source: libcfa/src/heap.cfa@ 5a96b36

ADT ast-experimental pthread-emulation qualifiedEnum
Last change on this file since 5a96b36 was 032234bd, checked in by Thierry Delisle <tdelisle@…>, 3 years ago

Visibility of the core libcfa files.

  • Property mode set to 100644
File size: 58.1 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
[92aca37]7// heap.cfa --
[73abe95]8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[433905a]12// Last Modified On : Fri Apr 29 19:05:03 2022
13// Update Count : 1167
[73abe95]14//
[c4f68dc]15
[1e034d9]16#include <string.h> // memset, memcpy
[1076d05]17#include <limits.h> // ULONG_MAX
[31a5f418]18#include <stdlib.h> // EXIT_FAILURE
19#include <errno.h> // errno, ENOMEM, EINVAL
20#include <unistd.h> // STDERR_FILENO, sbrk, sysconf
[ada0246d]21#include <malloc.h> // memalign, malloc_usable_size
[c4f68dc]22#include <sys/mman.h> // mmap, munmap
[31a5f418]23#include <sys/sysinfo.h> // get_nprocs
[c4f68dc]24
[92aca37]25#include "bits/align.hfa" // libAlign
[bcb14b5]26#include "bits/defs.hfa" // likely, unlikely
27#include "bits/locks.hfa" // __spinlock_t
[73abe95]28#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[58c671ba]29#include "math.hfa" // min
[7cfef0d]30#include "bitmanip.hfa" // is_pow2, ceiling2
[c4f68dc]31
[31a5f418]32#define FASTLOOKUP
33#define __STATISTICS__
34
35
[93c2e0a]36static bool traceHeap = false;
[d46ed6e]37
[032234bd]38inline bool traceHeap() libcfa_public { return traceHeap; }
[d46ed6e]39
[032234bd]40bool traceHeapOn() libcfa_public {
[93c2e0a]41 bool temp = traceHeap;
[d46ed6e]42 traceHeap = true;
43 return temp;
44} // traceHeapOn
45
[032234bd]46bool traceHeapOff() libcfa_public {
[93c2e0a]47 bool temp = traceHeap;
[d46ed6e]48 traceHeap = false;
49 return temp;
50} // traceHeapOff
51
[032234bd]52bool traceHeapTerm() libcfa_public { return false; }
[baf608a]53
[d46ed6e]54
[95eb7cf]55static bool prtFree = false;
[d46ed6e]56
[032234bd]57static bool prtFree() {
[95eb7cf]58 return prtFree;
59} // prtFree
[5d4fa18]60
[032234bd]61static bool prtFreeOn() {
[95eb7cf]62 bool temp = prtFree;
63 prtFree = true;
[5d4fa18]64 return temp;
[95eb7cf]65} // prtFreeOn
[5d4fa18]66
[032234bd]67static bool prtFreeOff() {
[95eb7cf]68 bool temp = prtFree;
69 prtFree = false;
[5d4fa18]70 return temp;
[95eb7cf]71} // prtFreeOff
[5d4fa18]72
73
[e723100]74enum {
[31a5f418]75 // The default extension heap amount in units of bytes. When the current heap reaches the brk address, the brk
76 // address is extended by the extension amount.
77 __CFA_DEFAULT_HEAP_EXPANSION__ = 10 * 1024 * 1024,
[1e034d9]78
[31a5f418]79 // The mmap crossover point during allocation. Allocations less than this amount are allocated from buckets; values
80 // greater than or equal to this value are mmap from the operating system.
81 __CFA_DEFAULT_MMAP_START__ = 512 * 1024 + 1,
[dd23e66]82
[31a5f418]83 // The default unfreed storage amount in units of bytes. When the uC++ program ends it subtracts this amount from
84 // the malloc/free counter to adjust for storage the program does not free.
85 __CFA_DEFAULT_HEAP_UNFREED__ = 0
86}; // enum
[e723100]87
88
[433905a]89//####################### Heap Statistics ####################
[d46ed6e]90
91
[433905a]92#ifdef __STATISTICS__
93enum { CntTriples = 12 }; // number of counter triples
94enum { MALLOC, AALLOC, CALLOC, MEMALIGN, AMEMALIGN, CMEMALIGN, RESIZE, REALLOC, FREE };
[bcb14b5]95
[433905a]96struct StatsOverlay { // overlay for iteration
97 unsigned int calls, calls_0;
98 unsigned long long int request, alloc;
99};
[d46ed6e]100
[433905a]101// Heap statistics counters.
102union HeapStatistics {
103 struct { // minimum qualification
104 unsigned int malloc_calls, malloc_0_calls;
105 unsigned long long int malloc_storage_request, malloc_storage_alloc;
106 unsigned int aalloc_calls, aalloc_0_calls;
107 unsigned long long int aalloc_storage_request, aalloc_storage_alloc;
108 unsigned int calloc_calls, calloc_0_calls;
109 unsigned long long int calloc_storage_request, calloc_storage_alloc;
110 unsigned int memalign_calls, memalign_0_calls;
111 unsigned long long int memalign_storage_request, memalign_storage_alloc;
112 unsigned int amemalign_calls, amemalign_0_calls;
113 unsigned long long int amemalign_storage_request, amemalign_storage_alloc;
114 unsigned int cmemalign_calls, cmemalign_0_calls;
115 unsigned long long int cmemalign_storage_request, cmemalign_storage_alloc;
116 unsigned int resize_calls, resize_0_calls;
117 unsigned long long int resize_storage_request, resize_storage_alloc;
118 unsigned int realloc_calls, realloc_0_calls;
119 unsigned long long int realloc_storage_request, realloc_storage_alloc;
120 unsigned int free_calls, free_null_calls;
121 unsigned long long int free_storage_request, free_storage_alloc;
122 unsigned int away_pulls, away_pushes;
123 unsigned long long int away_storage_request, away_storage_alloc;
124 unsigned int mmap_calls, mmap_0_calls; // no zero calls
125 unsigned long long int mmap_storage_request, mmap_storage_alloc;
126 unsigned int munmap_calls, munmap_0_calls; // no zero calls
127 unsigned long long int munmap_storage_request, munmap_storage_alloc;
128 };
129 struct StatsOverlay counters[CntTriples]; // overlay for iteration
130}; // HeapStatistics
[1e034d9]131
[433905a]132static_assert( sizeof(HeapStatistics) == CntTriples * sizeof(StatsOverlay),
133 "Heap statistics counter-triplets does not match with array size" );
134
135static void HeapStatisticsCtor( HeapStatistics & stats ) {
136 memset( &stats, '\0', sizeof(stats) ); // very fast
137 // for ( unsigned int i = 0; i < CntTriples; i += 1 ) {
138 // stats.counters[i].calls = stats.counters[i].calls_0 = stats.counters[i].request = stats.counters[i].alloc = 0;
139 // } // for
140} // HeapStatisticsCtor
141
142static HeapStatistics & ?+=?( HeapStatistics & lhs, const HeapStatistics & rhs ) {
143 for ( unsigned int i = 0; i < CntTriples; i += 1 ) {
144 lhs.counters[i].calls += rhs.counters[i].calls;
145 lhs.counters[i].calls_0 += rhs.counters[i].calls_0;
146 lhs.counters[i].request += rhs.counters[i].request;
147 lhs.counters[i].alloc += rhs.counters[i].alloc;
148 } // for
149 return lhs;
150} // ?+=?
