FAILURE );
[92aca37]501 } // if
[ad2dced]502 if ( mprotect( (char *)heapEnd + heapRemaining, increase, __map_prot ) ) {
503 unlock( extlock );
504 __cfaabi_bits_print_nolock( STDERR_FILENO, "extend() : internal error, mprotect failure, heapEnd:%p size:%zd, errno:%d.\n", heapEnd, increase, errno );
505 _exit( EXIT_FAILURE );
[b4aa1ab]506 } // if
[bcb14b5]507 #ifdef __STATISTICS__
[c4f68dc]508 sbrk_calls += 1;
509 sbrk_storage += increase;
[bcb14b5]510 #endif // __STATISTICS__
511 #ifdef __CFA_DEBUG__
[c4f68dc]512 // Set new memory to garbage so subsequent uninitialized usages might fail.
[13fece5]513 memset( (char *)heapEnd + heapRemaining, '\xde', increase );
[ad2dced]514 //Memset( (char *)heapEnd + heapRemaining, increase );
[bcb14b5]515 #endif // __CFA_DEBUG__
[c4f68dc]516 rem = heapRemaining + increase - size;
[b6830d74]517 } // if
[c4f68dc]518
[b6830d74]519 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;
520 heapRemaining = rem;
521 heapEnd = (char *)heapEnd + size;
522 unlock( extlock );
523 return block;
[c4f68dc]524} // extend
525
526
[9c438546]527static inline void * doMalloc( size_t size ) with( heapManager ) {
[7b149bc]528 HeapManager.Storage * block; // pointer to new block of storage
[c4f68dc]529
[b6830d74]530 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
531 // along with the block and is a multiple of the alignment size.
[c4f68dc]532
[1076d05]533 if ( unlikely( size > ULONG_MAX - sizeof(HeapManager.Storage) ) ) return 0p;
[b6830d74]534 size_t tsize = size + sizeof(HeapManager.Storage);
535 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
[e723100]536 size_t posn;
537 #ifdef FASTLOOKUP
538 if ( tsize < LookupSizes ) posn = lookup[tsize];
539 else
540 #endif // FASTLOOKUP
541 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
542 HeapManager.FreeHeader * freeElem = &freeLists[posn];
[c1f38e6c]543 verify( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
544 verify( tsize <= freeElem->blockSize ); // search failure ?
[c4f68dc]545 tsize = freeElem->blockSize; // total space needed for request
546
547 // Spin until the lock is acquired for this particular size of block.
548
[9c438546]549 #if BUCKETLOCK == SPINLOCK
[bcb14b5]550 lock( freeElem->lock __cfaabi_dbg_ctx2 );
551 block = freeElem->freeList; // remove node from stack
[c4f68dc]552 #else
[9c438546]553 block = pop( freeElem->freeList );
554 #endif // BUCKETLOCK
[95eb7cf]555 if ( unlikely( block == 0p ) ) { // no free block ?
[9c438546]556 #if BUCKETLOCK == SPINLOCK
[c4f68dc]557 unlock( freeElem->lock );
[9c438546]558 #endif // BUCKETLOCK
[bcb14b5]559
[c4f68dc]560 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
561 // and then carve it off.
562
563 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call
[9c438546]564 #if BUCKETLOCK == SPINLOCK
[c4f68dc]565 } else {
566 freeElem->freeList = block->header.kind.real.next;
567 unlock( freeElem->lock );
[9c438546]568 #endif // BUCKETLOCK
[c4f68dc]569 } // if
570
571 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
[bcb14b5]572 } else { // large size => mmap
[ad2dced]573 if ( unlikely( size > ULONG_MAX - __page_size ) ) return 0p;
574 tsize = ceiling2( tsize, __page_size ); // must be multiple of page size
[c4f68dc]575 #ifdef __STATISTICS__
[bcb14b5]576 __atomic_add_fetch( &mmap_calls, 1, __ATOMIC_SEQ_CST );
577 __atomic_add_fetch( &mmap_storage, tsize, __ATOMIC_SEQ_CST );
[c4f68dc]578 #endif // __STATISTICS__
[92aca37]579
[ad2dced]580 block = (HeapManager.Storage *)mmap( 0, tsize, __map_prot, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
[92aca37]581 if ( block == (HeapManager.Storage *)MAP_FAILED ) { // failed ?
582 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize ); // no memory
[c4f68dc]583 // Do not call strerror( errno ) as it may call malloc.
[b4aa1ab]584 abort( "(HeapManager &)0x%p.doMalloc() : internal error, mmap failure, size:%zu errno:%d.", &heapManager, tsize, errno );
[92aca37]585 } //if
[bcb14b5]586 #ifdef __CFA_DEBUG__
[c4f68dc]587 // Set new memory to garbage so subsequent uninitialized usages might fail.
