source: libcfa/src/heap.cfa@ 5dc5da7

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 5dc5da7 was b4aa1ab, checked in by Peter A. Buhr <pabuhr@…>, 5 years ago

fix running nested routines on stacks in the heap

  • Property mode set to 100644
File size: 52.5 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
[92aca37]7// heap.cfa --
[73abe95]8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[b4aa1ab]12// Last Modified On : Sun Dec 13 22:04:10 2020
13// Update Count : 984
[73abe95]14//
[c4f68dc]15
16#include <unistd.h> // sbrk, sysconf
17#include <stdbool.h> // true, false
18#include <stdio.h> // snprintf, fileno
19#include <errno.h> // errno
[1e034d9]20#include <string.h> // memset, memcpy
[1076d05]21#include <limits.h> // ULONG_MAX
[ada0246d]22#include <malloc.h> // memalign, malloc_usable_size
[c4f68dc]23#include <sys/mman.h> // mmap, munmap
24
[92aca37]25#include "bits/align.hfa" // libAlign
[bcb14b5]26#include "bits/defs.hfa" // likely, unlikely
27#include "bits/locks.hfa" // __spinlock_t
[73abe95]28#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[7cfef0d]29#include "math.hfa" // ceiling
30#include "bitmanip.hfa" // is_pow2, ceiling2
[c4f68dc]31
[93c2e0a]32static bool traceHeap = false;
[d46ed6e]33
[baf608a]34inline bool traceHeap() { return traceHeap; }
[d46ed6e]35
[93c2e0a]36bool traceHeapOn() {
37 bool temp = traceHeap;
[d46ed6e]38 traceHeap = true;
39 return temp;
40} // traceHeapOn
41
[93c2e0a]42bool traceHeapOff() {
43 bool temp = traceHeap;
[d46ed6e]44 traceHeap = false;
45 return temp;
46} // traceHeapOff
47
[baf608a]48bool traceHeapTerm() { return false; }
49
[d46ed6e]50
[95eb7cf]51static bool prtFree = false;
[d46ed6e]52
[95eb7cf]53inline bool prtFree() {
54 return prtFree;
55} // prtFree
[5d4fa18]56
[95eb7cf]57bool prtFreeOn() {
58 bool temp = prtFree;
59 prtFree = true;
[5d4fa18]60 return temp;
[95eb7cf]61} // prtFreeOn
[5d4fa18]62
[95eb7cf]63bool prtFreeOff() {
64 bool temp = prtFree;
65 prtFree = false;
[5d4fa18]66 return temp;
[95eb7cf]67} // prtFreeOff
[5d4fa18]68
69
[e723100]70enum {
[1e034d9]71 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address,
72 // the brk address is extended by the extension amount.
[e723100]73 __CFA_DEFAULT_HEAP_EXPANSION__ = (1 * 1024 * 1024),
[1e034d9]74
75 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;
76 // values greater than or equal to this value are mmap from the operating system.
77 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),
[e723100]78};
79
[dd23e66]80size_t default_mmap_start() __attribute__(( weak )) {
81 return __CFA_DEFAULT_MMAP_START__;
82} // default_mmap_start
83
[e723100]84size_t default_heap_expansion() __attribute__(( weak )) {
85 return __CFA_DEFAULT_HEAP_EXPANSION__;
86} // default_heap_expansion
87
88
[f0b3f51]89#ifdef __CFA_DEBUG__
[92aca37]90static size_t allocUnfreed; // running total of allocations minus frees
[d46ed6e]91
[95eb7cf]92static void prtUnfreed() {
[c1f38e6c]93 if ( allocUnfreed != 0 ) {
[d46ed6e]94 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
[4ea1c6d]95 char helpText[512];
[92aca37]96 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %zu(0x%zx) bytes of storage allocated but not freed.\n"
[4ea1c6d]97 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
[c1f38e6c]98 (long int)getpid(), allocUnfreed, allocUnfreed ); // always print the UNIX pid
[4ea1c6d]99 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[b6830d74]100 } // if
[95eb7cf]101} // prtUnfreed
[d46ed6e]102
103extern "C" {
[bcb14b5]104 void heapAppStart() { // called by __cfaabi_appready_startup
[c1f38e6c]105 allocUnfreed = 0;
[bcb14b5]106 } // heapAppStart
107
108 void heapAppStop() { // called by __cfaabi_appready_startdown
109 fclose( stdin ); fclose( stdout );
[95eb7cf]110 prtUnfreed();
[bcb14b5]111 } // heapAppStop
[d46ed6e]112} // extern "C"
113#endif // __CFA_DEBUG__
114
[1e034d9]115
[e723100]116// statically allocated variables => zero filled.
117static size_t pageSize; // architecture pagesize
118static size_t heapExpand; // sbrk advance
119static size_t mmapStart; // cross over point for mmap
120static unsigned int maxBucketsUsed; // maximum number of buckets in use
121
122
123#define SPINLOCK 0
124#define LOCKFREE 1
125#define BUCKETLOCK SPINLOCK
[9c438546]126#if BUCKETLOCK == SPINLOCK
127#elif BUCKETLOCK == LOCKFREE
128#include <stackLockFree.hfa>
129#else
130 #error undefined lock type for bucket lock
[e723100]131#endif // LOCKFREE
132
133// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
134// Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]135enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]136
[c4f68dc]137struct HeapManager {
138 struct Storage {
[bcb14b5]139 struct Header { // header
[c4f68dc]140 union Kind {
141 struct RealHeader {
142 union {
[bcb14b5]143 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[f0b3f51]144 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]145 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]146 #endif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]147
148 union {
[9c438546]149 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
[cfbc703d]150 // 2nd low-order bit => zero filled
[c4f68dc]151 void * home; // allocated block points back to home locations (must overlay alignment)
152 size_t blockSize; // size for munmap (must overlay alignment)
[9c438546]153 #if BUCKETLOCK == SPINLOCK
[c4f68dc]154 Storage * next; // freed block points next freed block of same size
155 #endif // SPINLOCK
156 };
[9c438546]157 size_t size; // allocation size in bytes
[c4f68dc]158
[f0b3f51]159 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]160 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]161 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]162 };
[9c438546]163 #if BUCKETLOCK == LOCKFREE
164 Link(Storage) next; // freed block points next freed block of same size (double-wide)
[c4f68dc]165 #endif // LOCKFREE
166 };
[93c2e0a]167 } real; // RealHeader
[9c438546]168
[c4f68dc]169 struct FakeHeader {
170 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
[9c438546]171 uint32_t alignment; // 1st low-order bit => fake header & alignment
[f0b3f51]172 #endif // __ORDER_LITTLE_ENDIAN__
[c4f68dc]173
174 uint32_t offset;
175
176 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
177 uint32_t alignment; // low-order bits of home/blockSize used for tricks
[f0b3f51]178 #endif // __ORDER_BIG_ENDIAN__
[93c2e0a]179 } fake; // FakeHeader
180 } kind; // Kind
[bcb14b5]181 } header; // Header
[95eb7cf]182 char pad[libAlign() - sizeof( Header )];
[bcb14b5]183 char data[0]; // storage
[c4f68dc]184 }; // Storage
185
[95eb7cf]186 static_assert( libAlign() >= sizeof( Storage ), "libAlign() < sizeof( Storage )" );
[c4f68dc]187
188 struct FreeHeader {
[9c438546]189 #if BUCKETLOCK == SPINLOCK
[bcb14b5]190 __spinlock_t lock; // must be first field for alignment
191 Storage * freeList;
[c4f68dc]192 #else
[9c438546]193 StackLF(Storage) freeList;
194 #endif // BUCKETLOCK
[bcb14b5]195 size_t blockSize; // size of allocations on this list
[c4f68dc]196 }; // FreeHeader
197
198 // must be first fields for alignment
199 __spinlock_t extlock; // protects allocation-buffer extension
200 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
201
202 void * heapBegin; // start of heap
203 void * heapEnd; // logical end of heap
204 size_t heapRemaining; // amount of storage not allocated in the current chunk
205}; // HeapManager
206
[9c438546]207#if BUCKETLOCK == LOCKFREE
[c45d2fa]208static inline {
[8b58bae]209 Link(HeapManager.Storage) * ?`next( HeapManager.Storage * this ) { return &this->header.kind.real.next; }
[c45d2fa]210 void ?{}( HeapManager.FreeHeader & ) {}
211 void ^?{}( HeapManager.FreeHeader & ) {}
212} // distribution
[9c438546]213#endif // LOCKFREE
214
[7b149bc]215static inline size_t getKey( const HeapManager.FreeHeader & freeheader ) { return freeheader.blockSize; }
[5d4fa18]216
[e723100]217
218#define FASTLOOKUP
219#define __STATISTICS__
[5d4fa18]220
[c1f38e6c]221// Size of array must harmonize with NoBucketSizes and individual bucket sizes must be multiple of 16.