151#endif // __STATISTICS__
[e723100]152
153
154#define SPINLOCK 0
155#define LOCKFREE 1
156#define BUCKETLOCK SPINLOCK
[9c438546]157#if BUCKETLOCK == SPINLOCK
158#elif BUCKETLOCK == LOCKFREE
159#include <stackLockFree.hfa>
160#else
161 #error undefined lock type for bucket lock
[e723100]162#endif // LOCKFREE
163
164// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
[31a5f418]165// Break recursion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]166enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]167
[31a5f418]168struct Heap {
[c4f68dc]169 struct Storage {
[bcb14b5]170 struct Header { // header
[c4f68dc]171 union Kind {
172 struct RealHeader {
173 union {
[bcb14b5]174 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[c4f68dc]175 union {
[31a5f418]176 // 2nd low-order bit => zero filled, 3rd low-order bit => mmapped
[9c438546]177 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
[c4f68dc]178 void * home; // allocated block points back to home locations (must overlay alignment)
179 size_t blockSize; // size for munmap (must overlay alignment)
[9c438546]180 #if BUCKETLOCK == SPINLOCK
[31a5f418]181 Storage * next; // freed block points to next freed block of same size
[c4f68dc]182 #endif // SPINLOCK
183 };
[9c438546]184 size_t size; // allocation size in bytes
[c4f68dc]185 };
[9c438546]186 #if BUCKETLOCK == LOCKFREE
187 Link(Storage) next; // freed block points next freed block of same size (double-wide)
[c4f68dc]188 #endif // LOCKFREE
189 };
[93c2e0a]190 } real; // RealHeader
[9c438546]191
[c4f68dc]192 struct FakeHeader {
[31a5f418]193 uintptr_t alignment; // 1st low-order bit => fake header & alignment
194 uintptr_t offset;
[93c2e0a]195 } fake; // FakeHeader
196 } kind; // Kind
[bcb14b5]197 } header; // Header
[31a5f418]198
[95eb7cf]199 char pad[libAlign() - sizeof( Header )];
[bcb14b5]200 char data[0]; // storage
[c4f68dc]201 }; // Storage
202
[31a5f418]203 static_assert( libAlign() >= sizeof( Storage ), "minimum alignment < sizeof( Storage )" );
[c4f68dc]204
205 struct FreeHeader {
[433905a]206 size_t blockSize __attribute__(( aligned (8) )); // size of allocations on this list
[9c438546]207 #if BUCKETLOCK == SPINLOCK
[433905a]208 __spinlock_t lock;
[bcb14b5]209 Storage * freeList;
[c4f68dc]210 #else
[9c438546]211 StackLF(Storage) freeList;
212 #endif // BUCKETLOCK
[433905a]213 } __attribute__(( aligned (8) )); // FreeHeader
[c4f68dc]214
215 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
216
[433905a]217 __spinlock_t extlock; // protects allocation-buffer extension
[c4f68dc]218 void * heapBegin; // start of heap
219 void * heapEnd; // logical end of heap
220 size_t heapRemaining; // amount of storage not allocated in the current chunk
[31a5f418]221}; // Heap
[c4f68dc]222
[9c438546]223#if BUCKETLOCK == LOCKFREE
[c45d2fa]224static inline {
[31a5f418]225 Link(Heap.Storage) * ?`next( Heap.Storage * this ) { return &this->header.kind.real.next; }
226 void ?{}( Heap.FreeHeader & ) {}
227 void ^?{}( Heap.FreeHeader & ) {}
[c45d2fa]228} // distribution
[9c438546]229#endif // LOCKFREE
230
[31a5f418]231static inline size_t getKey( const Heap.FreeHeader & freeheader ) { return freeheader.blockSize; }
[5d4fa18]232
[e723100]233
[31a5f418]234#ifdef FASTLOOKUP
235enum { LookupSizes = 65_536 + sizeof(Heap.Storage) }; // number of fast lookup sizes
236static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
237#endif // FASTLOOKUP
238
239static const off_t mmapFd = -1; // fake or actual fd for anonymous file
240#ifdef __CFA_DEBUG__
241static bool heapBoot = 0; // detect recursion during boot
242#endif // __CFA_DEBUG__
243
[5d4fa18]244
[c1f38e6c]245// Size of array must harmonize with NoBucketSizes and individual bucket sizes must be multiple of 16.
[d5d3a90]246// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
247// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
[e723100]248static const unsigned int bucketSizes[] @= { // different bucket sizes
[31a5f418]249 16 + sizeof(Heap.Storage), 32 + sizeof(Heap.Storage), 48 + sizeof(Heap.Storage), 64 + sizeof(Heap.Storage), // 4
250 96 + sizeof(Heap.Storage), 112 + sizeof(Heap.Storage), 128 + sizeof(Heap.Storage), // 3
251 160, 192, 224, 256 + sizeof(Heap.Storage), // 4
252 320, 384, 448, 512 + sizeof(Heap.Storage), // 4
253 640, 768, 896, 1_024 + sizeof(Heap.Storage), // 4
254 1_536, 2_048 + sizeof(Heap.Storage), // 2
255 2_560, 3_072, 3_584, 4_096 + sizeof(Heap.Storage), // 4
256 6_144, 8_192 + sizeof(Heap.Storage), // 2
257 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(Heap.Storage), // 8
258 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(Heap.Storage), // 8
259 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(Heap.Storage), // 8
260 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(Heap.Storage), // 8
261 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(Heap.Storage), // 8
262 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(Heap.Storage), // 8
263 655_360, 786_432, 917_504, 1_048_576 + sizeof(Heap.Storage), // 4
264 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(Heap.Storage), // 8
265 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(Heap.Storage), // 4
[5d4fa18]266};
[e723100]267
[c1f38e6c]268static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0] ), "size of bucket array wrong" );
[e723100]269
[9c438546]270// The constructor for heapManager is called explicitly in memory_startup.
[31a5f418]271static Heap heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
[5d4fa18]272
[c4f68dc]273
[19e5d65d]274//####################### Memory Allocation Routines Helpers ####################
275
276
[433905a]277#ifdef __CFA_DEBUG__
278static size_t allocUnfreed; // running total of allocations minus frees
[31a5f418]279
[433905a]280static void prtUnfreed() {
281 if ( allocUnfreed != 0 ) {
282 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
283 char helpText[512];
284 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
285 "CFA warning (UNIX pid:%ld) : program terminating with %zu(0x%zx) bytes of storage allocated but not freed.\n"
286 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
287 (long int)getpid(), allocUnfreed, allocUnfreed ); // always print the UNIX pid
288 } // if
289} // prtUnfreed
[31a5f418]290
[433905a]291extern int cfa_main_returned; // from interpose.cfa
292extern "C" {
293 void heapAppStart() { // called by __cfaabi_appready_startup
294 allocUnfreed = 0;
295 } // heapAppStart
[31a5f418]296
[433905a]297 void heapAppStop() { // called by __cfaabi_appready_startdown
298 fclose( stdin ); fclose( stdout );
299 if ( cfa_main_returned ) prtUnfreed(); // do not check unfreed storage if exit called
300 } // heapAppStop
301} // extern "C"
302#endif // __CFA_DEBUG__
[31a5f418]303
304
[433905a]305#ifdef __STATISTICS__
[31a5f418]306static HeapStatistics stats; // zero filled
[c1f38e6c]307static unsigned int sbrk_calls;
308static unsigned long long int sbrk_storage;
[95eb7cf]309// Statistics file descriptor (changed by malloc_stats_fd).
[709b812]310static int stats_fd = STDERR_FILENO; // default stderr
[c4f68dc]311
[31a5f418]312#define prtFmt \
313 "\nHeap statistics: (storage request / allocation)\n" \
314 " malloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
315 " aalloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
316 " calloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
317 " memalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
318 " amemalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
319 " cmemalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
320 " resize >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
321 " realloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
322 " free !null calls %'u; null calls %'u; storage %'llu / %'llu bytes\n" \
323 " sbrk calls %'u; storage %'llu bytes\n" \
324 " mmap calls %'u; storage %'llu / %'llu bytes\n" \
325 " munmap calls %'u; storage %'llu / %'llu bytes\n" \
326
[c4f68dc]327// Use "write" because streams may be shutdown when calls are made.
[19e5d65d]328static int printStats() { // see malloc_stats
[31a5f418]329 char helpText[sizeof(prtFmt) + 1024]; // space for message and values
[19e5d65d]330 return __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText), prtFmt,
[31a5f418]331 stats.malloc_calls, stats.malloc_0_calls, stats.malloc_storage_request, stats.malloc_storage_alloc,
332 stats.aalloc_calls, stats.aalloc_0_calls, stats.aalloc_storage_request, stats.aalloc_storage_alloc,
333 stats.calloc_calls, stats.calloc_0_calls, stats.calloc_storage_request, stats.calloc_storage_alloc,
334 stats.memalign_calls, stats.memalign_0_calls, stats.memalign_storage_request, stats.memalign_storage_alloc,
335 stats.amemalign_calls, stats.amemalign_0_calls, stats.amemalign_storage_request, stats.amemalign_storage_alloc,
336 stats.cmemalign_calls, stats.cmemalign_0_calls, stats.cmemalign_storage_request, stats.cmemalign_storage_alloc,
337 stats.resize_calls, stats.resize_0_calls, stats.resize_storage_request, stats.resize_storage_alloc,
338 stats.realloc_calls, stats.realloc_0_calls, stats.realloc_storage_request, stats.realloc_storage_alloc,
339 stats.free_calls, stats.free_null_calls, stats.free_storage_request, stats.free_storage_alloc,
340 sbrk_calls, sbrk_storage,
341 stats.mmap_calls, stats.mmap_storage_request, stats.mmap_storage_alloc,
342 stats.munmap_calls, stats.munmap_storage_request, stats.munmap_storage_alloc
[c4f68dc]343 );
[d46ed6e]344} // printStats
[c4f68dc]345
[31a5f418]346#define prtFmtXML \
347 "<malloc version=\"1\">\n" \
348 "<heap nr=\"0\">\n" \
349 "<sizes>\n" \
350 "</sizes>\n" \
351 "<total type=\"malloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
352 "<total type=\"aalloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
353 "<total type=\"calloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
354 "<total type=\"memalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
355 "<total type=\"amemalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
356 "<total type=\"cmemalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
357 "<total type=\"resize\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
358 "<total type=\"realloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
359 "<total type=\"free\" !null=\"%'u;\" 0 null=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
360 "<total type=\"sbrk\" count=\"%'u;\" size=\"%'llu\"/> bytes\n" \
361 "<total type=\"mmap\" count=\"%'u;\" size=\"%'llu / %'llu\" / > bytes\n" \
362 "<total type=\"munmap\" count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
363 "</malloc>"
364
[bcb14b5]365static int printStatsXML( FILE * stream ) { // see malloc_info
[31a5f418]366 char helpText[sizeof(prtFmtXML) + 1024]; // space for message and values
367 return __cfaabi_bits_print_buffer( fileno( stream ), helpText, sizeof(helpText), prtFmtXML,
368 stats.malloc_calls, stats.malloc_0_calls, stats.malloc_storage_request, stats.malloc_storage_alloc,
369 stats.aalloc_calls, stats.aalloc_0_calls, stats.aalloc_storage_request, stats.aalloc_storage_alloc,
370 stats.calloc_calls, stats.calloc_0_calls, stats.calloc_storage_request, stats.calloc_storage_alloc,
371 stats.memalign_calls, stats.memalign_0_calls, stats.memalign_storage_request, stats.memalign_storage_alloc,
372 stats.amemalign_calls, stats.amemalign_0_calls, stats.amemalign_storage_request, stats.amemalign_storage_alloc,
373 stats.cmemalign_calls, stats.cmemalign_0_calls, stats.cmemalign_storage_request, stats.cmemalign_storage_alloc,
374 stats.resize_calls, stats.resize_0_calls, stats.resize_storage_request, stats.resize_storage_alloc,
375 stats.realloc_calls, stats.realloc_0_calls, stats.realloc_storage_request, stats.realloc_storage_alloc,
376 stats.free_calls, stats.free_null_calls, stats.free_storage_request, stats.free_storage_alloc,
377 sbrk_calls, sbrk_storage,
378 stats.mmap_calls, stats.mmap_storage_request, stats.mmap_storage_alloc,
379 stats.munmap_calls, stats.munmap_storage_request, stats.munmap_storage_alloc
[c4f68dc]380 );
[d46ed6e]381} // printStatsXML
[c4f68dc]382#endif // __STATISTICS__
383
[95eb7cf]384
[433905a]385// statically allocated variables => zero filled.