[13fece5]588 memset( block, '\xde', tsize );
[ad2dced]589 //Memset( block, tsize );
[bcb14b5]590 #endif // __CFA_DEBUG__
[c4f68dc]591 block->header.kind.real.blockSize = tsize; // storage size for munmap
[bcb14b5]592 } // if
[c4f68dc]593
[9c438546]594 block->header.kind.real.size = size; // store allocation size
[95eb7cf]595 void * addr = &(block->data); // adjust off header to user bytes
[c1f38e6c]596 verify( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[c4f68dc]597
598 #ifdef __CFA_DEBUG__
[c1f38e6c]599 __atomic_add_fetch( &allocUnfreed, tsize, __ATOMIC_SEQ_CST );
[bcb14b5]600 if ( traceHeap() ) {
601 enum { BufferSize = 64 };
602 char helpText[BufferSize];
[95eb7cf]603 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize );
604 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]605 } // if
[c4f68dc]606 #endif // __CFA_DEBUG__
607
[95eb7cf]608 return addr;
[c4f68dc]609} // doMalloc
610
611
[9c438546]612static inline void doFree( void * addr ) with( heapManager ) {
[c4f68dc]613 #ifdef __CFA_DEBUG__
[95eb7cf]614 if ( unlikely( heapManager.heapBegin == 0p ) ) {
[bcb14b5]615 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
616 } // if
[c4f68dc]617 #endif // __CFA_DEBUG__
618
[b6830d74]619 HeapManager.Storage.Header * header;
620 HeapManager.FreeHeader * freeElem;
621 size_t size, alignment; // not used (see realloc)
[c4f68dc]622
[b6830d74]623 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
[c4f68dc]624 #ifdef __STATISTICS__
[bcb14b5]625 __atomic_add_fetch( &munmap_calls, 1, __ATOMIC_SEQ_CST );
626 __atomic_add_fetch( &munmap_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]627 #endif // __STATISTICS__
628 if ( munmap( header, size ) == -1 ) {
629 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
[bcb14b5]630 "Possible cause is invalid pointer.",
631 addr );
[c4f68dc]632 } // if
[bcb14b5]633 } else {
[c4f68dc]634 #ifdef __CFA_DEBUG__
[bcb14b5]635 // Set free memory to garbage so subsequent usages might fail.
[13fece5]636 memset( ((HeapManager.Storage *)header)->data, '\xde', freeElem->blockSize - sizeof( HeapManager.Storage ) );
[ad2dced]637 //Memset( ((HeapManager.Storage *)header)->data, freeElem->blockSize - sizeof( HeapManager.Storage ) );
[c4f68dc]638 #endif // __CFA_DEBUG__
639
640 #ifdef __STATISTICS__
[bcb14b5]641 free_storage += size;
[c4f68dc]642 #endif // __STATISTICS__
[9c438546]643 #if BUCKETLOCK == SPINLOCK
[bcb14b5]644 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
645 header->kind.real.next = freeElem->freeList; // push on stack
646 freeElem->freeList = (HeapManager.Storage *)header;
647 unlock( freeElem->lock ); // release spin lock
[c4f68dc]648 #else
[9c438546]649 push( freeElem->freeList, *(HeapManager.Storage *)header );
650 #endif // BUCKETLOCK
[bcb14b5]651 } // if
[c4f68dc]652
653 #ifdef __CFA_DEBUG__
[c1f38e6c]654 __atomic_add_fetch( &allocUnfreed, -size, __ATOMIC_SEQ_CST );
[bcb14b5]655 if ( traceHeap() ) {
[92aca37]656 char helpText[64];
[bcb14b5]657 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size );
[95eb7cf]658 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]659 } // if
[c4f68dc]660 #endif // __CFA_DEBUG__
661} // doFree
662
663
[9c438546]664size_t prtFree( HeapManager & manager ) with( manager ) {
[b6830d74]665 size_t total = 0;
[c4f68dc]666 #ifdef __STATISTICS__
[95eb7cf]667 __cfaabi_bits_acquire();
668 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]669 #endif // __STATISTICS__
[b6830d74]670 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
[d46ed6e]671 size_t size = freeLists[i].blockSize;
672 #ifdef __STATISTICS__
673 unsigned int N = 0;
674 #endif // __STATISTICS__
[b6830d74]675
[9c438546]676 #if BUCKETLOCK == SPINLOCK
[95eb7cf]677 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]678 #else
[b4aa1ab]679 for(;;) {
680// for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; p = (p)`next->top ) {
[7cfef0d]681// for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; /* p = getNext( p )->top */) {
[b4aa1ab]682// HeapManager.Storage * temp = p->header.kind.real.next.top; // FIX ME: direct assignent fails, initialization works`
[7cfef0d]683// typeof(p) temp = (( p )`next)->top; // FIX ME: direct assignent fails, initialization works`
684// p = temp;
[9c438546]685 #endif // BUCKETLOCK
[d46ed6e]686 total += size;
687 #ifdef __STATISTICS__
688 N += 1;
689 #endif // __STATISTICS__
[b6830d74]690 } // for
691
[d46ed6e]692 #ifdef __STATISTICS__
[95eb7cf]693 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