[d5d3a90]222// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
223// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
[e723100]224static const unsigned int bucketSizes[] @= { // different bucket sizes
[d5d3a90]225 16 + sizeof(HeapManager.Storage), 32 + sizeof(HeapManager.Storage), 48 + sizeof(HeapManager.Storage), 64 + sizeof(HeapManager.Storage), // 4
226 96 + sizeof(HeapManager.Storage), 112 + sizeof(HeapManager.Storage), 128 + sizeof(HeapManager.Storage), // 3
[95eb7cf]227 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4
228 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4
229 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4
230 1_536, 2_048 + sizeof(HeapManager.Storage), // 2
231 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4
232 6_144, 8_192 + sizeof(HeapManager.Storage), // 2
233 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8
234 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8
235 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8
236 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8
237 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8
238 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8
239 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4
240 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8
241 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4
[5d4fa18]242};
[e723100]243
[c1f38e6c]244static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0] ), "size of bucket array wrong" );
[e723100]245
[5d4fa18]246#ifdef FASTLOOKUP
[a92a4fe]247enum { LookupSizes = 65_536 + sizeof(HeapManager.Storage) }; // number of fast lookup sizes
[5d4fa18]248static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
249#endif // FASTLOOKUP
250
[95eb7cf]251static int mmapFd = -1; // fake or actual fd for anonymous file
[5d4fa18]252#ifdef __CFA_DEBUG__
[93c2e0a]253static bool heapBoot = 0; // detect recursion during boot
[5d4fa18]254#endif // __CFA_DEBUG__
[9c438546]255
256// The constructor for heapManager is called explicitly in memory_startup.
[5d4fa18]257static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
258
[c4f68dc]259
260#ifdef __STATISTICS__
[95eb7cf]261// Heap statistics counters.
[c4f68dc]262static unsigned int malloc_calls;
[c1f38e6c]263static unsigned long long int malloc_storage;
[76e2113]264static unsigned int aalloc_calls;
[c1f38e6c]265static unsigned long long int aalloc_storage;
[c4f68dc]266static unsigned int calloc_calls;
[c1f38e6c]267static unsigned long long int calloc_storage;
[c4f68dc]268static unsigned int memalign_calls;
[c1f38e6c]269static unsigned long long int memalign_storage;
[76e2113]270static unsigned int amemalign_calls;
[c1f38e6c]271static unsigned long long int amemalign_storage;
[c4f68dc]272static unsigned int cmemalign_calls;
[c1f38e6c]273static unsigned long long int cmemalign_storage;
[cfbc703d]274static unsigned int resize_calls;
[c1f38e6c]275static unsigned long long int resize_storage;
[c4f68dc]276static unsigned int realloc_calls;
[c1f38e6c]277static unsigned long long int realloc_storage;
278static unsigned int free_calls;
279static unsigned long long int free_storage;
280static unsigned int mmap_calls;
281static unsigned long long int mmap_storage;
282static unsigned int munmap_calls;
283static unsigned long long int munmap_storage;
284static unsigned int sbrk_calls;
285static unsigned long long int sbrk_storage;
[95eb7cf]286// Statistics file descriptor (changed by malloc_stats_fd).
[92aca37]287static int stat_fd = STDERR_FILENO; // default stderr
[c4f68dc]288
289// Use "write" because streams may be shutdown when calls are made.
[d46ed6e]290static void printStats() {
[76e2113]291 char helpText[1024];
[95eb7cf]292 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[bcb14b5]293 "\nHeap statistics:\n"
294 " malloc: calls %u / storage %llu\n"
[76e2113]295 " aalloc: calls %u / storage %llu\n"
[bcb14b5]296 " calloc: calls %u / storage %llu\n"
297 " memalign: calls %u / storage %llu\n"
[76e2113]298 " amemalign: calls %u / storage %llu\n"
[bcb14b5]299 " cmemalign: calls %u / storage %llu\n"
[cfbc703d]300 " resize: calls %u / storage %llu\n"
[bcb14b5]301 " realloc: calls %u / storage %llu\n"
302 " free: calls %u / storage %llu\n"
303 " mmap: calls %u / storage %llu\n"
304 " munmap: calls %u / storage %llu\n"
305 " sbrk: calls %u / storage %llu\n",
306 malloc_calls, malloc_storage,
[92aca37]307 aalloc_calls, aalloc_storage,
[bcb14b5]308 calloc_calls, calloc_storage,
309 memalign_calls, memalign_storage,
[76e2113]310 amemalign_calls, amemalign_storage,
[bcb14b5]311 cmemalign_calls, cmemalign_storage,
[cfbc703d]312 resize_calls, resize_storage,
[bcb14b5]313 realloc_calls, realloc_storage,
314 free_calls, free_storage,
315 mmap_calls, mmap_storage,
316 munmap_calls, munmap_storage,
317 sbrk_calls, sbrk_storage
[c4f68dc]318 );
[d46ed6e]319} // printStats
[c4f68dc]320
[bcb14b5]321static int printStatsXML( FILE * stream ) { // see malloc_info
[76e2113]322 char helpText[1024];
[b6830d74]323 int len = snprintf( helpText, sizeof(helpText),
[c4f68dc]324 "<malloc version=\"1\">\n"
325 "<heap nr=\"0\">\n"
326 "<sizes>\n"
327 "</sizes>\n"
328 "<total type=\"malloc\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]329 "<total type=\"aalloc\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]330 "<total type=\"calloc\" count=\"%u\" size=\"%llu\"/>\n"
331 "<total type=\"memalign\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]332 "<total type=\"amemalign\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]333 "<total type=\"cmemalign\" count=\"%u\" size=\"%llu\"/>\n"
[cfbc703d]334 "<total type=\"resize\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]335 "<total type=\"realloc\" count=\"%u\" size=\"%llu\"/>\n"
336 "<total type=\"free\" count=\"%u\" size=\"%llu\"/>\n"
337 "<total type=\"mmap\" count=\"%u\" size=\"%llu\"/>\n"
338 "<total type=\"munmap\" count=\"%u\" size=\"%llu\"/>\n"
339 "<total type=\"sbrk\" count=\"%u\" size=\"%llu\"/>\n"
340 "</malloc>",
341 malloc_calls, malloc_storage,
[76e2113]342 aalloc_calls, aalloc_storage,
[c4f68dc]343 calloc_calls, calloc_storage,
344 memalign_calls, memalign_storage,
[76e2113]345 amemalign_calls, amemalign_storage,
[c4f68dc]346 cmemalign_calls, cmemalign_storage,
[cfbc703d]347 resize_calls, resize_storage,
[c4f68dc]348 realloc_calls, realloc_storage,
349 free_calls, free_storage,
350 mmap_calls, mmap_storage,