386static size_t heapExpand; // sbrk advance
387static size_t mmapStart; // cross over point for mmap
388static unsigned int maxBucketsUsed; // maximum number of buckets in use
389// extern visibility, used by runtime kernel
[032234bd]390// would be cool to remove libcfa_public but it's needed for libcfathread
391libcfa_public size_t __page_size; // architecture pagesize
392libcfa_public int __map_prot; // common mmap/mprotect protection
[433905a]393
394
[1e034d9]395// thunk problem
396size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
397 size_t l = 0, m, h = dim;
398 while ( l < h ) {
399 m = (l + h) / 2;
400 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
401 l = m + 1;
402 } else {
403 h = m;
404 } // if
405 } // while
406 return l;
407} // Bsearchl
408
409
[95eb7cf]410static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
[ad2dced]411 if ( value < __page_size || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]412 mmapStart = value; // set global
413
414 // find the closest bucket size less than or equal to the mmapStart size
[1e034d9]415 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
[95eb7cf]416 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
417 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]418 return true;
[95eb7cf]419} // setMmapStart
420
421
[cfbc703d]422// <-------+----------------------------------------------------> bsize (bucket size)
423// |header |addr
424//==================================================================================
425// align/offset |
426// <-----------------<------------+-----------------------------> bsize (bucket size)
427// |fake-header | addr
[19e5d65d]428#define HeaderAddr( addr ) ((Heap.Storage.Header *)( (char *)addr - sizeof(Heap.Storage) ))
429#define RealHeader( header ) ((Heap.Storage.Header *)((char *)header - header->kind.fake.offset))
[cfbc703d]430
431// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
432// |header |addr
433//==================================================================================
434// align/offset |
435// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
436// |fake-header |addr
[19e5d65d]437#define DataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
[cfbc703d]438
439
440static inline void checkAlign( size_t alignment ) {
[19e5d65d]441 if ( unlikely( alignment < libAlign() || ! is_pow2( alignment ) ) ) {
442 abort( "**** Error **** alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
[cfbc703d]443 } // if
444} // checkAlign
445
446
[e3fea42]447static inline void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]448 if ( unlikely( check ) ) { // bad address ?
[19e5d65d]449 abort( "**** Error **** attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]450 "Possible cause is duplicate free on same block or overwriting of memory.",
451 name, addr );
[b6830d74]452 } // if
[c4f68dc]453} // checkHeader
454
[95eb7cf]455
[19e5d65d]456// Manipulate sticky bits stored in unused 3 low-order bits of an address.
457// bit0 => alignment => fake header
458// bit1 => zero filled (calloc)
459// bit2 => mapped allocation versus sbrk
460#define StickyBits( header ) (((header)->kind.real.blockSize & 0x7))
461#define ClearStickyBits( addr ) (typeof(addr))((uintptr_t)(addr) & ~7)
462#define MarkAlignmentBit( align ) ((align) | 1)
463#define AlignmentBit( header ) ((((header)->kind.fake.alignment) & 1))
464#define ClearAlignmentBit( header ) (((header)->kind.fake.alignment) & ~1)
465#define ZeroFillBit( header ) ((((header)->kind.real.blockSize) & 2))
466#define ClearZeroFillBit( header ) ((((header)->kind.real.blockSize) &= ~2))
467#define MarkZeroFilledBit( header ) ((header)->kind.real.blockSize |= 2)
468#define MmappedBit( header ) ((((header)->kind.real.blockSize) & 4))
469#define MarkMmappedBit( size ) ((size) | 4)
470
471
[31a5f418]472static inline void fakeHeader( Heap.Storage.Header *& header, size_t & alignment ) {
[19e5d65d]473 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
474 alignment = ClearAlignmentBit( header ); // clear flag from value
[c4f68dc]475 #ifdef __CFA_DEBUG__
476 checkAlign( alignment ); // check alignment
477 #endif // __CFA_DEBUG__
[19e5d65d]478 header = RealHeader( header ); // backup from fake to real header
[d5d3a90]479 } else {
[c1f38e6c]480 alignment = libAlign(); // => no fake header
[b6830d74]481 } // if
[c4f68dc]482} // fakeHeader
483
[95eb7cf]484
[19e5d65d]485static inline bool headers( const char name[] __attribute__(( unused )), void * addr, Heap.Storage.Header *& header,
486 Heap.FreeHeader *& freeHead, size_t & size, size_t & alignment ) with( heapManager ) {
487 header = HeaderAddr( addr );
[c4f68dc]488
489 #ifdef __CFA_DEBUG__
[31a5f418]490 checkHeader( header < (Heap.Storage.Header *)heapBegin, name, addr ); // bad low address ?
[c4f68dc]491 #endif // __CFA_DEBUG__
[b6830d74]492
[19e5d65d]493 if ( likely( ! StickyBits( header ) ) ) { // no sticky bits ?
494 freeHead = (Heap.FreeHeader *)(header->kind.real.home);
495 alignment = libAlign();
496 } else {
497 fakeHeader( header, alignment );
[433905a]498 if ( unlikely( MmappedBit( header ) ) ) { // mmapped ?
499 verify( addr < heapBegin || heapEnd < addr );
[19e5d65d]500 size = ClearStickyBits( header->kind.real.blockSize ); // mmap size
501 return true;
502 } // if
503
504 freeHead = (Heap.FreeHeader *)(ClearStickyBits( header->kind.real.home ));
505 } // if
506 size = freeHead->blockSize;
507
[c4f68dc]508 #ifdef __CFA_DEBUG__
[31a5f418]509 checkHeader( header < (Heap.Storage.Header *)heapBegin || (Heap.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]510
[433905a]511 Heap * homeManager;
512 if ( unlikely( freeHead == 0p || // freed and only free-list node => null link
513 // freed and link points at another free block not to a bucket in the bucket array.
514 freeHead < &freeLists[0] || &freeLists[NoBucketSizes] <= freeHead ) ) {
515 abort( "**** Error **** attempt to %s storage %p with corrupted header.\n"
516 "Possible cause is duplicate free on same block or overwriting of header information.",
517 name, addr );
518 } // if
[c4f68dc]519 #endif // __CFA_DEBUG__
[19e5d65d]520
[bcb14b5]521 return false;
[c4f68dc]522} // headers
523
[709b812]524// #ifdef __CFA_DEBUG__
525// #if __SIZEOF_POINTER__ == 4
526// #define MASK 0xdeadbeef
527// #else
528// #define MASK 0xdeadbeefdeadbeef
529// #endif
530// #define STRIDE size_t
[e4b6b7d3]531
[709b812]532// static void * Memset( void * addr, STRIDE size ) { // debug only
533// if ( size % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, size %zd not multiple of %zd.", size, sizeof(STRIDE) );
534// if ( (STRIDE)addr % sizeof(STRIDE) != 0 ) abort( "Memset() : internal error, addr %p not multiple of %zd.", addr, sizeof(STRIDE) );
[e4b6b7d3]535
[709b812]536// STRIDE * end = (STRIDE *)addr + size / sizeof(STRIDE);
537// for ( STRIDE * p = (STRIDE *)addr; p < end; p += 1 ) *p = MASK;
538// return addr;
539// } // Memset
540// #endif // __CFA_DEBUG__
[e4b6b7d3]541
[13fece5]542
[92aca37]543#define NO_MEMORY_MSG "insufficient heap memory available for allocating %zd new bytes."