694 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]695 #endif // __STATISTICS__
696 } // for
697 #ifdef __STATISTICS__
[95eb7cf]698 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
699 __cfaabi_bits_release();
[d46ed6e]700 #endif // __STATISTICS__
701 return (char *)heapEnd - (char *)heapBegin - total;
[95eb7cf]702} // prtFree
703
704
[9c438546]705static void ?{}( HeapManager & manager ) with( manager ) {
[ad2dced]706 __page_size = sysconf( _SC_PAGESIZE );
707 __map_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
[95eb7cf]708
709 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
710 freeLists[i].blockSize = bucketSizes[i];
711 } // for
712
713 #ifdef FASTLOOKUP
714 unsigned int idx = 0;
715 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
716 if ( i > bucketSizes[idx] ) idx += 1;
717 lookup[i] = idx;
718 } // for
719 #endif // FASTLOOKUP
720
[1076d05]721 if ( ! setMmapStart( default_mmap_start() ) ) {
[95eb7cf]722 abort( "HeapManager : internal error, mmap start initialization failure." );
723 } // if
724 heapExpand = default_heap_expansion();
725
[1e034d9]726 char * end = (char *)sbrk( 0 );
[ad2dced]727 heapBegin = heapEnd = sbrk( (char *)ceiling2( (long unsigned int)end, __page_size ) - end ); // move start of heap to multiple of alignment
[95eb7cf]728} // HeapManager
729
730
731static void ^?{}( HeapManager & ) {
732 #ifdef __STATISTICS__
[baf608a]733 if ( traceHeapTerm() ) {
734 printStats();
[92aca37]735 // prtUnfreed() called in heapAppStop()
[baf608a]736 } // if
[95eb7cf]737 #endif // __STATISTICS__
738} // ~HeapManager
739
740
741static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
742void memory_startup( void ) {
743 #ifdef __CFA_DEBUG__
[92aca37]744 if ( heapBoot ) { // check for recursion during system boot
[95eb7cf]745 abort( "boot() : internal error, recursively invoked during system boot." );
746 } // if
747 heapBoot = true;
748 #endif // __CFA_DEBUG__
749
[c1f38e6c]750 //verify( heapManager.heapBegin != 0 );
[95eb7cf]751 //heapManager{};
[1076d05]752 if ( heapManager.heapBegin == 0p ) heapManager{}; // sanity check
[95eb7cf]753} // memory_startup
754
755static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
756void memory_shutdown( void ) {
757 ^heapManager{};
758} // memory_shutdown
[c4f68dc]759
[bcb14b5]760
761static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
[92aca37]762 verify( heapManager.heapBegin != 0p ); // called before memory_startup ?
[dd23e66]763 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[d5d3a90]764
[76e2113]765#if __SIZEOF_POINTER__ == 8
766 verify( size < ((typeof(size_t))1 << 48) );
767#endif // __SIZEOF_POINTER__ == 8
[d5d3a90]768 return doMalloc( size );
[bcb14b5]769} // mallocNoStats
[c4f68dc]770
771
[76e2113]772static inline void * callocNoStats( size_t dim, size_t elemSize ) {
773 size_t size = dim * elemSize;
[dd23e66]774 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[95eb7cf]775 char * addr = (char *)mallocNoStats( size );
776
777 HeapManager.Storage.Header * header;
778 HeapManager.FreeHeader * freeElem;
779 size_t bsize, alignment;
[d5d3a90]780 #ifndef __CFA_DEBUG__
781 bool mapped =
782 #endif // __CFA_DEBUG__
783 headers( "calloc", addr, header, freeElem, bsize, alignment );
[95eb7cf]784 #ifndef __CFA_DEBUG__
[dd23e66]785
[95eb7cf]786 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
787 if ( ! mapped )
788 #endif // __CFA_DEBUG__
[d5d3a90]789 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
[1e034d9]790 // `-header`-addr `-size
[d5d3a90]791 memset( addr, '\0', size ); // set to zeros
[95eb7cf]792
793 header->kind.real.blockSize |= 2; // mark as zero filled
794 return addr;
795} // callocNoStats
796
797
[92aca37]798static inline void * memalignNoStats( size_t alignment, size_t size ) {
[dd23e66]799 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[d5d3a90]800
[bcb14b5]801 #ifdef __CFA_DEBUG__
[b6830d74]802 checkAlign( alignment ); // check alignment
[bcb14b5]803 #endif // __CFA_DEBUG__
[c4f68dc]804
[b6830d74]805 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
[bcb14b5]806 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
[b6830d74]807
808 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
809 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
810 // .-------------v-----------------v----------------v----------,
811 // | Real Header | ... padding ... | Fake Header | data ... |
812 // `-------------^-----------------^-+--------------^----------'
813 // |<--------------------------------' offset/align |<-- alignment boundary
814