351 munmap_calls, munmap_storage,
352 sbrk_calls, sbrk_storage
353 );
[95eb7cf]354 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit
355 return len;
[d46ed6e]356} // printStatsXML
[c4f68dc]357#endif // __STATISTICS__
358
[95eb7cf]359
[1e034d9]360// thunk problem
361size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
362 size_t l = 0, m, h = dim;
363 while ( l < h ) {
364 m = (l + h) / 2;
365 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
366 l = m + 1;
367 } else {
368 h = m;
369 } // if
370 } // while
371 return l;
372} // Bsearchl
373
374
[95eb7cf]375static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
[1076d05]376 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]377 mmapStart = value; // set global
378
379 // find the closest bucket size less than or equal to the mmapStart size
[1e034d9]380 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
[95eb7cf]381 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
382 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]383 return true;
[95eb7cf]384} // setMmapStart
385
386
[cfbc703d]387// <-------+----------------------------------------------------> bsize (bucket size)
388// |header |addr
389//==================================================================================
390// align/offset |
391// <-----------------<------------+-----------------------------> bsize (bucket size)
392// |fake-header | addr
393#define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))
394#define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset))
395
396// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
397// |header |addr
398//==================================================================================
399// align/offset |
400// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
401// |fake-header |addr
402#define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
403
404
405static inline void checkAlign( size_t alignment ) {
[92aca37]406 if ( alignment < libAlign() || ! is_pow2( alignment ) ) {
[cfbc703d]407 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
408 } // if
409} // checkAlign
410
411
[e3fea42]412static inline void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]413 if ( unlikely( check ) ) { // bad address ?
[c4f68dc]414 abort( "Attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]415 "Possible cause is duplicate free on same block or overwriting of memory.",
416 name, addr );
[b6830d74]417 } // if
[c4f68dc]418} // checkHeader
419
[95eb7cf]420
421static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {
[b6830d74]422 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?
[c4f68dc]423 alignment = header->kind.fake.alignment & -2; // remove flag from value
424 #ifdef __CFA_DEBUG__
425 checkAlign( alignment ); // check alignment
426 #endif // __CFA_DEBUG__
[cfbc703d]427 header = realHeader( header ); // backup from fake to real header
[d5d3a90]428 } else {
[c1f38e6c]429 alignment = libAlign(); // => no fake header
[b6830d74]430 } // if
[c4f68dc]431} // fakeHeader
432
[95eb7cf]433
[9c438546]434static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem,
435 size_t & size, size_t & alignment ) with( heapManager ) {
[b6830d74]436 header = headerAddr( addr );
[c4f68dc]437
[92aca37]438 if ( unlikely( heapEnd < addr ) ) { // mmapped ?
[95eb7cf]439 fakeHeader( header, alignment );
[c4f68dc]440 size = header->kind.real.blockSize & -3; // mmap size
441 return true;
[b6830d74]442 } // if
[c4f68dc]443
444 #ifdef __CFA_DEBUG__
[1076d05]445 checkHeader( addr < heapBegin, name, addr ); // bad low address ?
[c4f68dc]446 #endif // __CFA_DEBUG__
[b6830d74]447
[bcb14b5]448 // header may be safe to dereference
[95eb7cf]449 fakeHeader( header, alignment );
[c4f68dc]450 #ifdef __CFA_DEBUG__
[bcb14b5]451 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]452 #endif // __CFA_DEBUG__
453
[bcb14b5]454 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);
[c4f68dc]455 #ifdef __CFA_DEBUG__
[bcb14b5]456 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {
457 abort( "Attempt to %s storage %p with corrupted header.\n"
458 "Possible cause is duplicate free on same block or overwriting of header information.",
459 name, addr );
460 } // if
[c4f68dc]461 #endif // __CFA_DEBUG__
[bcb14b5]462 size = freeElem->blockSize;
463 return false;
[c4f68dc]464} // headers
465
[e4b6b7d3]466#ifdef __CFA_DEBUG__
467#if __SIZEOF_POINTER__ == 4
468#define MASK 0xdeadbeef
469#else
470#define MASK 0xdeadbeefdeadbeef
471#endif
472#define STRIDE size_t
473
474static void * Memset( void * addr, STRIDE size ) { // debug only
475 if ( size % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, size %zd not multiple of %zd.", size, sizeof(STRIDE) );
476 if ( (STRIDE)addr % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, addr %p not multiple of %zd.", addr, sizeof(STRIDE) );
477
478 STRIDE * end = (STRIDE *)addr + size / sizeof(STRIDE);
479 for ( STRIDE * p = (STRIDE *)addr; p < end; p += 1 ) *p = MASK;
480 return addr;
481} // Memset
482#endif // __CFA_DEBUG__
483
[92aca37]484#define NO_MEMORY_MSG "insufficient heap memory available for allocating %zd new bytes."
[c4f68dc]485
[9c438546]486static inline void * extend( size_t size ) with( heapManager ) {
[b6830d74]487 lock( extlock __cfaabi_dbg_ctx2 );
488 ptrdiff_t rem = heapRemaining - size;
489 if ( rem < 0 ) {
[c4f68dc]490 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
491
[b4aa1ab]492 size_t increase = ceiling2( size > heapExpand ? size : heapExpand, pageSize );
[92aca37]493 if ( sbrk( increase ) == (void *)-1 ) { // failed, no memory ?
[c4f68dc]494 unlock( extlock );
[dd23e66]495 abort( NO_MEMORY_MSG, size ); // give up
[92aca37]496 } // if
[b4aa1ab]497 if ( mprotect( (char *)heapEnd + heapRemaining, increase, PROT_READ | PROT_WRITE | PROT_EXEC ) ) {
498 enum { BufferSize = 128 };
499 char helpText[BufferSize];
500 // Do not call strerror( errno ) as it may call malloc.
501 int len = snprintf( helpText, BufferSize, "internal error, extend(), mprotect failure, heapEnd:%p size:%zd, errno:%d.", heapEnd, increase, errno );
502 __cfaabi_bits_write( STDERR_FILENO, helpText, len );
503 } // if
[bcb14b5]504 #ifdef __STATISTICS__
[c4f68dc]505 sbrk_calls += 1;
506 sbrk_storage += increase;
[bcb14b5]507 #endif // __STATISTICS__
508 #ifdef __CFA_DEBUG__
[c4f68dc]509 // Set new memory to garbage so subsequent uninitialized usages might fail.