[c4f68dc]544
[9c438546]545static inline void * extend( size_t size ) with( heapManager ) {
[b6830d74]546 lock( extlock __cfaabi_dbg_ctx2 );
[19e5d65d]547
[b6830d74]548 ptrdiff_t rem = heapRemaining - size;
[19e5d65d]549 if ( unlikely( rem < 0 ) ) {
[c4f68dc]550 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
551
[69ec0fb]552 size_t increase = ceiling2( size > heapExpand ? size : heapExpand, __page_size );
[ad2dced]553 // Do not call abort or strerror( errno ) as they may call malloc.
[92aca37]554 if ( sbrk( increase ) == (void *)-1 ) { // failed, no memory ?
[c4f68dc]555 unlock( extlock );
[ad2dced]556 __cfaabi_bits_print_nolock( STDERR_FILENO, NO_MEMORY_MSG, size );
[709b812]557 _exit( EXIT_FAILURE ); // give up
[92aca37]558 } // if
[19e5d65d]559
[709b812]560 // Make storage executable for thunks.
[69ec0fb]561 if ( mprotect( (char *)heapEnd + heapRemaining, increase, __map_prot ) ) {
562 unlock( extlock );
563 __cfaabi_bits_print_nolock( STDERR_FILENO, "extend() : internal error, mprotect failure, heapEnd:%p size:%zd, errno:%d.\n", heapEnd, increase, errno );
564 _exit( EXIT_FAILURE );
565 } // if
[19e5d65d]566
[bcb14b5]567 #ifdef __STATISTICS__
[c4f68dc]568 sbrk_calls += 1;
569 sbrk_storage += increase;
[bcb14b5]570 #endif // __STATISTICS__
[433905a]571
[bcb14b5]572 #ifdef __CFA_DEBUG__
[c4f68dc]573 // Set new memory to garbage so subsequent uninitialized usages might fail.
[13fece5]574 memset( (char *)heapEnd + heapRemaining, '\xde', increase );
[ad2dced]575 //Memset( (char *)heapEnd + heapRemaining, increase );
[bcb14b5]576 #endif // __CFA_DEBUG__
[433905a]577
[c4f68dc]578 rem = heapRemaining + increase - size;
[b6830d74]579 } // if
[c4f68dc]580
[31a5f418]581 Heap.Storage * block = (Heap.Storage *)heapEnd;
[b6830d74]582 heapRemaining = rem;
583 heapEnd = (char *)heapEnd + size;
584 unlock( extlock );
585 return block;
[c4f68dc]586} // extend
587
588
[9c438546]589static inline void * doMalloc( size_t size ) with( heapManager ) {
[31a5f418]590 Heap.Storage * block; // pointer to new block of storage
[c4f68dc]591
[b6830d74]592 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
593 // along with the block and is a multiple of the alignment size.
[69ec0fb]594
[31a5f418]595 size_t tsize = size + sizeof(Heap.Storage);
[19e5d65d]596
[b6830d74]597 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
[e723100]598 size_t posn;
599 #ifdef FASTLOOKUP
600 if ( tsize < LookupSizes ) posn = lookup[tsize];
601 else
602 #endif // FASTLOOKUP
603 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
[31a5f418]604 Heap.FreeHeader * freeElem = &freeLists[posn];
[c1f38e6c]605 verify( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
606 verify( tsize <= freeElem->blockSize ); // search failure ?
[c4f68dc]607 tsize = freeElem->blockSize; // total space needed for request
608
609 // Spin until the lock is acquired for this particular size of block.
610
[9c438546]611 #if BUCKETLOCK == SPINLOCK
[bcb14b5]612 lock( freeElem->lock __cfaabi_dbg_ctx2 );
613 block = freeElem->freeList; // remove node from stack
[c4f68dc]614 #else
[9c438546]615 block = pop( freeElem->freeList );
616 #endif // BUCKETLOCK
[95eb7cf]617 if ( unlikely( block == 0p ) ) { // no free block ?
[9c438546]618 #if BUCKETLOCK == SPINLOCK
[c4f68dc]619 unlock( freeElem->lock );
[9c438546]620 #endif // BUCKETLOCK
[bcb14b5]621
[c4f68dc]622 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
623 // and then carve it off.
624
[31a5f418]625 block = (Heap.Storage *)extend( tsize ); // mutual exclusion on call
[9c438546]626 #if BUCKETLOCK == SPINLOCK
[c4f68dc]627 } else {
628 freeElem->freeList = block->header.kind.real.next;
629 unlock( freeElem->lock );
[9c438546]630 #endif // BUCKETLOCK
[c4f68dc]631 } // if
632
633 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
[bcb14b5]634 } else { // large size => mmap
[ad2dced]635 if ( unlikely( size > ULONG_MAX - __page_size ) ) return 0p;
636 tsize = ceiling2( tsize, __page_size ); // must be multiple of page size
[c4f68dc]637 #ifdef __STATISTICS__
[31a5f418]638 __atomic_add_fetch( &stats.mmap_calls, 1, __ATOMIC_SEQ_CST );
639 __atomic_add_fetch( &stats.mmap_storage_request, size, __ATOMIC_SEQ_CST );
640 __atomic_add_fetch( &stats.mmap_storage_alloc, tsize, __ATOMIC_SEQ_CST );
[c4f68dc]641 #endif // __STATISTICS__
[92aca37]642
[31a5f418]643 block = (Heap.Storage *)mmap( 0, tsize, __map_prot, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
644 if ( block == (Heap.Storage *)MAP_FAILED ) { // failed ?
[92aca37]645 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize ); // no memory
[c4f68dc]646 // Do not call strerror( errno ) as it may call malloc.
[31a5f418]647 abort( "(Heap &)0x%p.doMalloc() : internal error, mmap failure, size:%zu errno:%d.", &heapManager, tsize, errno );
[92aca37]648 } //if
[bcb14b5]649 #ifdef __CFA_DEBUG__
[c4f68dc]650 // Set new memory to garbage so subsequent uninitialized usages might fail.
[13fece5]651 memset( block, '\xde', tsize );
[ad2dced]652 //Memset( block, tsize );
[bcb14b5]653 #endif // __CFA_DEBUG__
[19e5d65d]654 block->header.kind.real.blockSize = MarkMmappedBit( tsize ); // storage size for munmap
[bcb14b5]655 } // if
[c4f68dc]656
[9c438546]657 block->header.kind.real.size = size; // store allocation size
[95eb7cf]658 void * addr = &(block->data); // adjust off header to user bytes
[c1f38e6c]659 verify( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[c4f68dc]660
661 #ifdef __CFA_DEBUG__
[c1f38e6c]662 __atomic_add_fetch( &allocUnfreed, tsize, __ATOMIC_SEQ_CST );
[bcb14b5]663 if ( traceHeap() ) {
[433905a]664 char helpText[64];
665 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
666 "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize ); // print debug/nodebug
[bcb14b5]667 } // if
[c4f68dc]668 #endif // __CFA_DEBUG__
669
[95eb7cf]670 return addr;
[c4f68dc]671} // doMalloc
672
673
[9c438546]674static inline void doFree( void * addr ) with( heapManager ) {
[c4f68dc]675 #ifdef __CFA_DEBUG__
[95eb7cf]676 if ( unlikely( heapManager.heapBegin == 0p ) ) {
[bcb14b5]677 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
678 } // if
[c4f68dc]679 #endif // __CFA_DEBUG__
680
[31a5f418]681 Heap.Storage.Header * header;
682 Heap.FreeHeader * freeElem;
[b6830d74]683 size_t size, alignment; // not used (see realloc)
[c4f68dc]684
[b6830d74]685 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
[c4f68dc]686 #ifdef __STATISTICS__
[31a5f418]687 __atomic_add_fetch( &stats.munmap_calls, 1, __ATOMIC_SEQ_CST );
688 __atomic_add_fetch( &stats.munmap_storage_request, header->kind.real.size, __ATOMIC_SEQ_CST );
689 __atomic_add_fetch( &stats.munmap_storage_alloc, size, __ATOMIC_SEQ_CST );
[c4f68dc]690 #endif // __STATISTICS__
691 if ( munmap( header, size ) == -1 ) {
692 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
[bcb14b5]693 "Possible cause is invalid pointer.",
694 addr );
[c4f68dc]695 } // if
[bcb14b5]696 } else {
[c4f68dc]697 #ifdef __CFA_DEBUG__
[bcb14b5]698 // Set free memory to garbage so subsequent usages might fail.