815 // subtract libAlign() because it is already the minimum alignment
816 // add sizeof(Storage) for fake header
[95eb7cf]817 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) );
[b6830d74]818
819 // address in the block of the "next" alignment address
[92aca37]820 char * user = (char *)ceiling2( (uintptr_t)(addr + sizeof(HeapManager.Storage)), alignment );
[b6830d74]821
822 // address of header from malloc
[95eb7cf]823 HeapManager.Storage.Header * realHeader = headerAddr( addr );
[4cf617e]824 realHeader->kind.real.size = size; // correct size to eliminate above alignment offset
[b6830d74]825 // address of fake header * before* the alignment location
826 HeapManager.Storage.Header * fakeHeader = headerAddr( user );
827 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
828 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
829 // SKULLDUGGERY: odd alignment imples fake header
830 fakeHeader->kind.fake.alignment = alignment | 1;
831
832 return user;
[bcb14b5]833} // memalignNoStats
[c4f68dc]834
835
[76e2113]836static inline void * cmemalignNoStats( size_t alignment, size_t dim, size_t elemSize ) {
837 size_t size = dim * elemSize;
[dd23e66]838 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[95eb7cf]839 char * addr = (char *)memalignNoStats( alignment, size );
[d5d3a90]840
[95eb7cf]841 HeapManager.Storage.Header * header;
842 HeapManager.FreeHeader * freeElem;
843 size_t bsize;
844 #ifndef __CFA_DEBUG__
[dd23e66]845 bool mapped =
846 #endif // __CFA_DEBUG__
847 headers( "cmemalign", addr, header, freeElem, bsize, alignment );
848
[95eb7cf]849 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
[92aca37]850 #ifndef __CFA_DEBUG__
[95eb7cf]851 if ( ! mapped )
852 #endif // __CFA_DEBUG__
[dd23e66]853 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
854 // `-header`-addr `-size
855 memset( addr, '\0', size ); // set to zeros
[95eb7cf]856
[cfbc703d]857 header->kind.real.blockSize |= 2; // mark as zero filled
[95eb7cf]858 return addr;
859} // cmemalignNoStats
860
861
[c4f68dc]862extern "C" {
[61248a4]863 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
864 // then malloc() returns a unique pointer value that can later be successfully passed to free().
[b6830d74]865 void * malloc( size_t size ) {
[c4f68dc]866 #ifdef __STATISTICS__
[bcb14b5]867 __atomic_add_fetch( &malloc_calls, 1, __ATOMIC_SEQ_CST );
868 __atomic_add_fetch( &malloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]869 #endif // __STATISTICS__
870
[bcb14b5]871 return mallocNoStats( size );
872 } // malloc
[c4f68dc]873
[76e2113]874
[61248a4]875 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[76e2113]876 void * aalloc( size_t dim, size_t elemSize ) {
[92aca37]877 size_t size = dim * elemSize;
[76e2113]878 #ifdef __STATISTICS__
879 __atomic_add_fetch( &aalloc_calls, 1, __ATOMIC_SEQ_CST );
[92aca37]880 __atomic_add_fetch( &aalloc_storage, size, __ATOMIC_SEQ_CST );
[76e2113]881 #endif // __STATISTICS__
882
[92aca37]883 return mallocNoStats( size );
[76e2113]884 } // aalloc
885
886
[61248a4]887 // Same as aalloc() with memory set to zero.
[76e2113]888 void * calloc( size_t dim, size_t elemSize ) {
[c4f68dc]889 #ifdef __STATISTICS__
[bcb14b5]890 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]891 __atomic_add_fetch( &calloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[c4f68dc]892 #endif // __STATISTICS__
893
[76e2113]894 return callocNoStats( dim, elemSize );
[bcb14b5]895 } // calloc
[c4f68dc]896
[92aca37]897
[61248a4]898 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
899 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
900 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
901 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[cfbc703d]902 void * resize( void * oaddr, size_t size ) {
903 #ifdef __STATISTICS__
904 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
905 #endif // __STATISTICS__
906
907 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]908 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[92aca37]909 if ( unlikely( oaddr == 0p ) ) {
910 #ifdef __STATISTICS__
911 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
912 #endif // __STATISTICS__
913 return mallocNoStats( size );
914 } // if
[cfbc703d]915
916 HeapManager.Storage.Header * header;
917 HeapManager.FreeHeader * freeElem;
[92aca37]918 size_t bsize, oalign;
[cfbc703d]919 headers( "resize", oaddr, header, freeElem, bsize, oalign );
[76e2113]920 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[92847f7]921
[cfbc703d]922 // same size, DO NOT preserve STICKY PROPERTIES.