[e4b6b7d3]510 //memset( (char *)heapEnd + heapRemaining, '\377', increase );
511 Memset( (char *)heapEnd + heapRemaining, increase );
[bcb14b5]512 #endif // __CFA_DEBUG__
[c4f68dc]513 rem = heapRemaining + increase - size;
[b6830d74]514 } // if
[c4f68dc]515
[b6830d74]516 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;
517 heapRemaining = rem;
518 heapEnd = (char *)heapEnd + size;
519 unlock( extlock );
520 return block;
[c4f68dc]521} // extend
522
523
[9c438546]524static inline void * doMalloc( size_t size ) with( heapManager ) {
[7b149bc]525 HeapManager.Storage * block; // pointer to new block of storage
[c4f68dc]526
[b6830d74]527 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
528 // along with the block and is a multiple of the alignment size.
[c4f68dc]529
[1076d05]530 if ( unlikely( size > ULONG_MAX - sizeof(HeapManager.Storage) ) ) return 0p;
[b6830d74]531 size_t tsize = size + sizeof(HeapManager.Storage);
532 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
[e723100]533 size_t posn;
534 #ifdef FASTLOOKUP
535 if ( tsize < LookupSizes ) posn = lookup[tsize];
536 else
537 #endif // FASTLOOKUP
538 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
539 HeapManager.FreeHeader * freeElem = &freeLists[posn];
[c1f38e6c]540 verify( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
541 verify( tsize <= freeElem->blockSize ); // search failure ?
[c4f68dc]542 tsize = freeElem->blockSize; // total space needed for request
543
544 // Spin until the lock is acquired for this particular size of block.
545
[9c438546]546 #if BUCKETLOCK == SPINLOCK
[bcb14b5]547 lock( freeElem->lock __cfaabi_dbg_ctx2 );
548 block = freeElem->freeList; // remove node from stack
[c4f68dc]549 #else
[9c438546]550 block = pop( freeElem->freeList );
551 #endif // BUCKETLOCK
[95eb7cf]552 if ( unlikely( block == 0p ) ) { // no free block ?
[9c438546]553 #if BUCKETLOCK == SPINLOCK
[c4f68dc]554 unlock( freeElem->lock );
[9c438546]555 #endif // BUCKETLOCK
[bcb14b5]556
[c4f68dc]557 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
558 // and then carve it off.
559
560 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call
[9c438546]561 #if BUCKETLOCK == SPINLOCK
[c4f68dc]562 } else {
563 freeElem->freeList = block->header.kind.real.next;
564 unlock( freeElem->lock );
[9c438546]565 #endif // BUCKETLOCK
[c4f68dc]566 } // if
567
568 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
[bcb14b5]569 } else { // large size => mmap
[1076d05]570 if ( unlikely( size > ULONG_MAX - pageSize ) ) return 0p;
[92aca37]571 tsize = ceiling2( tsize, pageSize ); // must be multiple of page size
[c4f68dc]572 #ifdef __STATISTICS__
[bcb14b5]573 __atomic_add_fetch( &mmap_calls, 1, __ATOMIC_SEQ_CST );
574 __atomic_add_fetch( &mmap_storage, tsize, __ATOMIC_SEQ_CST );
[c4f68dc]575 #endif // __STATISTICS__
[92aca37]576
[b4aa1ab]577 block = (HeapManager.Storage *)mmap( 0, tsize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
[92aca37]578 if ( block == (HeapManager.Storage *)MAP_FAILED ) { // failed ?
579 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize ); // no memory
[c4f68dc]580 // Do not call strerror( errno ) as it may call malloc.
[b4aa1ab]581 abort( "(HeapManager &)0x%p.doMalloc() : internal error, mmap failure, size:%zu errno:%d.", &heapManager, tsize, errno );
[92aca37]582 } //if
[bcb14b5]583 #ifdef __CFA_DEBUG__
[c4f68dc]584 // Set new memory to garbage so subsequent uninitialized usages might fail.
[e4b6b7d3]585 //memset( block, '\377', tsize );
586 Memset( block, tsize );
[bcb14b5]587 #endif // __CFA_DEBUG__
[c4f68dc]588 block->header.kind.real.blockSize = tsize; // storage size for munmap
[bcb14b5]589 } // if
[c4f68dc]590
[9c438546]591 block->header.kind.real.size = size; // store allocation size
[95eb7cf]592 void * addr = &(block->data); // adjust off header to user bytes
[c1f38e6c]593 verify( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[c4f68dc]594
595 #ifdef __CFA_DEBUG__
[c1f38e6c]596 __atomic_add_fetch( &allocUnfreed, tsize, __ATOMIC_SEQ_CST );
[bcb14b5]597 if ( traceHeap() ) {
598 enum { BufferSize = 64 };
599 char helpText[BufferSize];
[95eb7cf]600 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize );
601 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]602 } // if
[c4f68dc]603 #endif // __CFA_DEBUG__
604
[95eb7cf]605 return addr;
[c4f68dc]606} // doMalloc
607
608
[9c438546]609static inline void doFree( void * addr ) with( heapManager ) {
[c4f68dc]610 #ifdef __CFA_DEBUG__
[95eb7cf]611 if ( unlikely( heapManager.heapBegin == 0p ) ) {
[bcb14b5]612 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
613 } // if
[c4f68dc]614 #endif // __CFA_DEBUG__
615
[b6830d74]616 HeapManager.Storage.Header * header;
617 HeapManager.FreeHeader * freeElem;
618 size_t size, alignment; // not used (see realloc)
[c4f68dc]619
[b6830d74]620 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
[c4f68dc]621 #ifdef __STATISTICS__
[bcb14b5]622 __atomic_add_fetch( &munmap_calls, 1, __ATOMIC_SEQ_CST );
623 __atomic_add_fetch( &munmap_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]624 #endif // __STATISTICS__
625 if ( munmap( header, size ) == -1 ) {
626 #ifdef __CFA_DEBUG__
627 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
[bcb14b5]628 "Possible cause is invalid pointer.",
629 addr );
[c4f68dc]630 #endif // __CFA_DEBUG__
631 } // if
[bcb14b5]632 } else {
[c4f68dc]633 #ifdef __CFA_DEBUG__
[bcb14b5]634 // Set free memory to garbage so subsequent usages might fail.