[31a5f418]699 memset( ((Heap.Storage *)header)->data, '\xde', freeElem->blockSize - sizeof( Heap.Storage ) );
700 //Memset( ((Heap.Storage *)header)->data, freeElem->blockSize - sizeof( Heap.Storage ) );
[c4f68dc]701 #endif // __CFA_DEBUG__
702
703 #ifdef __STATISTICS__
[31a5f418]704 __atomic_add_fetch( &stats.free_calls, 1, __ATOMIC_SEQ_CST );
705 __atomic_add_fetch( &stats.free_storage_request, header->kind.real.size, __ATOMIC_SEQ_CST );
706 __atomic_add_fetch( &stats.free_storage_alloc, size, __ATOMIC_SEQ_CST );
[c4f68dc]707 #endif // __STATISTICS__
[b38b22f]708
[9c438546]709 #if BUCKETLOCK == SPINLOCK
[bcb14b5]710 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
711 header->kind.real.next = freeElem->freeList; // push on stack
[31a5f418]712 freeElem->freeList = (Heap.Storage *)header;
[bcb14b5]713 unlock( freeElem->lock ); // release spin lock
[c4f68dc]714 #else
[31a5f418]715 push( freeElem->freeList, *(Heap.Storage *)header );
[9c438546]716 #endif // BUCKETLOCK
[bcb14b5]717 } // if
[c4f68dc]718
719 #ifdef __CFA_DEBUG__
[c1f38e6c]720 __atomic_add_fetch( &allocUnfreed, -size, __ATOMIC_SEQ_CST );
[bcb14b5]721 if ( traceHeap() ) {
[92aca37]722 char helpText[64];
[433905a]723 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
724 "Free( %p ) size:%zu\n", addr, size ); // print debug/nodebug
[bcb14b5]725 } // if
[c4f68dc]726 #endif // __CFA_DEBUG__
727} // doFree
728
729
[032234bd]730static size_t prtFree( Heap & manager ) with( manager ) {
[b6830d74]731 size_t total = 0;
[c4f68dc]732 #ifdef __STATISTICS__
[95eb7cf]733 __cfaabi_bits_acquire();
734 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]735 #endif // __STATISTICS__
[b6830d74]736 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
[d46ed6e]737 size_t size = freeLists[i].blockSize;
738 #ifdef __STATISTICS__
739 unsigned int N = 0;
740 #endif // __STATISTICS__
[b6830d74]741
[9c438546]742 #if BUCKETLOCK == SPINLOCK
[31a5f418]743 for ( Heap.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]744 #else
[b4aa1ab]745 for(;;) {
[31a5f418]746// for ( Heap.Storage * p = top( freeLists[i].freeList ); p != 0p; p = (p)`next->top ) {
747// for ( Heap.Storage * p = top( freeLists[i].freeList ); p != 0p; /* p = getNext( p )->top */) {
748// Heap.Storage * temp = p->header.kind.real.next.top; // FIX ME: direct assignent fails, initialization works`
[7cfef0d]749// typeof(p) temp = (( p )`next)->top; // FIX ME: direct assignent fails, initialization works`
750// p = temp;
[9c438546]751 #endif // BUCKETLOCK
[d46ed6e]752 total += size;
753 #ifdef __STATISTICS__
754 N += 1;
755 #endif // __STATISTICS__
[b6830d74]756 } // for
757
[d46ed6e]758 #ifdef __STATISTICS__
[95eb7cf]759 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
760 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]761 #endif // __STATISTICS__
762 } // for
763 #ifdef __STATISTICS__
[95eb7cf]764 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
765 __cfaabi_bits_release();
[d46ed6e]766 #endif // __STATISTICS__
767 return (char *)heapEnd - (char *)heapBegin - total;
[95eb7cf]768} // prtFree
769
770
[31a5f418]771static void ?{}( Heap & manager ) with( manager ) {
[ad2dced]772 __page_size = sysconf( _SC_PAGESIZE );
773 __map_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
[95eb7cf]774
775 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
776 freeLists[i].blockSize = bucketSizes[i];
777 } // for
778
779 #ifdef FASTLOOKUP
780 unsigned int idx = 0;
781 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
782 if ( i > bucketSizes[idx] ) idx += 1;
783 lookup[i] = idx;
784 } // for
785 #endif // FASTLOOKUP
786
[31a5f418]787 if ( ! setMmapStart( malloc_mmap_start() ) ) {
788 abort( "Heap : internal error, mmap start initialization failure." );
[95eb7cf]789 } // if
[31a5f418]790 heapExpand = malloc_expansion();
[95eb7cf]791
[1e034d9]792 char * end = (char *)sbrk( 0 );
[ad2dced]793 heapBegin = heapEnd = sbrk( (char *)ceiling2( (long unsigned int)end, __page_size ) - end ); // move start of heap to multiple of alignment
[31a5f418]794} // Heap
[95eb7cf]795
796
[31a5f418]797static void ^?{}( Heap & ) {
[95eb7cf]798 #ifdef __STATISTICS__
[baf608a]799 if ( traceHeapTerm() ) {
800 printStats();
[92aca37]801 // prtUnfreed() called in heapAppStop()
[baf608a]802 } // if
[95eb7cf]803 #endif // __STATISTICS__
[31a5f418]804} // ~Heap
[95eb7cf]805
806
807static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
808void memory_startup( void ) {
809 #ifdef __CFA_DEBUG__
[92aca37]810 if ( heapBoot ) { // check for recursion during system boot
[95eb7cf]811 abort( "boot() : internal error, recursively invoked during system boot." );
812 } // if
813 heapBoot = true;
814 #endif // __CFA_DEBUG__
815
[c1f38e6c]816 //verify( heapManager.heapBegin != 0 );
[95eb7cf]817 //heapManager{};
[1076d05]818 if ( heapManager.heapBegin == 0p ) heapManager{}; // sanity check
[95eb7cf]819} // memory_startup
820
821static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
822void memory_shutdown( void ) {
823 ^heapManager{};
824} // memory_shutdown
[c4f68dc]825
[bcb14b5]826
827static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
[92aca37]828 verify( heapManager.heapBegin != 0p ); // called before memory_startup ?
[dd23e66]829 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[d5d3a90]830
[76e2113]831#if __SIZEOF_POINTER__ == 8
832 verify( size < ((typeof(size_t))1 << 48) );
833#endif // __SIZEOF_POINTER__ == 8
[d5d3a90]834 return doMalloc( size );
[bcb14b5]835} // mallocNoStats
[c4f68dc]836
837
[92aca37]838static inline void * memalignNoStats( size_t alignment, size_t size ) {
[dd23e66]839 if ( unlikely( size ) == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[d5d3a90]840
[bcb14b5]841 #ifdef __CFA_DEBUG__
[b6830d74]842 checkAlign( alignment ); // check alignment
[bcb14b5]843 #endif // __CFA_DEBUG__
[c4f68dc]844
[b6830d74]845 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
[bcb14b5]846 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
[b6830d74]847
848 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
849 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
850 // .-------------v-----------------v----------------v----------,
851 // | Real Header | ... padding ... | Fake Header | data ... |
852 // `-------------^-----------------^-+--------------^----------'
853 // |<--------------------------------' offset/align |<-- alignment boundary
854
855 // subtract libAlign() because it is already the minimum alignment
856 // add sizeof(Storage) for fake header
[31a5f418]857 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(Heap.Storage) );
[b6830d74]858
859 // address in the block of the "next" alignment address
[31a5f418]860 char * user = (char *)ceiling2( (uintptr_t)(addr + sizeof(Heap.Storage)), alignment );
[b6830d74]861
862 // address of header from malloc
[19e5d65d]863 Heap.Storage.Header * RealHeader = HeaderAddr( addr );
864 RealHeader->kind.real.size = size; // correct size to eliminate above alignment offset
[b6830d74]865 // address of fake header * before* the alignment location
[19e5d65d]866 Heap.Storage.Header * fakeHeader = HeaderAddr( user );
[b6830d74]867 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
[19e5d65d]868 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)RealHeader;
[69ec0fb]869 // SKULLDUGGERY: odd alignment implies fake header
[19e5d65d]870 fakeHeader->kind.fake.alignment = MarkAlignmentBit( alignment );
[b6830d74]871
872 return user;
[bcb14b5]873} // memalignNoStats
[c4f68dc]874
875
[19e5d65d]876//####################### Memory Allocation Routines ####################
877
878
[c4f68dc]879extern "C" {
[61248a4]880 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
881 // then malloc() returns a unique pointer value that can later be successfully passed to free().
[032234bd]882 void * malloc( size_t size ) libcfa_public {
[c4f68dc]883 #ifdef __STATISTICS__
[709b812]884 if ( likely( size > 0 ) ) {
[31a5f418]885 __atomic_add_fetch( &stats.malloc_calls, 1, __ATOMIC_SEQ_CST );
886 __atomic_add_fetch( &stats.malloc_storage_request, size, __ATOMIC_SEQ_CST );
[709b812]887 } else {
[31a5f418]888 __atomic_add_fetch( &stats.malloc_0_calls, 1, __ATOMIC_SEQ_CST );
[709b812]889 } // if
[c4f68dc]890 #endif // __STATISTICS__
891
[bcb14b5]892 return mallocNoStats( size );
893 } // malloc
[c4f68dc]894
[76e2113]895
[61248a4]896 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[032234bd]897 void * aalloc( size_t dim, size_t elemSize ) libcfa_public {
[92aca37]898 size_t size = dim * elemSize;
[76e2113]899 #ifdef __STATISTICS__
[709b812]900 if ( likely( size > 0 ) ) {
[31a5f418]901 __atomic_add_fetch( &stats.aalloc_calls, 1, __ATOMIC_SEQ_CST );
902 __atomic_add_fetch( &stats.aalloc_storage_request, size, __ATOMIC_SEQ_CST );
[709b812]903 } else {
[31a5f418]904 __atomic_add_fetch( &stats.aalloc_0_calls, 1, __ATOMIC_SEQ_CST );
[709b812]905 } // if
[76e2113]906 #endif // __STATISTICS__
907
[92aca37]908 return mallocNoStats( size );
[76e2113]909 } // aalloc
910
911
[61248a4]912 // Same as aalloc() with memory set to zero.