[92847f7]923 if ( oalign == libAlign() && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[cfbc703d]924 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill
[d5d3a90]925 header->kind.real.size = size; // reset allocation size
[cfbc703d]926 return oaddr;
927 } // if
[0f89d4f]928
[92aca37]929 #ifdef __STATISTICS__
930 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
931 #endif // __STATISTICS__
932
[cfbc703d]933 // change size, DO NOT preserve STICKY PROPERTIES.
934 free( oaddr );
[d5d3a90]935 return mallocNoStats( size ); // create new area
[cfbc703d]936 } // resize
937
938
[61248a4]939 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]940 // the old and new sizes.
[95eb7cf]941 void * realloc( void * oaddr, size_t size ) {
[c4f68dc]942 #ifdef __STATISTICS__
[bcb14b5]943 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]944 #endif // __STATISTICS__
945
[1f6de372]946 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]947 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[92aca37]948 if ( unlikely( oaddr == 0p ) ) {
949 #ifdef __STATISTICS__
950 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
951 #endif // __STATISTICS__
952 return mallocNoStats( size );
953 } // if
[c4f68dc]954
955 HeapManager.Storage.Header * header;
956 HeapManager.FreeHeader * freeElem;
[92aca37]957 size_t bsize, oalign;
[95eb7cf]958 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
959
960 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[d5d3a90]961 size_t osize = header->kind.real.size; // old allocation size
[92847f7]962 bool ozfill = (header->kind.real.blockSize & 2); // old allocation zero filled
963 if ( unlikely( size <= odsize ) && odsize <= size * 2 ) { // allow up to 50% wasted storage
[d5d3a90]964 header->kind.real.size = size; // reset allocation size
965 if ( unlikely( ozfill ) && size > osize ) { // previous request zero fill and larger ?
[e4b6b7d3]966 memset( (char *)oaddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]967 } // if
[95eb7cf]968 return oaddr;
[c4f68dc]969 } // if
970
[92aca37]971 #ifdef __STATISTICS__
972 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
973 #endif // __STATISTICS__
974
[95eb7cf]975 // change size and copy old content to new storage
976
977 void * naddr;
[92847f7]978 if ( likely( oalign == libAlign() ) ) { // previous request not aligned ?
[d5d3a90]979 naddr = mallocNoStats( size ); // create new area
[c4f68dc]980 } else {
[d5d3a90]981 naddr = memalignNoStats( oalign, size ); // create new aligned area
[c4f68dc]982 } // if
[1e034d9]983
[95eb7cf]984 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[47dd0d2]985 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[95eb7cf]986 free( oaddr );
[d5d3a90]987
988 if ( unlikely( ozfill ) ) { // previous request zero fill ?
989 header->kind.real.blockSize |= 2; // mark new request as zero filled
990 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]991 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]992 } // if
993 } // if
[95eb7cf]994 return naddr;
[b6830d74]995 } // realloc
[c4f68dc]996
[c1f38e6c]997
[61248a4]998 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[bcb14b5]999 void * memalign( size_t alignment, size_t size ) {
[c4f68dc]1000 #ifdef __STATISTICS__
1001 __atomic_add_fetch( &memalign_calls, 1, __ATOMIC_SEQ_CST );
1002 __atomic_add_fetch( &memalign_storage, size, __ATOMIC_SEQ_CST );
1003 #endif // __STATISTICS__
1004
[95eb7cf]1005 return memalignNoStats( alignment, size );
[bcb14b5]1006 } // memalign
[c4f68dc]1007
[95eb7cf]1008
[76e2113]1009 // Same as aalloc() with memory alignment.
1010 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) {
[92aca37]1011 size_t size = dim * elemSize;
[76e2113]1012 #ifdef __STATISTICS__
1013 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
[92aca37]1014 __atomic_add_fetch( &cmemalign_storage, size, __ATOMIC_SEQ_CST );
[76e2113]1015 #endif // __STATISTICS__
1016
[92aca37]1017 return memalignNoStats( alignment, size );
[76e2113]1018 } // amemalign
1019
1020
[ca7949b]1021 // Same as calloc() with memory alignment.