[e4b6b7d3]635 //memset( ((HeapManager.Storage *)header)->data, '\377', freeElem->blockSize - sizeof( HeapManager.Storage ) );
636 Memset( ((HeapManager.Storage *)header)->data, freeElem->blockSize - sizeof( HeapManager.Storage ) );
[c4f68dc]637 #endif // __CFA_DEBUG__
638
639 #ifdef __STATISTICS__
[bcb14b5]640 free_storage += size;
[c4f68dc]641 #endif // __STATISTICS__
[9c438546]642 #if BUCKETLOCK == SPINLOCK
[bcb14b5]643 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
644 header->kind.real.next = freeElem->freeList; // push on stack
645 freeElem->freeList = (HeapManager.Storage *)header;
646 unlock( freeElem->lock ); // release spin lock
[c4f68dc]647 #else
[9c438546]648 push( freeElem->freeList, *(HeapManager.Storage *)header );
649 #endif // BUCKETLOCK
[bcb14b5]650 } // if
[c4f68dc]651
652 #ifdef __CFA_DEBUG__
[c1f38e6c]653 __atomic_add_fetch( &allocUnfreed, -size, __ATOMIC_SEQ_CST );
[bcb14b5]654 if ( traceHeap() ) {
[92aca37]655 char helpText[64];
[bcb14b5]656 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size );
[95eb7cf]657 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]658 } // if
[c4f68dc]659 #endif // __CFA_DEBUG__
660} // doFree
661
662
[9c438546]663size_t prtFree( HeapManager & manager ) with( manager ) {
[b6830d74]664 size_t total = 0;
[c4f68dc]665 #ifdef __STATISTICS__
[95eb7cf]666 __cfaabi_bits_acquire();
667 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]668 #endif // __STATISTICS__
[b6830d74]669 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
[d46ed6e]670 size_t size = freeLists[i].blockSize;
671 #ifdef __STATISTICS__
672 unsigned int N = 0;
673 #endif // __STATISTICS__
[b6830d74]674
[9c438546]675 #if BUCKETLOCK == SPINLOCK
[95eb7cf]676 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]677 #else
[b4aa1ab]678 for(;;) {
679// for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; p = (p)`next->top ) {
[7cfef0d]680// for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; /* p = getNext( p )->top */) {
[b4aa1ab]681// HeapManager.Storage * temp = p->header.kind.real.next.top; // FIX ME: direct assignent fails, initialization works`
[7cfef0d]682// typeof(p) temp = (( p )`next)->top; // FIX ME: direct assignent fails, initialization works`
683// p = temp;
[9c438546]684 #endif // BUCKETLOCK
[d46ed6e]685 total += size;
686 #ifdef __STATISTICS__
687 N += 1;
688 #endif // __STATISTICS__
[b6830d74]689 } // for
690
[d46ed6e]691 #ifdef __STATISTICS__
[95eb7cf]692 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
693 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]694 #endif // __STATISTICS__
695 } // for
696 #ifdef __STATISTICS__
[95eb7cf]697 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
698 __cfaabi_bits_release();
[d46ed6e]699 #endif // __STATISTICS__
700 return (char *)heapEnd - (char *)heapBegin - total;
[95eb7cf]701} // prtFree
702
703
[9c438546]704static void ?{}( HeapManager & manager ) with( manager ) {
[95eb7cf]705 pageSize = sysconf( _SC_PAGESIZE );
706
707 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
708 freeLists[i].blockSize = bucketSizes[i];
709 } // for
710
711 #ifdef FASTLOOKUP
712 unsigned int idx = 0;
713 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
714 if ( i > bucketSizes[idx] ) idx += 1;
715 lookup[i] = idx;
716 } // for
717 #endif // FASTLOOKUP
718
[1076d05]719 if ( ! setMmapStart( default_mmap_start() ) ) {
[95eb7cf]720 abort( "HeapManager : internal error, mmap start initialization failure." );
721 } // if
722 heapExpand = default_heap_expansion();
723
[1e034d9]724 char * end = (char *)sbrk( 0 );
[b4aa1ab]725 heapBegin = heapEnd = sbrk( (char *)ceiling2( (long unsigned int)end, pageSize ) - end ); // move start of heap to multiple of alignment
[95eb7cf]726} // HeapManager
727
728
729static void ^?{}( HeapManager & ) {
730 #ifdef __STATISTICS__
[baf608a]731 if ( traceHeapTerm() ) {
732 printStats();
[92aca37]733 // prtUnfreed() called in heapAppStop()
[baf608a]734 } // if
[95eb7cf]735 #endif // __STATISTICS__
736} // ~HeapManager
737
738
739static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
740void memory_startup( void ) {
741 #ifdef __CFA_DEBUG__
[92aca37]742 if ( heapBoot ) { // check for recursion during system boot
[95eb7cf]743 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
744 abort( "boot() : internal error, recursively invoked during system boot." );
745 } // if
746 heapBoot = true;
747 #endif // __CFA_DEBUG__
748
[c1f38e6c]749 //verify( heapManager.heapBegin != 0 );
[95eb7cf]750 //heapManager{};
[1076d05]751 if ( heapManager.heapBegin == 0p ) heapManager{}; // sanity check
[95eb7cf]752} // memory_startup
753
754static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
755void memory_shutdown( void ) {
756 ^heapManager{};
757} // memory_shutdown
[c4f68dc]758
[bcb14b5]759
760static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
[92aca37]761 verify( heapManager.heapBegin != 0p ); // called before memory_startup ?
[dd23e66]762 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[d5d3a90]763
[76e2113]764#if __SIZEOF_POINTER__ == 8
765 verify( size < ((typeof(size_t))1 << 48) );
766#endif // __SIZEOF_POINTER__ == 8
[d5d3a90]767 return doMalloc( size );
[bcb14b5]768} // mallocNoStats
[c4f68dc]769
770
[76e2113]771static inline void * callocNoStats( size_t dim, size_t elemSize ) {
772 size_t size = dim * elemSize;
[dd23e66]773 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[95eb7cf]774 char * addr = (char *)mallocNoStats( size );
775
776 HeapManager.Storage.Header * header;
777 HeapManager.FreeHeader * freeElem;
778 size_t bsize, alignment;
[d5d3a90]779 #ifndef __CFA_DEBUG__
780 bool mapped =
781 #endif // __CFA_DEBUG__
782 headers( "calloc", addr, header, freeElem, bsize, alignment );
[95eb7cf]783 #ifndef __CFA_DEBUG__
[dd23e66]784
[95eb7cf]785 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
786 if ( ! mapped )
787 #endif // __CFA_DEBUG__
[d5d3a90]788 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
[1e034d9]789 // `-header`-addr `-size
[d5d3a90]790 memset( addr, '\0', size ); // set to zeros
[95eb7cf]791
792 header->kind.real.blockSize |= 2; // mark as zero filled
793 return addr;
794} // callocNoStats
795
796
[92aca37]797static inline void * memalignNoStats( size_t alignment, size_t size ) {
[dd23e66]798 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[d5d3a90]799
[bcb14b5]800 #ifdef __CFA_DEBUG__
[b6830d74]801 checkAlign( alignment ); // check alignment
[bcb14b5]802 #endif // __CFA_DEBUG__
[c4f68dc]803
[b6830d74]804 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
[bcb14b5]805 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
[b6830d74]806
807 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
808 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
809 // .-------------v-----------------v----------------v----------,
810 // | Real Header | ... padding ... | Fake Header | data ... |
811 // `-------------^-----------------^-+--------------^----------'
812 // |<--------------------------------' offset/align |<-- alignment boundary
813
814 // subtract libAlign() because it is already the minimum alignment
815 // add sizeof(Storage) for fake header
[95eb7cf]816 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) );
[b6830d74]817
818 // address in the block of the "next" alignment address
[92aca37]819 char * user = (char *)ceiling2( (uintptr_t)(addr + sizeof(HeapManager.Storage)), alignment );
[b6830d74]820
821 // address of header from malloc
[95eb7cf]822 HeapManager.Storage.Header * realHeader = headerAddr( addr );
[4cf617e]823 realHeader->kind.real.size = size; // correct size to eliminate above alignment offset
[b6830d74]824 // address of fake header * before* the alignment location
825 HeapManager.Storage.Header * fakeHeader = headerAddr( user );
826 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
827 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
828 // SKULLDUGGERY: odd alignment imples fake header
829 fakeHeader->kind.fake.alignment = alignment | 1;
830
831 return user;
[bcb14b5]832} // memalignNoStats
[c4f68dc]833
834
[76e2113]835static inline void * cmemalignNoStats( size_t alignment, size_t dim, size_t elemSize ) {
836 size_t size = dim * elemSize;
[dd23e66]837 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[95eb7cf]838 char * addr = (char *)memalignNoStats( alignment, size );
[d5d3a90]839
[95eb7cf]840 HeapManager.Storage.Header * header;
841 HeapManager.FreeHeader * freeElem;
842 size_t bsize;
843 #ifndef __CFA_DEBUG__
[dd23e66]844 bool mapped =
845 #endif // __CFA_DEBUG__
846 headers( "cmemalign", addr, header, freeElem, bsize, alignment );
847
[95eb7cf]848 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
[92aca37]849 #ifndef __CFA_DEBUG__
[95eb7cf]850 if ( ! mapped )
851 #endif // __CFA_DEBUG__
[dd23e66]852 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
853 // `-header`-addr `-size
854 memset( addr, '\0', size ); // set to zeros
[95eb7cf]855
[cfbc703d]856 header->kind.real.blockSize |= 2; // mark as zero filled
[95eb7cf]857 return addr;
858} // cmemalignNoStats
859
860
[c4f68dc]861extern "C" {
[61248a4]862 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
863 // then malloc() returns a unique pointer value that can later be successfully passed to free().