[032234bd]913 void * calloc( size_t dim, size_t elemSize ) libcfa_public {
[709b812]914 size_t size = dim * elemSize;
915 if ( unlikely( size ) == 0 ) { // 0 BYTE ALLOCATION RETURNS NULL POINTER
916 #ifdef __STATISTICS__
[31a5f418]917 __atomic_add_fetch( &stats.calloc_0_calls, 1, __ATOMIC_SEQ_CST );
[709b812]918 #endif // __STATISTICS__
919 return 0p;
920 } // if
[c4f68dc]921 #ifdef __STATISTICS__
[31a5f418]922 __atomic_add_fetch( &stats.calloc_calls, 1, __ATOMIC_SEQ_CST );
923 __atomic_add_fetch( &stats.calloc_storage_request, dim * elemSize, __ATOMIC_SEQ_CST );
[c4f68dc]924 #endif // __STATISTICS__
925
[709b812]926 char * addr = (char *)mallocNoStats( size );
927
[31a5f418]928 Heap.Storage.Header * header;
929 Heap.FreeHeader * freeElem;
[709b812]930 size_t bsize, alignment;
931
932 #ifndef __CFA_DEBUG__
933 bool mapped =
934 #endif // __CFA_DEBUG__
935 headers( "calloc", addr, header, freeElem, bsize, alignment );
936
937 #ifndef __CFA_DEBUG__
938 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
939 if ( ! mapped )
940 #endif // __CFA_DEBUG__
941 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
942 // `-header`-addr `-size
943 memset( addr, '\0', size ); // set to zeros
944
[19e5d65d]945 MarkZeroFilledBit( header ); // mark as zero fill
[709b812]946 return addr;
[bcb14b5]947 } // calloc
[c4f68dc]948
[92aca37]949
[61248a4]950 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
951 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
952 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
953 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[032234bd]954 void * resize( void * oaddr, size_t size ) libcfa_public {
[709b812]955 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
956 if ( unlikely( size == 0 ) ) { // special cases
957 #ifdef __STATISTICS__
[31a5f418]958 __atomic_add_fetch( &stats.resize_0_calls, 1, __ATOMIC_SEQ_CST );
[709b812]959 #endif // __STATISTICS__
960 free( oaddr );
961 return 0p;
962 } // if
[cfbc703d]963 #ifdef __STATISTICS__
[31a5f418]964 __atomic_add_fetch( &stats.resize_calls, 1, __ATOMIC_SEQ_CST );
[cfbc703d]965 #endif // __STATISTICS__
966
[92aca37]967 if ( unlikely( oaddr == 0p ) ) {
968 #ifdef __STATISTICS__
[31a5f418]969 __atomic_add_fetch( &stats.resize_storage_request, size, __ATOMIC_SEQ_CST );
[92aca37]970 #endif // __STATISTICS__
971 return mallocNoStats( size );
972 } // if
[cfbc703d]973
[31a5f418]974 Heap.Storage.Header * header;
975 Heap.FreeHeader * freeElem;
[92aca37]976 size_t bsize, oalign;
[cfbc703d]977 headers( "resize", oaddr, header, freeElem, bsize, oalign );
[92847f7]978
[19e5d65d]979 size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[cfbc703d]980 // same size, DO NOT preserve STICKY PROPERTIES.
[92847f7]981 if ( oalign == libAlign() && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[19e5d65d]982 ClearZeroFillBit( header ); // no alignment and turn off 0 fill
[d5d3a90]983 header->kind.real.size = size; // reset allocation size
[cfbc703d]984 return oaddr;
985 } // if
[0f89d4f]986
[92aca37]987 #ifdef __STATISTICS__
[31a5f418]988 __atomic_add_fetch( &stats.resize_storage_request, size, __ATOMIC_SEQ_CST );
[92aca37]989 #endif // __STATISTICS__
990
[cfbc703d]991 // change size, DO NOT preserve STICKY PROPERTIES.
992 free( oaddr );
[d5d3a90]993 return mallocNoStats( size ); // create new area
[cfbc703d]994 } // resize
995
996
[61248a4]997 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]998 // the old and new sizes.
[032234bd]999 void * realloc( void * oaddr, size_t size ) libcfa_public {
[709b812]1000 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1001 if ( unlikely( size == 0 ) ) { // special cases
1002 #ifdef __STATISTICS__
[31a5f418]1003 __atomic_add_fetch( &stats.realloc_0_calls, 1, __ATOMIC_SEQ_CST );
[709b812]1004 #endif // __STATISTICS__
1005 free( oaddr );
1006 return 0p;
1007 } // if
[c4f68dc]1008 #ifdef __STATISTICS__
[31a5f418]1009 __atomic_add_fetch( &stats.realloc_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]1010 #endif // __STATISTICS__
1011
[92aca37]1012 if ( unlikely( oaddr == 0p ) ) {
1013 #ifdef __STATISTICS__
[31a5f418]1014 __atomic_add_fetch( &stats.realloc_storage_request, size, __ATOMIC_SEQ_CST );
[92aca37]1015 #endif // __STATISTICS__
1016 return mallocNoStats( size );
1017 } // if
[c4f68dc]1018
[31a5f418]1019 Heap.Storage.Header * header;
1020 Heap.FreeHeader * freeElem;
[92aca37]1021 size_t bsize, oalign;
[95eb7cf]1022 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
1023
[19e5d65d]1024 size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[d5d3a90]1025 size_t osize = header->kind.real.size; // old allocation size
[19e5d65d]1026 bool ozfill = ZeroFillBit( header ); // old allocation zero filled
[92847f7]1027 if ( unlikely( size <= odsize ) && odsize <= size * 2 ) { // allow up to 50% wasted storage
[d5d3a90]1028 header->kind.real.size = size; // reset allocation size
1029 if ( unlikely( ozfill ) && size > osize ) { // previous request zero fill and larger ?
[e4b6b7d3]1030 memset( (char *)oaddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1031 } // if
[95eb7cf]1032 return oaddr;
[c4f68dc]1033 } // if
1034
[92aca37]1035 #ifdef __STATISTICS__
[31a5f418]1036 __atomic_add_fetch( &stats.realloc_storage_request, size, __ATOMIC_SEQ_CST );
[92aca37]1037 #endif // __STATISTICS__
1038
[95eb7cf]1039 // change size and copy old content to new storage
1040
1041 void * naddr;
[92847f7]1042 if ( likely( oalign == libAlign() ) ) { // previous request not aligned ?
[d5d3a90]1043 naddr = mallocNoStats( size ); // create new area
[c4f68dc]1044 } else {
[d5d3a90]1045 naddr = memalignNoStats( oalign, size ); // create new aligned area
[c4f68dc]1046 } // if
[1e034d9]1047
[95eb7cf]1048 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[47dd0d2]1049 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[95eb7cf]1050 free( oaddr );
[d5d3a90]1051
1052 if ( unlikely( ozfill ) ) { // previous request zero fill ?
[19e5d65d]1053 MarkZeroFilledBit( header ); // mark new request as zero filled
[d5d3a90]1054 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]1055 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1056 } // if
1057 } // if
[95eb7cf]1058 return naddr;
[b6830d74]1059 } // realloc
[c4f68dc]1060
[c1f38e6c]1061
[19e5d65d]1062 // Same as realloc() except the new allocation size is large enough for an array of nelem elements of size elsize.
[032234bd]1063 void * reallocarray( void * oaddr, size_t dim, size_t elemSize ) libcfa_public {
[19e5d65d]1064 return realloc( oaddr, dim * elemSize );
1065 } // reallocarray
1066
1067
[61248a4]1068 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[032234bd]1069 void * memalign( size_t alignment, size_t size ) libcfa_public {
[c4f68dc]1070 #ifdef __STATISTICS__
[709b812]1071 if ( likely( size > 0 ) ) {
[31a5f418]1072 __atomic_add_fetch( &stats.memalign_calls, 1, __ATOMIC_SEQ_CST );
1073 __atomic_add_fetch( &stats.memalign_storage_request, size, __ATOMIC_SEQ_CST );
[709b812]1074 } else {
[31a5f418]1075 __atomic_add_fetch( &stats.memalign_0_calls, 1, __ATOMIC_SEQ_CST );
[709b812]1076 } // if
[c4f68dc]1077 #endif // __STATISTICS__
1078
[95eb7cf]1079 return memalignNoStats( alignment, size );
[bcb14b5]1080 } // memalign
[c4f68dc]1081
[95eb7cf]1082
[76e2113]1083 // Same as aalloc() with memory alignment.