[76e2113]1022 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) {
[95eb7cf]1023 #ifdef __STATISTICS__
1024 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]1025 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[95eb7cf]1026 #endif // __STATISTICS__
1027
[76e2113]1028 return cmemalignNoStats( alignment, dim, elemSize );
[95eb7cf]1029 } // cmemalign
1030
[13fece5]1031
[ca7949b]1032 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
1033 // of alignment. This requirement is universally ignored.
[b6830d74]1034 void * aligned_alloc( size_t alignment, size_t size ) {
[c4f68dc]1035 return memalign( alignment, size );
[b6830d74]1036 } // aligned_alloc
[c4f68dc]1037
1038
[ca7949b]1039 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1040 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1041 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1042 // free(3).
[b6830d74]1043 int posix_memalign( void ** memptr, size_t alignment, size_t size ) {
[92aca37]1044 if ( alignment < libAlign() || ! is_pow2( alignment ) ) return EINVAL; // check alignment
[c4f68dc]1045 * memptr = memalign( alignment, size );
1046 return 0;
[b6830d74]1047 } // posix_memalign
[c4f68dc]1048
[13fece5]1049
[ca7949b]1050 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1051 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[b6830d74]1052 void * valloc( size_t size ) {
[ad2dced]1053 return memalign( __page_size, size );
[b6830d74]1054 } // valloc
[c4f68dc]1055
1056
[ca7949b]1057 // Same as valloc but rounds size to multiple of page size.
1058 void * pvalloc( size_t size ) {
[ad2dced]1059 return memalign( __page_size, ceiling2( size, __page_size ) );
[ca7949b]1060 } // pvalloc
1061
1062
1063 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1064 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1065 // 0p, no operation is performed.
[b6830d74]1066 void free( void * addr ) {
[c4f68dc]1067 #ifdef __STATISTICS__
[bcb14b5]1068 __atomic_add_fetch( &free_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]1069 #endif // __STATISTICS__
1070
[95eb7cf]1071 if ( unlikely( addr == 0p ) ) { // special case
1072 // #ifdef __CFA_DEBUG__
1073 // if ( traceHeap() ) {
1074 // #define nullmsg "Free( 0x0 ) size:0\n"
[1e034d9]1075 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
[95eb7cf]1076 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
1077 // } // if
1078 // #endif // __CFA_DEBUG__
[c4f68dc]1079 return;
1080 } // exit
1081
1082 doFree( addr );
[b6830d74]1083 } // free
[93c2e0a]1084
[c4f68dc]1085
[76e2113]1086 // Returns the alignment of an allocation.
[b6830d74]1087 size_t malloc_alignment( void * addr ) {
[95eb7cf]1088 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[1aa6ecb]1089 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1090 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1091 return header->kind.fake.alignment & -2; // remove flag from value
1092 } else {
[cfbc703d]1093 return libAlign(); // minimum alignment
[c4f68dc]1094 } // if
[bcb14b5]1095 } // malloc_alignment
[c4f68dc]1096
[92aca37]1097
[76e2113]1098 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment.
1099 size_t $malloc_alignment_set( void * addr, size_t alignment ) {
1100 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1101 size_t ret;
1102 HeapManager.Storage.Header * header = headerAddr( addr );
1103 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1104 ret = header->kind.fake.alignment & -2; // remove flag from old value
1105 header->kind.fake.alignment = alignment | 1; // add flag to new value
1106 } else {
1107 ret = 0; // => no alignment to change
1108 } // if
1109 return ret;
1110 } // $malloc_alignment_set
1111
[c4f68dc]1112
[76e2113]1113 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[b6830d74]1114 bool malloc_zero_fill( void * addr ) {
[95eb7cf]1115 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[1aa6ecb]1116 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1117 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
[cfbc703d]1118 header = realHeader( header ); // backup from fake to real header
[c4f68dc]1119 } // if
[76e2113]1120 return (header->kind.real.blockSize & 2) != 0; // zero filled ?
[bcb14b5]1121 } // malloc_zero_fill
[c4f68dc]1122
[76e2113]1123 // Set allocation is zero filled and return previous zero filled.
1124 bool $malloc_zero_fill_set( void * addr ) {
1125 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1126 HeapManager.Storage.Header * header = headerAddr( addr );
1127 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1128 header = realHeader( header ); // backup from fake to real header
1129 } // if
1130 bool ret = (header->kind.real.blockSize & 2) != 0; // zero filled ?
1131 header->kind.real.blockSize |= 2; // mark as zero filled
1132 return ret;
1133 } // $malloc_zero_fill_set
1134
[c4f68dc]1135
[76e2113]1136 // Returns original total allocation size (not bucket size) => array size is dimension * sizeif(T).