[b6830d74]864 void * malloc( size_t size ) {
[c4f68dc]865 #ifdef __STATISTICS__
[bcb14b5]866 __atomic_add_fetch( &malloc_calls, 1, __ATOMIC_SEQ_CST );
867 __atomic_add_fetch( &malloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]868 #endif // __STATISTICS__
869
[bcb14b5]870 return mallocNoStats( size );
871 } // malloc
[c4f68dc]872
[76e2113]873
[61248a4]874 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[76e2113]875 void * aalloc( size_t dim, size_t elemSize ) {
[92aca37]876 size_t size = dim * elemSize;
[76e2113]877 #ifdef __STATISTICS__
878 __atomic_add_fetch( &aalloc_calls, 1, __ATOMIC_SEQ_CST );
[92aca37]879 __atomic_add_fetch( &aalloc_storage, size, __ATOMIC_SEQ_CST );
[76e2113]880 #endif // __STATISTICS__
881
[92aca37]882 return mallocNoStats( size );
[76e2113]883 } // aalloc
884
885
[61248a4]886 // Same as aalloc() with memory set to zero.
[76e2113]887 void * calloc( size_t dim, size_t elemSize ) {
[c4f68dc]888 #ifdef __STATISTICS__
[bcb14b5]889 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]890 __atomic_add_fetch( &calloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[c4f68dc]891 #endif // __STATISTICS__
892
[76e2113]893 return callocNoStats( dim, elemSize );
[bcb14b5]894 } // calloc
[c4f68dc]895
[92aca37]896
[61248a4]897 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
898 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
899 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
900 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[cfbc703d]901 void * resize( void * oaddr, size_t size ) {
902 #ifdef __STATISTICS__
903 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
904 #endif // __STATISTICS__
905
906 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]907 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[92aca37]908 if ( unlikely( oaddr == 0p ) ) {
909 #ifdef __STATISTICS__
910 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
911 #endif // __STATISTICS__
912 return mallocNoStats( size );
913 } // if
[cfbc703d]914
915 HeapManager.Storage.Header * header;
916 HeapManager.FreeHeader * freeElem;
[92aca37]917 size_t bsize, oalign;
[cfbc703d]918 headers( "resize", oaddr, header, freeElem, bsize, oalign );
[76e2113]919 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[92847f7]920
[cfbc703d]921 // same size, DO NOT preserve STICKY PROPERTIES.
[92847f7]922 if ( oalign == libAlign() && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[cfbc703d]923 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill
[d5d3a90]924 header->kind.real.size = size; // reset allocation size
[cfbc703d]925 return oaddr;
926 } // if
[0f89d4f]927
[92aca37]928 #ifdef __STATISTICS__
929 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
930 #endif // __STATISTICS__
931
[cfbc703d]932 // change size, DO NOT preserve STICKY PROPERTIES.
933 free( oaddr );
[d5d3a90]934 return mallocNoStats( size ); // create new area
[cfbc703d]935 } // resize
936
937
[61248a4]938 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]939 // the old and new sizes.
[95eb7cf]940 void * realloc( void * oaddr, size_t size ) {
[c4f68dc]941 #ifdef __STATISTICS__
[bcb14b5]942 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]943 #endif // __STATISTICS__
944
[1f6de372]945 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]946 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[92aca37]947 if ( unlikely( oaddr == 0p ) ) {
948 #ifdef __STATISTICS__
949 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
950 #endif // __STATISTICS__
951 return mallocNoStats( size );
952 } // if
[c4f68dc]953
954 HeapManager.Storage.Header * header;
955 HeapManager.FreeHeader * freeElem;
[92aca37]956 size_t bsize, oalign;
[95eb7cf]957 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
958
959 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[d5d3a90]960 size_t osize = header->kind.real.size; // old allocation size
[92847f7]961 bool ozfill = (header->kind.real.blockSize & 2); // old allocation zero filled
962 if ( unlikely( size <= odsize ) && odsize <= size * 2 ) { // allow up to 50% wasted storage
[d5d3a90]963 header->kind.real.size = size; // reset allocation size
964 if ( unlikely( ozfill ) && size > osize ) { // previous request zero fill and larger ?
[e4b6b7d3]965 memset( (char *)oaddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]966 } // if
[95eb7cf]967 return oaddr;
[c4f68dc]968 } // if
969
[92aca37]970 #ifdef __STATISTICS__
971 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
972 #endif // __STATISTICS__
973
[95eb7cf]974 // change size and copy old content to new storage
975
976 void * naddr;
[92847f7]977 if ( likely( oalign == libAlign() ) ) { // previous request not aligned ?
[d5d3a90]978 naddr = mallocNoStats( size ); // create new area
[c4f68dc]979 } else {
[d5d3a90]980 naddr = memalignNoStats( oalign, size ); // create new aligned area
[c4f68dc]981 } // if
[1e034d9]982
[95eb7cf]983 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[47dd0d2]984 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[95eb7cf]985 free( oaddr );
[d5d3a90]986
987 if ( unlikely( ozfill ) ) { // previous request zero fill ?
988 header->kind.real.blockSize |= 2; // mark new request as zero filled
989 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]990 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]991 } // if
992 } // if
[95eb7cf]993 return naddr;
[b6830d74]994 } // realloc
[c4f68dc]995
[c1f38e6c]996
[61248a4]997 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[bcb14b5]998 void * memalign( size_t alignment, size_t size ) {
[c4f68dc]999 #ifdef __STATISTICS__
1000 __atomic_add_fetch( &memalign_calls, 1, __ATOMIC_SEQ_CST );
1001 __atomic_add_fetch( &memalign_storage, size, __ATOMIC_SEQ_CST );
1002 #endif // __STATISTICS__
1003
[95eb7cf]1004 return memalignNoStats( alignment, size );
[bcb14b5]1005 } // memalign
[c4f68dc]1006
[95eb7cf]1007
[76e2113]1008 // Same as aalloc() with memory alignment.