[032234bd]1084 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) libcfa_public {
[92aca37]1085 size_t size = dim * elemSize;
[76e2113]1086 #ifdef __STATISTICS__
[709b812]1087 if ( likely( size > 0 ) ) {
[31a5f418]1088 __atomic_add_fetch( &stats.cmemalign_calls, 1, __ATOMIC_SEQ_CST );
1089 __atomic_add_fetch( &stats.cmemalign_storage_request, size, __ATOMIC_SEQ_CST );
[709b812]1090 } else {
[31a5f418]1091 __atomic_add_fetch( &stats.cmemalign_0_calls, 1, __ATOMIC_SEQ_CST );
[709b812]1092 } // if
[76e2113]1093 #endif // __STATISTICS__
1094
[92aca37]1095 return memalignNoStats( alignment, size );
[76e2113]1096 } // amemalign
1097
1098
[ca7949b]1099 // Same as calloc() with memory alignment.
[032234bd]1100 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) libcfa_public {
[709b812]1101 size_t size = dim * elemSize;
1102 if ( unlikely( size ) == 0 ) { // 0 BYTE ALLOCATION RETURNS NULL POINTER
1103 #ifdef __STATISTICS__
[31a5f418]1104 __atomic_add_fetch( &stats.cmemalign_0_calls, 1, __ATOMIC_SEQ_CST );
[709b812]1105 #endif // __STATISTICS__
1106 return 0p;
1107 } // if
[95eb7cf]1108 #ifdef __STATISTICS__
[31a5f418]1109 __atomic_add_fetch( &stats.cmemalign_calls, 1, __ATOMIC_SEQ_CST );
1110 __atomic_add_fetch( &stats.cmemalign_storage_request, dim * elemSize, __ATOMIC_SEQ_CST );
[95eb7cf]1111 #endif // __STATISTICS__
1112
[709b812]1113 char * addr = (char *)memalignNoStats( alignment, size );
1114
[31a5f418]1115 Heap.Storage.Header * header;
1116 Heap.FreeHeader * freeElem;
[709b812]1117 size_t bsize;
1118
1119 #ifndef __CFA_DEBUG__
1120 bool mapped =
1121 #endif // __CFA_DEBUG__
1122 headers( "cmemalign", addr, header, freeElem, bsize, alignment );
1123
1124 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
1125 #ifndef __CFA_DEBUG__
1126 if ( ! mapped )
1127 #endif // __CFA_DEBUG__
1128 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1129 // `-header`-addr `-size
1130 memset( addr, '\0', size ); // set to zeros
1131
[19e5d65d]1132 MarkZeroFilledBit( header ); // mark as zero filled
[709b812]1133 return addr;
[95eb7cf]1134 } // cmemalign
1135
[13fece5]1136
[ca7949b]1137 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
[19e5d65d]1138 // of alignment. This requirement is universally ignored.
[032234bd]1139 void * aligned_alloc( size_t alignment, size_t size ) libcfa_public {
[c4f68dc]1140 return memalign( alignment, size );
[b6830d74]1141 } // aligned_alloc
[c4f68dc]1142
1143
[ca7949b]1144 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1145 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1146 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1147 // free(3).
[032234bd]1148 int posix_memalign( void ** memptr, size_t alignment, size_t size ) libcfa_public {
[69ec0fb]1149 if ( unlikely( alignment < libAlign() || ! is_pow2( alignment ) ) ) return EINVAL; // check alignment
[19e5d65d]1150 *memptr = memalign( alignment, size );
[c4f68dc]1151 return 0;
[b6830d74]1152 } // posix_memalign
[c4f68dc]1153
[13fece5]1154
[ca7949b]1155 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1156 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[032234bd]1157 void * valloc( size_t size ) libcfa_public {
[ad2dced]1158 return memalign( __page_size, size );
[b6830d74]1159 } // valloc
[c4f68dc]1160
1161
[ca7949b]1162 // Same as valloc but rounds size to multiple of page size.
[032234bd]1163 void * pvalloc( size_t size ) libcfa_public {
[19e5d65d]1164 return memalign( __page_size, ceiling2( size, __page_size ) ); // round size to multiple of page size
[ca7949b]1165 } // pvalloc
1166
1167
1168 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1169 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1170 // 0p, no operation is performed.
[032234bd]1171 void free( void * addr ) libcfa_public {
[95eb7cf]1172 if ( unlikely( addr == 0p ) ) { // special case
[709b812]1173 #ifdef __STATISTICS__
[31a5f418]1174 __atomic_add_fetch( &stats.free_null_calls, 1, __ATOMIC_SEQ_CST );
[709b812]1175 #endif // __STATISTICS__
1176
[95eb7cf]1177 // #ifdef __CFA_DEBUG__
1178 // if ( traceHeap() ) {
1179 // #define nullmsg "Free( 0x0 ) size:0\n"
[1e034d9]1180 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
[95eb7cf]1181 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
1182 // } // if
1183 // #endif // __CFA_DEBUG__
[c4f68dc]1184 return;
1185 } // exit
1186
1187 doFree( addr );
[b6830d74]1188 } // free
[93c2e0a]1189
[c4f68dc]1190
[76e2113]1191 // Returns the alignment of an allocation.
[032234bd]1192 size_t malloc_alignment( void * addr ) libcfa_public {
[95eb7cf]1193 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[19e5d65d]1194 Heap.Storage.Header * header = HeaderAddr( addr );
1195 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
1196 return ClearAlignmentBit( header ); // clear flag from value
[c4f68dc]1197 } else {
[cfbc703d]1198 return libAlign(); // minimum alignment
[c4f68dc]1199 } // if
[bcb14b5]1200 } // malloc_alignment
[c4f68dc]1201
[92aca37]1202
[76e2113]1203 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[032234bd]1204 bool malloc_zero_fill( void * addr ) libcfa_public {
[95eb7cf]1205 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[19e5d65d]1206 Heap.Storage.Header * header = HeaderAddr( addr );
1207 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
1208 header = RealHeader( header ); // backup from fake to real header
[c4f68dc]1209 } // if
[19e5d65d]1210 return ZeroFillBit( header ); // zero filled ?
[bcb14b5]1211 } // malloc_zero_fill
[c4f68dc]1212
[19e5d65d]1213
1214 // Returns original total allocation size (not bucket size) => array size is dimension * sizeof(T).
[032234bd]1215 size_t malloc_size( void * addr ) libcfa_public {
[849fb370]1216 if ( unlikely( addr == 0p ) ) return 0; // null allocation has zero size
[19e5d65d]1217 Heap.Storage.Header * header = HeaderAddr( addr );
1218 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
1219 header = RealHeader( header ); // backup from fake to real header
[cfbc703d]1220 } // if
[9c438546]1221 return header->kind.real.size;
[76e2113]1222 } // malloc_size
1223
[cfbc703d]1224
[ca7949b]1225 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1226 // malloc or a related function.
[032234bd]1227 size_t malloc_usable_size( void * addr ) libcfa_public {
[95eb7cf]1228 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
[31a5f418]1229 Heap.Storage.Header * header;
1230 Heap.FreeHeader * freeElem;
[95eb7cf]1231 size_t bsize, alignment;
1232
1233 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
[19e5d65d]1234 return DataStorage( bsize, addr, header ); // data storage in bucket
[95eb7cf]1235 } // malloc_usable_size
1236
1237
[ca7949b]1238 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[032234bd]1239 void malloc_stats( void ) libcfa_public {
[c4f68dc]1240 #ifdef __STATISTICS__
[bcb14b5]1241 printStats();
[95eb7cf]1242 if ( prtFree() ) prtFree( heapManager );
[c4f68dc]1243 #endif // __STATISTICS__
[bcb14b5]1244 } // malloc_stats
[c4f68dc]1245
[92aca37]1246
[19e5d65d]1247 // Changes the file descriptor where malloc_stats() writes statistics.
[032234bd]1248 int malloc_stats_fd( int fd __attribute__(( unused )) ) libcfa_public {
[c4f68dc]1249 #ifdef __STATISTICS__
[709b812]1250 int temp = stats_fd;
1251 stats_fd = fd;
[bcb14b5]1252 return temp;
[c4f68dc]1253 #else
[19e5d65d]1254 return -1; // unsupported
[c4f68dc]1255 #endif // __STATISTICS__
[bcb14b5]1256 } // malloc_stats_fd
[c4f68dc]1257
[95eb7cf]1258
[19e5d65d]1259 // Prints an XML string that describes the current state of the memory-allocation implementation in the caller.
1260 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1261 // malloc).
[032234bd]1262 int malloc_info( int options, FILE * stream __attribute__(( unused )) ) libcfa_public {
[19e5d65d]1263 if ( options != 0 ) { errno = EINVAL; return -1; }
1264 #ifdef __STATISTICS__
1265 return printStatsXML( stream );
1266 #else
1267 return 0; // unsupported
1268 #endif // __STATISTICS__
1269 } // malloc_info
1270
1271
[1076d05]1272 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1273 // specifies the parameter to be modified, and value specifies the new value for that parameter.