1137 size_t malloc_size( void * addr ) {
[849fb370]1138 if ( unlikely( addr == 0p ) ) return 0; // null allocation has zero size
[cfbc703d]1139 HeapManager.Storage.Header * header = headerAddr( addr );
1140 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1141 header = realHeader( header ); // backup from fake to real header
1142 } // if
[9c438546]1143 return header->kind.real.size;
[76e2113]1144 } // malloc_size
1145
1146 // Set allocation size and return previous size.
1147 size_t $malloc_size_set( void * addr, size_t size ) {
[849fb370]1148 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
[76e2113]1149 HeapManager.Storage.Header * header = headerAddr( addr );
1150 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1151 header = realHeader( header ); // backup from fake to real header
1152 } // if
[9c438546]1153 size_t ret = header->kind.real.size;
1154 header->kind.real.size = size;
[76e2113]1155 return ret;
1156 } // $malloc_size_set
[cfbc703d]1157
1158
[ca7949b]1159 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1160 // malloc or a related function.
[95eb7cf]1161 size_t malloc_usable_size( void * addr ) {
1162 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1163 HeapManager.Storage.Header * header;
1164 HeapManager.FreeHeader * freeElem;
1165 size_t bsize, alignment;
1166
1167 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
[dd23e66]1168 return dataStorage( bsize, addr, header ); // data storage in bucket
[95eb7cf]1169 } // malloc_usable_size
1170
1171
[ca7949b]1172 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[b6830d74]1173 void malloc_stats( void ) {
[c4f68dc]1174 #ifdef __STATISTICS__
[bcb14b5]1175 printStats();
[95eb7cf]1176 if ( prtFree() ) prtFree( heapManager );
[c4f68dc]1177 #endif // __STATISTICS__
[bcb14b5]1178 } // malloc_stats
[c4f68dc]1179
[92aca37]1180
[ca7949b]1181 // Changes the file descripter where malloc_stats() writes statistics.
[95eb7cf]1182 int malloc_stats_fd( int fd __attribute__(( unused )) ) {
[c4f68dc]1183 #ifdef __STATISTICS__
[92aca37]1184 int temp = stat_fd;
1185 stat_fd = fd;
[bcb14b5]1186 return temp;
[c4f68dc]1187 #else
[bcb14b5]1188 return -1;
[c4f68dc]1189 #endif // __STATISTICS__
[bcb14b5]1190 } // malloc_stats_fd
[c4f68dc]1191
[95eb7cf]1192
[1076d05]1193 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1194 // specifies the parameter to be modified, and value specifies the new value for that parameter.
[95eb7cf]1195 int mallopt( int option, int value ) {
1196 choose( option ) {
1197 case M_TOP_PAD:
[ad2dced]1198 heapExpand = ceiling2( value, __page_size ); return 1;
[95eb7cf]1199 case M_MMAP_THRESHOLD:
1200 if ( setMmapStart( value ) ) return 1;
[1076d05]1201 break;
[95eb7cf]1202 } // switch
1203 return 0; // error, unsupported
1204 } // mallopt
1205
[c1f38e6c]1206
[ca7949b]1207 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[95eb7cf]1208 int malloc_trim( size_t ) {
1209 return 0; // => impossible to release memory
1210 } // malloc_trim
1211
1212
[ca7949b]1213 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller.
1214 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1215 // malloc).
[c4f68dc]1216 int malloc_info( int options, FILE * stream ) {
[92aca37]1217 if ( options != 0 ) { errno = EINVAL; return -1; }
1218 #ifdef __STATISTICS__
[d46ed6e]1219 return printStatsXML( stream );
[92aca37]1220 #else
1221 return 0; // unsupported
1222 #endif // __STATISTICS__
[c4f68dc]1223 } // malloc_info
1224
1225
[ca7949b]1226 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1227 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1228 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1229 // result. (The caller must free this memory.)
[c4f68dc]1230 void * malloc_get_state( void ) {
[95eb7cf]1231 return 0p; // unsupported
[c4f68dc]1232 } // malloc_get_state
1233
[bcb14b5]1234
[ca7949b]1235 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1236 // structure pointed to by state.
[92aca37]1237 int malloc_set_state( void * ) {
[bcb14b5]1238 return 0; // unsupported
[c4f68dc]1239 } // malloc_set_state
1240} // extern "C"
1241
1242
[95eb7cf]1243// Must have CFA linkage to overload with C linkage realloc.