1009 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) {
[92aca37]1010 size_t size = dim * elemSize;
[76e2113]1011 #ifdef __STATISTICS__
1012 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
[92aca37]1013 __atomic_add_fetch( &cmemalign_storage, size, __ATOMIC_SEQ_CST );
[76e2113]1014 #endif // __STATISTICS__
1015
[92aca37]1016 return memalignNoStats( alignment, size );
[76e2113]1017 } // amemalign
1018
1019
[ca7949b]1020 // Same as calloc() with memory alignment.
[76e2113]1021 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) {
[95eb7cf]1022 #ifdef __STATISTICS__
1023 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]1024 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[95eb7cf]1025 #endif // __STATISTICS__
1026
[76e2113]1027 return cmemalignNoStats( alignment, dim, elemSize );
[95eb7cf]1028 } // cmemalign
1029
[ca7949b]1030 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
1031 // of alignment. This requirement is universally ignored.
[b6830d74]1032 void * aligned_alloc( size_t alignment, size_t size ) {
[c4f68dc]1033 return memalign( alignment, size );
[b6830d74]1034 } // aligned_alloc
[c4f68dc]1035
1036
[ca7949b]1037 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1038 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1039 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1040 // free(3).
[b6830d74]1041 int posix_memalign( void ** memptr, size_t alignment, size_t size ) {
[92aca37]1042 if ( alignment < libAlign() || ! is_pow2( alignment ) ) return EINVAL; // check alignment
[c4f68dc]1043 * memptr = memalign( alignment, size );
1044 return 0;
[b6830d74]1045 } // posix_memalign
[c4f68dc]1046
[ca7949b]1047 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1048 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[b6830d74]1049 void * valloc( size_t size ) {
[c4f68dc]1050 return memalign( pageSize, size );
[b6830d74]1051 } // valloc
[c4f68dc]1052
1053
[ca7949b]1054 // Same as valloc but rounds size to multiple of page size.
1055 void * pvalloc( size_t size ) {
[92aca37]1056 return memalign( pageSize, ceiling2( size, pageSize ) );
[ca7949b]1057 } // pvalloc
1058
1059
1060 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1061 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1062 // 0p, no operation is performed.
[b6830d74]1063 void free( void * addr ) {
[c4f68dc]1064 #ifdef __STATISTICS__
[bcb14b5]1065 __atomic_add_fetch( &free_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]1066 #endif // __STATISTICS__
1067
[95eb7cf]1068 if ( unlikely( addr == 0p ) ) { // special case
1069 // #ifdef __CFA_DEBUG__
1070 // if ( traceHeap() ) {
1071 // #define nullmsg "Free( 0x0 ) size:0\n"
[1e034d9]1072 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
[95eb7cf]1073 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
1074 // } // if
1075 // #endif // __CFA_DEBUG__
[c4f68dc]1076 return;
1077 } // exit
1078
1079 doFree( addr );
[b6830d74]1080 } // free
[93c2e0a]1081
[c4f68dc]1082
[76e2113]1083 // Returns the alignment of an allocation.
[b6830d74]1084 size_t malloc_alignment( void * addr ) {
[95eb7cf]1085 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[1aa6ecb]1086 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1087 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1088 return header->kind.fake.alignment & -2; // remove flag from value
1089 } else {
[cfbc703d]1090 return libAlign(); // minimum alignment
[c4f68dc]1091 } // if
[bcb14b5]1092 } // malloc_alignment
[c4f68dc]1093
[92aca37]1094
[76e2113]1095 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment.
1096 size_t $malloc_alignment_set( void * addr, size_t alignment ) {
1097 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1098 size_t ret;
1099 HeapManager.Storage.Header * header = headerAddr( addr );
1100 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1101 ret = header->kind.fake.alignment & -2; // remove flag from old value
1102 header->kind.fake.alignment = alignment | 1; // add flag to new value
1103 } else {
1104 ret = 0; // => no alignment to change
1105 } // if
1106 return ret;
1107 } // $malloc_alignment_set
1108
[c4f68dc]1109
[76e2113]1110 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[b6830d74]1111 bool malloc_zero_fill( void * addr ) {
[95eb7cf]1112 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[1aa6ecb]1113 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1114 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
[cfbc703d]1115 header = realHeader( header ); // backup from fake to real header
[c4f68dc]1116 } // if
[76e2113]1117 return (header->kind.real.blockSize & 2) != 0; // zero filled ?
[bcb14b5]1118 } // malloc_zero_fill
[c4f68dc]1119
[76e2113]1120 // Set allocation is zero filled and return previous zero filled.
1121 bool $malloc_zero_fill_set( void * addr ) {
1122 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1123 HeapManager.Storage.Header * header = headerAddr( addr );
1124 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1125 header = realHeader( header ); // backup from fake to real header
1126 } // if
1127 bool ret = (header->kind.real.blockSize & 2) != 0; // zero filled ?
1128 header->kind.real.blockSize |= 2; // mark as zero filled
1129 return ret;
1130 } // $malloc_zero_fill_set
1131
[c4f68dc]1132
[76e2113]1133 // Returns original total allocation size (not bucket size) => array size is dimension * sizeif(T).
1134 size_t malloc_size( void * addr ) {
[849fb370]1135 if ( unlikely( addr == 0p ) ) return 0; // null allocation has zero size
[cfbc703d]1136 HeapManager.Storage.Header * header = headerAddr( addr );
1137 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1138 header = realHeader( header ); // backup from fake to real header
1139 } // if
[9c438546]1140 return header->kind.real.size;
[76e2113]1141 } // malloc_size
1142
1143 // Set allocation size and return previous size.
1144 size_t $malloc_size_set( void * addr, size_t size ) {
[849fb370]1145 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
[76e2113]1146 HeapManager.Storage.Header * header = headerAddr( addr );
1147 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1148 header = realHeader( header ); // backup from fake to real header
1149 } // if
[9c438546]1150 size_t ret = header->kind.real.size;
1151 header->kind.real.size = size;
[76e2113]1152 return ret;
1153 } // $malloc_size_set
[cfbc703d]1154
1155
[ca7949b]1156 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1157 // malloc or a related function.
[95eb7cf]1158 size_t malloc_usable_size( void * addr ) {
1159 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1160 HeapManager.Storage.Header * header;
1161 HeapManager.FreeHeader * freeElem;
1162 size_t bsize, alignment;
1163
1164 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
[dd23e66]1165 return dataStorage( bsize, addr, header ); // data storage in bucket
[95eb7cf]1166 } // malloc_usable_size
1167
1168
[ca7949b]1169 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[b6830d74]1170 void malloc_stats( void ) {
[c4f68dc]1171 #ifdef __STATISTICS__
[bcb14b5]1172 printStats();
[95eb7cf]1173 if ( prtFree() ) prtFree( heapManager );
[c4f68dc]1174 #endif // __STATISTICS__
[bcb14b5]1175 } // malloc_stats
[c4f68dc]1176
[92aca37]1177
[ca7949b]1178 // Changes the file descripter where malloc_stats() writes statistics.