[032234bd]1274 int mallopt( int option, int value ) libcfa_public {
[19e5d65d]1275 if ( value < 0 ) return 0;
[95eb7cf]1276 choose( option ) {
1277 case M_TOP_PAD:
[19e5d65d]1278 heapExpand = ceiling2( value, __page_size );
1279 return 1;
[95eb7cf]1280 case M_MMAP_THRESHOLD:
1281 if ( setMmapStart( value ) ) return 1;
[19e5d65d]1282 } // choose
[95eb7cf]1283 return 0; // error, unsupported
1284 } // mallopt
1285
[c1f38e6c]1286
[ca7949b]1287 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[032234bd]1288 int malloc_trim( size_t ) libcfa_public {
[95eb7cf]1289 return 0; // => impossible to release memory
1290 } // malloc_trim
1291
1292
[ca7949b]1293 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1294 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1295 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1296 // result. (The caller must free this memory.)
[032234bd]1297 void * malloc_get_state( void ) libcfa_public {
[95eb7cf]1298 return 0p; // unsupported
[c4f68dc]1299 } // malloc_get_state
1300
[bcb14b5]1301
[ca7949b]1302 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1303 // structure pointed to by state.
[032234bd]1304 int malloc_set_state( void * ) libcfa_public {
[bcb14b5]1305 return 0; // unsupported
[c4f68dc]1306 } // malloc_set_state
[31a5f418]1307
[19e5d65d]1308
[31a5f418]1309 // Sets the amount (bytes) to extend the heap when there is insufficent free storage to service an allocation.
[032234bd]1310 __attribute__((weak)) size_t malloc_expansion() libcfa_public { return __CFA_DEFAULT_HEAP_EXPANSION__; }
[31a5f418]1311
1312 // Sets the crossover point between allocations occuring in the sbrk area or separately mmapped.
[032234bd]1313 __attribute__((weak)) size_t malloc_mmap_start() libcfa_public { return __CFA_DEFAULT_MMAP_START__; }
[31a5f418]1314
1315 // Amount subtracted to adjust for unfreed program storage (debug only).
[032234bd]1316 __attribute__((weak)) size_t malloc_unfreed() libcfa_public { return __CFA_DEFAULT_HEAP_UNFREED__; }
[c4f68dc]1317} // extern "C"
1318
1319
[95eb7cf]1320// Must have CFA linkage to overload with C linkage realloc.
[032234bd]1321void * resize( void * oaddr, size_t nalign, size_t size ) libcfa_public {
[709b812]1322 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1323 if ( unlikely( size == 0 ) ) { // special cases
1324 #ifdef __STATISTICS__
[31a5f418]1325 __atomic_add_fetch( &stats.resize_0_calls, 1, __ATOMIC_SEQ_CST );
[709b812]1326 #endif // __STATISTICS__
1327 free( oaddr );
1328 return 0p;
1329 } // if
[95eb7cf]1330
[c86f587]1331 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
1332 #ifdef __CFA_DEBUG__
[709b812]1333 else checkAlign( nalign ); // check alignment
[c86f587]1334 #endif // __CFA_DEBUG__
1335
[92aca37]1336 if ( unlikely( oaddr == 0p ) ) {
1337 #ifdef __STATISTICS__
[31a5f418]1338 __atomic_add_fetch( &stats.resize_calls, 1, __ATOMIC_SEQ_CST );
1339 __atomic_add_fetch( &stats.resize_storage_request, size, __ATOMIC_SEQ_CST );
[92aca37]1340 #endif // __STATISTICS__
1341 return memalignNoStats( nalign, size );
1342 } // if
[cfbc703d]1343
[92847f7]1344 // Attempt to reuse existing alignment.
[19e5d65d]1345 Heap.Storage.Header * header = HeaderAddr( oaddr );
1346 bool isFakeHeader = AlignmentBit( header ); // old fake header ?
[92847f7]1347 size_t oalign;
[19e5d65d]1348
1349 if ( unlikely( isFakeHeader ) ) {
1350 oalign = ClearAlignmentBit( header ); // old alignment
1351 if ( unlikely( (uintptr_t)oaddr % nalign == 0 // lucky match ?
[92847f7]1352 && ( oalign <= nalign // going down
1353 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
[19e5d65d]1354 ) ) {
1355 HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
[31a5f418]1356 Heap.FreeHeader * freeElem;
[92847f7]1357 size_t bsize, oalign;
1358 headers( "resize", oaddr, header, freeElem, bsize, oalign );
[19e5d65d]1359 size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[a3ade94]1360
[92847f7]1361 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted data storage
[19e5d65d]1362 HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
1363 ClearZeroFillBit( header ); // turn off 0 fill
[92847f7]1364 header->kind.real.size = size; // reset allocation size
1365 return oaddr;
1366 } // if
[cfbc703d]1367 } // if
[92847f7]1368 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1369 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
[113d785]1370 return resize( oaddr, size ); // duplicate special case checks
[cfbc703d]1371 } // if
1372
[92aca37]1373 #ifdef __STATISTICS__
[31a5f418]1374 __atomic_add_fetch( &stats.resize_storage_request, size, __ATOMIC_SEQ_CST );
[92aca37]1375 #endif // __STATISTICS__
1376
[dd23e66]1377 // change size, DO NOT preserve STICKY PROPERTIES.
[cfbc703d]1378 free( oaddr );
[dd23e66]1379 return memalignNoStats( nalign, size ); // create new aligned area
[cfbc703d]1380} // resize
1381
1382
[032234bd]1383void * realloc( void * oaddr, size_t nalign, size_t size ) libcfa_public {
[709b812]1384 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
1385 if ( unlikely( size == 0 ) ) { // special cases
1386 #ifdef __STATISTICS__
[31a5f418]1387 __atomic_add_fetch( &stats.realloc_0_calls, 1, __ATOMIC_SEQ_CST );
[709b812]1388 #endif // __STATISTICS__
1389 free( oaddr );
1390 return 0p;
1391 } // if
1392
[c1f38e6c]1393 if ( unlikely( nalign < libAlign() ) ) nalign = libAlign(); // reset alignment to minimum
[cfbc703d]1394 #ifdef __CFA_DEBUG__
[709b812]1395 else checkAlign( nalign ); // check alignment
[cfbc703d]1396 #endif // __CFA_DEBUG__
1397
[c86f587]1398 if ( unlikely( oaddr == 0p ) ) {
1399 #ifdef __STATISTICS__
[31a5f418]1400 __atomic_add_fetch( &stats.realloc_calls, 1, __ATOMIC_SEQ_CST );
1401 __atomic_add_fetch( &stats.realloc_storage_request, size, __ATOMIC_SEQ_CST );
[c86f587]1402 #endif // __STATISTICS__
1403 return memalignNoStats( nalign, size );
1404 } // if
1405
[92847f7]1406 // Attempt to reuse existing alignment.
[19e5d65d]1407 Heap.Storage.Header * header = HeaderAddr( oaddr );
1408 bool isFakeHeader = AlignmentBit( header ); // old fake header ?
[92847f7]1409 size_t oalign;
[19e5d65d]1410 if ( unlikely( isFakeHeader ) ) {
1411 oalign = ClearAlignmentBit( header ); // old alignment
1412 if ( unlikely( (uintptr_t)oaddr % nalign == 0 // lucky match ?
[92847f7]1413 && ( oalign <= nalign // going down
1414 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
[19e5d65d]1415 ) ) {
1416 HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
1417 return realloc( oaddr, size ); // duplicate special case checks
[92847f7]1418 } // if
1419 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
[19e5d65d]1420 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
1421 return realloc( oaddr, size ); // duplicate special case checks
1422 } // if
[cfbc703d]1423
[1e034d9]1424 #ifdef __STATISTICS__
[31a5f418]1425 __atomic_add_fetch( &stats.realloc_calls, 1, __ATOMIC_SEQ_CST );
1426 __atomic_add_fetch( &stats.realloc_storage_request, size, __ATOMIC_SEQ_CST );
[1e034d9]1427 #endif // __STATISTICS__
1428
[31a5f418]1429 Heap.FreeHeader * freeElem;
[92847f7]1430 size_t bsize;
1431 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
1432
1433 // change size and copy old content to new storage
1434
[dd23e66]1435 size_t osize = header->kind.real.size; // old allocation size
[19e5d65d]1436 bool ozfill = ZeroFillBit( header ); // old allocation zero filled
[dd23e66]1437
1438 void * naddr = memalignNoStats( nalign, size ); // create new aligned area
[95eb7cf]1439
[1e034d9]1440 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[47dd0d2]1441 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[1e034d9]1442 free( oaddr );
[d5d3a90]1443
1444 if ( unlikely( ozfill ) ) { // previous request zero fill ?
[19e5d65d]1445 MarkZeroFilledBit( header ); // mark new request as zero filled
[d5d3a90]1446 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]1447 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1448 } // if
1449 } // if
[1e034d9]1450 return naddr;
[95eb7cf]1451} // realloc
1452
1453
[c4f68dc]1454// Local Variables: //
1455// tab-width: 4 //
[f8cd310]1456// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1457// End: //
Note: See TracBrowser for help on using the repository browser.