[cfbc703d]1244void * resize( void * oaddr, size_t nalign, size_t size ) {
[1e034d9]1245 #ifdef __STATISTICS__
[cfbc703d]1246 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
[1e034d9]1247 #endif // __STATISTICS__
[95eb7cf]1248
[c86f587]1249 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
1250 #ifdef __CFA_DEBUG__
1251 else
1252 checkAlign( nalign ); // check alignment
1253 #endif // __CFA_DEBUG__
1254
[1f6de372]1255 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]1256 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[92aca37]1257 if ( unlikely( oaddr == 0p ) ) {
1258 #ifdef __STATISTICS__
1259 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
1260 #endif // __STATISTICS__
1261 return memalignNoStats( nalign, size );
1262 } // if
[cfbc703d]1263
[92847f7]1264 // Attempt to reuse existing alignment.
[47dd0d2]1265 HeapManager.Storage.Header * header = headerAddr( oaddr );
[92847f7]1266 bool isFakeHeader = header->kind.fake.alignment & 1; // old fake header ?
1267 size_t oalign;
1268 if ( isFakeHeader ) {
1269 oalign = header->kind.fake.alignment & -2; // old alignment
1270 if ( (uintptr_t)oaddr % nalign == 0 // lucky match ?
1271 && ( oalign <= nalign // going down
1272 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
1273 ) {
1274 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1275 HeapManager.FreeHeader * freeElem;
1276 size_t bsize, oalign;
1277 headers( "resize", oaddr, header, freeElem, bsize, oalign );
1278 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[a3ade94]1279
[92847f7]1280 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted data storage
[03b87140]1281 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
[a3ade94]1282
[92847f7]1283 header->kind.real.blockSize &= -2; // turn off 0 fill
1284 header->kind.real.size = size; // reset allocation size
1285 return oaddr;
1286 } // if
[cfbc703d]1287 } // if
[92847f7]1288 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1289 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
[113d785]1290 return resize( oaddr, size ); // duplicate special case checks
[cfbc703d]1291 } // if
1292
[92aca37]1293 #ifdef __STATISTICS__
1294 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
1295 #endif // __STATISTICS__
1296
[dd23e66]1297 // change size, DO NOT preserve STICKY PROPERTIES.
[cfbc703d]1298 free( oaddr );
[dd23e66]1299 return memalignNoStats( nalign, size ); // create new aligned area
[cfbc703d]1300} // resize
1301
1302
1303void * realloc( void * oaddr, size_t nalign, size_t size ) {
[c1f38e6c]1304 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
[cfbc703d]1305 #ifdef __CFA_DEBUG__
1306 else
1307 checkAlign( nalign ); // check alignment
1308 #endif // __CFA_DEBUG__
1309
[c86f587]1310 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1311 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
1312 if ( unlikely( oaddr == 0p ) ) {
1313 #ifdef __STATISTICS__
1314 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
1315 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
1316 #endif // __STATISTICS__
1317 return memalignNoStats( nalign, size );
1318 } // if
1319
[92847f7]1320 // Attempt to reuse existing alignment.
1321 HeapManager.Storage.Header * header = headerAddr( oaddr );
1322 bool isFakeHeader = header->kind.fake.alignment & 1; // old fake header ?
1323 size_t oalign;
1324 if ( isFakeHeader ) {
1325 oalign = header->kind.fake.alignment & -2; // old alignment
1326 if ( (uintptr_t)oaddr % nalign == 0 // lucky match ?
1327 && ( oalign <= nalign // going down
1328 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
1329 ) {
[03b87140]1330 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
[92847f7]1331 return realloc( oaddr, size ); // duplicate alignment and special case checks
1332 } // if
1333 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1334 && nalign == libAlign() ) // new alignment also on libAlign => no fake header needed
1335 return realloc( oaddr, size ); // duplicate alignment and special case checks
[cfbc703d]1336
[1e034d9]1337 #ifdef __STATISTICS__
[cfbc703d]1338 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[95eb7cf]1339 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1340 #endif // __STATISTICS__
1341
[92847f7]1342 HeapManager.FreeHeader * freeElem;
1343 size_t bsize;
1344 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
1345
1346 // change size and copy old content to new storage
1347
[dd23e66]1348 size_t osize = header->kind.real.size; // old allocation size
[92847f7]1349 bool ozfill = (header->kind.real.blockSize & 2); // old allocation zero filled
[dd23e66]1350
1351 void * naddr = memalignNoStats( nalign, size ); // create new aligned area
[95eb7cf]1352
[1e034d9]1353 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[47dd0d2]1354 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[1e034d9]1355 free( oaddr );
[d5d3a90]1356
1357 if ( unlikely( ozfill ) ) { // previous request zero fill ?
1358 header->kind.real.blockSize |= 2; // mark new request as zero filled
1359 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]1360 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1361 } // if
1362 } // if
[1e034d9]1363 return naddr;
[95eb7cf]1364} // realloc
1365
1366
[c4f68dc]1367// Local Variables: //
1368// tab-width: 4 //
[f8cd310]1369// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1370// End: //
Note: See TracBrowser for help on using the repository browser.