[95eb7cf]1179 int malloc_stats_fd( int fd __attribute__(( unused )) ) {
[c4f68dc]1180 #ifdef __STATISTICS__
[92aca37]1181 int temp = stat_fd;
1182 stat_fd = fd;
[bcb14b5]1183 return temp;
[c4f68dc]1184 #else
[bcb14b5]1185 return -1;
[c4f68dc]1186 #endif // __STATISTICS__
[bcb14b5]1187 } // malloc_stats_fd
[c4f68dc]1188
[95eb7cf]1189
[1076d05]1190 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1191 // specifies the parameter to be modified, and value specifies the new value for that parameter.
[95eb7cf]1192 int mallopt( int option, int value ) {
1193 choose( option ) {
1194 case M_TOP_PAD:
[68d40b7]1195 heapExpand = ceiling2( value, pageSize ); return 1;
[95eb7cf]1196 case M_MMAP_THRESHOLD:
1197 if ( setMmapStart( value ) ) return 1;
[1076d05]1198 break;
[95eb7cf]1199 } // switch
1200 return 0; // error, unsupported
1201 } // mallopt
1202
[c1f38e6c]1203
[ca7949b]1204 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[95eb7cf]1205 int malloc_trim( size_t ) {
1206 return 0; // => impossible to release memory
1207 } // malloc_trim
1208
1209
[ca7949b]1210 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller.
1211 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1212 // malloc).
[c4f68dc]1213 int malloc_info( int options, FILE * stream ) {
[92aca37]1214 if ( options != 0 ) { errno = EINVAL; return -1; }
1215 #ifdef __STATISTICS__
[d46ed6e]1216 return printStatsXML( stream );
[92aca37]1217 #else
1218 return 0; // unsupported
1219 #endif // __STATISTICS__
[c4f68dc]1220 } // malloc_info
1221
1222
[ca7949b]1223 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1224 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1225 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1226 // result. (The caller must free this memory.)
[c4f68dc]1227 void * malloc_get_state( void ) {
[95eb7cf]1228 return 0p; // unsupported
[c4f68dc]1229 } // malloc_get_state
1230
[bcb14b5]1231
[ca7949b]1232 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1233 // structure pointed to by state.
[92aca37]1234 int malloc_set_state( void * ) {
[bcb14b5]1235 return 0; // unsupported
[c4f68dc]1236 } // malloc_set_state
1237} // extern "C"
1238
1239
[95eb7cf]1240// Must have CFA linkage to overload with C linkage realloc.
[cfbc703d]1241void * resize( void * oaddr, size_t nalign, size_t size ) {
[1e034d9]1242 #ifdef __STATISTICS__
[cfbc703d]1243 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
[1e034d9]1244 #endif // __STATISTICS__
[95eb7cf]1245
[c86f587]1246 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
1247 #ifdef __CFA_DEBUG__
1248 else
1249 checkAlign( nalign ); // check alignment
1250 #endif // __CFA_DEBUG__
1251
[1f6de372]1252 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]1253 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[92aca37]1254 if ( unlikely( oaddr == 0p ) ) {
1255 #ifdef __STATISTICS__
1256 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
1257 #endif // __STATISTICS__
1258 return memalignNoStats( nalign, size );
1259 } // if
[cfbc703d]1260
[92847f7]1261 // Attempt to reuse existing alignment.
[47dd0d2]1262 HeapManager.Storage.Header * header = headerAddr( oaddr );
[92847f7]1263 bool isFakeHeader = header->kind.fake.alignment & 1; // old fake header ?
1264 size_t oalign;
1265 if ( isFakeHeader ) {
1266 oalign = header->kind.fake.alignment & -2; // old alignment
1267 if ( (uintptr_t)oaddr % nalign == 0 // lucky match ?
1268 && ( oalign <= nalign // going down
1269 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
1270 ) {
1271 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1272 HeapManager.FreeHeader * freeElem;
1273 size_t bsize, oalign;
1274 headers( "resize", oaddr, header, freeElem, bsize, oalign );
1275 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[a3ade94]1276
[92847f7]1277 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted data storage
[03b87140]1278 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
[a3ade94]1279
[92847f7]1280 header->kind.real.blockSize &= -2; // turn off 0 fill
1281 header->kind.real.size = size; // reset allocation size
1282 return oaddr;
1283 } // if
[cfbc703d]1284 } // if
[92847f7]1285 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1286 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
[113d785]1287 return resize( oaddr, size ); // duplicate special case checks
[cfbc703d]1288 } // if
1289
[92aca37]1290 #ifdef __STATISTICS__
1291 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
1292 #endif // __STATISTICS__
1293
[dd23e66]1294 // change size, DO NOT preserve STICKY PROPERTIES.
[cfbc703d]1295 free( oaddr );
[dd23e66]1296 return memalignNoStats( nalign, size ); // create new aligned area
[cfbc703d]1297} // resize
1298
1299
1300void * realloc( void * oaddr, size_t nalign, size_t size ) {
[c1f38e6c]1301 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
[cfbc703d]1302 #ifdef __CFA_DEBUG__
1303 else
1304 checkAlign( nalign ); // check alignment
1305 #endif // __CFA_DEBUG__
1306
[c86f587]1307 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1308 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
1309 if ( unlikely( oaddr == 0p ) ) {
1310 #ifdef __STATISTICS__
1311 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
1312 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
1313 #endif // __STATISTICS__
1314 return memalignNoStats( nalign, size );
1315 } // if
1316
[92847f7]1317 // Attempt to reuse existing alignment.
1318 HeapManager.Storage.Header * header = headerAddr( oaddr );
1319 bool isFakeHeader = header->kind.fake.alignment & 1; // old fake header ?
1320 size_t oalign;
1321 if ( isFakeHeader ) {
1322 oalign = header->kind.fake.alignment & -2; // old alignment
1323 if ( (uintptr_t)oaddr % nalign == 0 // lucky match ?
1324 && ( oalign <= nalign // going down
1325 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
1326 ) {
[03b87140]1327 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
[92847f7]1328 return realloc( oaddr, size ); // duplicate alignment and special case checks
1329 } // if
1330 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1331 && nalign == libAlign() ) // new alignment also on libAlign => no fake header needed
1332 return realloc( oaddr, size ); // duplicate alignment and special case checks
[cfbc703d]1333
[1e034d9]1334 #ifdef __STATISTICS__
[cfbc703d]1335 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[95eb7cf]1336 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1337 #endif // __STATISTICS__
1338
[92847f7]1339 HeapManager.FreeHeader * freeElem;
1340 size_t bsize;
1341 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
1342
1343 // change size and copy old content to new storage
1344
[dd23e66]1345 size_t osize = header->kind.real.size; // old allocation size
[92847f7]1346 bool ozfill = (header->kind.real.blockSize & 2); // old allocation zero filled
[dd23e66]1347
1348 void * naddr = memalignNoStats( nalign, size ); // create new aligned area
[95eb7cf]1349
[1e034d9]1350 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[47dd0d2]1351 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[1e034d9]1352 free( oaddr );
[d5d3a90]1353
1354 if ( unlikely( ozfill ) ) { // previous request zero fill ?
1355 header->kind.real.blockSize |= 2; // mark new request as zero filled
1356 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]1357 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1358 } // if
1359 } // if
[1e034d9]1360 return naddr;
[95eb7cf]1361} // realloc
1362
1363
[c4f68dc]1364// Local Variables: //
1365// tab-width: 4 //
[f8cd310]1366// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1367// End: //
Note: See TracBrowser for help on using the repository browser.