source: libcfa/src/heap.cfa@ 31be464

Last change on this file since 31be464 was cfbfd31, checked in by Peter A. Buhr <pabuhr@…>, 2 months ago

add comment

  • Property mode set to 100644
File size: 69.4 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
[92aca37]7// heap.cfa --
[73abe95]8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[cfbfd31]12// Last Modified On : Thu May 15 16:47:35 2025
13// Update Count : 1647
[73abe95]14//
[c4f68dc]15
[116a2ea]16#include <stdio.h>
[1e034d9]17#include <string.h> // memset, memcpy
[1076d05]18#include <limits.h> // ULONG_MAX
[31a5f418]19#include <errno.h> // errno, ENOMEM, EINVAL
[8ee54963]20#include <unistd.h> // STDERR_FILENO, sbrk, sysconf, write
[c4f68dc]21#include <sys/mman.h> // mmap, munmap
[116a2ea]22extern "C" {
[31a5f418]23#include <sys/sysinfo.h> // get_nprocs
[116a2ea]24} // extern "C"
[c4f68dc]25
[8ee54963]26#include "heap.hfa"
[92aca37]27#include "bits/align.hfa" // libAlign
[bcb14b5]28#include "bits/defs.hfa" // likely, unlikely
[be10079]29#include "concurrency/kernel/fwd.hfa" // disable_interrupts, enable_interrupts
[73abe95]30#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[116a2ea]31#include "math.hfa" // ceiling, min
[7cfef0d]32#include "bitmanip.hfa" // is_pow2, ceiling2
[c4f68dc]33
[116a2ea]34// supported mallopt options
35#ifndef M_MMAP_THRESHOLD
36#define M_MMAP_THRESHOLD (-1)
37#endif // M_MMAP_THRESHOLD
38
39#ifndef M_TOP_PAD
40#define M_TOP_PAD (-2)
41#endif // M_TOP_PAD
42
43#define FASTLOOKUP // use O(1) table lookup from allocation size to bucket size
44#define OWNERSHIP // return freed memory to owner thread
[7a2057a]45#define RETURNSPIN // toggle spinlock / lockfree queue
46#if ! defined( OWNERSHIP ) && defined( RETURNSPIN )
47#warning "RETURNSPIN is ignored without OWNERSHIP; suggest commenting out RETURNSPIN"
48#endif // ! OWNERSHIP && RETURNSPIN
[116a2ea]49
50#define CACHE_ALIGN 64
51#define CALIGN __attribute__(( aligned(CACHE_ALIGN) ))
52
53#define TLSMODEL __attribute__(( tls_model("initial-exec") ))
54
[1e7a765]55#define __STATISTICS__
[116a2ea]56
57enum {
58 // The default extension heap amount in units of bytes. When the current heap reaches the brk address, the brk
59 // address is extended by the extension amount.
60 __CFA_DEFAULT_HEAP_EXPANSION__ = 10 * 1024 * 1024,
61
62 // The mmap crossover point during allocation. Allocations less than this amount are allocated from buckets; values
63 // greater than or equal to this value are mmap from the operating system.
64 __CFA_DEFAULT_MMAP_START__ = 512 * 1024 + 1,
65
66 // The default unfreed storage amount in units of bytes. When the uC++ program ends it subtracts this amount from
67 // the malloc/free counter to adjust for storage the program does not free.
68 __CFA_DEFAULT_HEAP_UNFREED__ = 0
69}; // enum
70
71
72//####################### Heap Trace/Print ####################
[31a5f418]73
74
[93c2e0a]75static bool traceHeap = false;
[d46ed6e]76
[032234bd]77inline bool traceHeap() libcfa_public { return traceHeap; }
[d46ed6e]78
[032234bd]79bool traceHeapOn() libcfa_public {
[93c2e0a]80 bool temp = traceHeap;
[d46ed6e]81 traceHeap = true;
82 return temp;
83} // traceHeapOn
84
[032234bd]85bool traceHeapOff() libcfa_public {
[93c2e0a]86 bool temp = traceHeap;
[d46ed6e]87 traceHeap = false;
88 return temp;
89} // traceHeapOff
90
[032234bd]91bool traceHeapTerm() libcfa_public { return false; }
[baf608a]92
[d46ed6e]93
[95eb7cf]94static bool prtFree = false;
[d46ed6e]95
[116a2ea]96bool prtFree() {
[95eb7cf]97 return prtFree;
98} // prtFree
[5d4fa18]99
[116a2ea]100bool prtFreeOn() {
[95eb7cf]101 bool temp = prtFree;
102 prtFree = true;
[5d4fa18]103 return temp;
[95eb7cf]104} // prtFreeOn
[5d4fa18]105
[116a2ea]106bool prtFreeOff() {
[95eb7cf]107 bool temp = prtFree;
108 prtFree = false;
[5d4fa18]109 return temp;
[95eb7cf]110} // prtFreeOff
[5d4fa18]111
112
[7a2057a]113//######################### Helpers #########################
114
115
[feb999f]116// CFA generic Bsearchl does not inline, so substitute with hand-coded binary-search.
[7a2057a]117inline __attribute__((always_inline))
118static size_t Bsearchl( unsigned int key, const unsigned int vals[], size_t dim ) {
119 size_t l = 0, m, h = dim;
120 while ( l < h ) {
121 m = (l + h) / 2;
122 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
123 l = m + 1;
124 } else {
125 h = m;
126 } // if
127 } // while
128 return l;
129} // Bsearchl
[1e034d9]130
[dd23e66]131
[116a2ea]132// pause to prevent excess processor bus usage
133#if defined( __i386 ) || defined( __x86_64 )
134 #define Pause() __asm__ __volatile__ ( "pause" : : : )
135#elif defined(__ARM_ARCH)
136 #define Pause() __asm__ __volatile__ ( "YIELD" : : : )
137#else
138 #error unsupported architecture
139#endif
140
[8ee54963]141typedef volatile uintptr_t SpinLock_t;
[116a2ea]142
143static inline __attribute__((always_inline)) void lock( volatile SpinLock_t & slock ) {
144 enum { SPIN_START = 4, SPIN_END = 64 * 1024, };
145 unsigned int spin = SPIN_START;
146
147 for ( unsigned int i = 1;; i += 1 ) {
[8ee54963]148 if ( slock == 0 && __atomic_test_and_set( &slock, __ATOMIC_ACQUIRE ) == 0 ) break; // Fence
[116a2ea]149 for ( volatile unsigned int s = 0; s < spin; s += 1 ) Pause(); // exponential spin
150 spin += spin; // powers of 2
151 //if ( i % 64 == 0 ) spin += spin; // slowly increase by powers of 2
152 if ( spin > SPIN_END ) spin = SPIN_END; // cap spinning
153 } // for
154} // spin_lock
155
156static inline __attribute__((always_inline)) void unlock( volatile SpinLock_t & slock ) {
[8ee54963]157 __atomic_clear( &slock, __ATOMIC_RELEASE ); // Fence
[116a2ea]158} // spin_unlock
[e723100]159
160
[433905a]161//####################### Heap Statistics ####################
[d46ed6e]162
163
[433905a]164#ifdef __STATISTICS__
165enum { CntTriples = 12 }; // number of counter triples
166enum { MALLOC, AALLOC, CALLOC, MEMALIGN, AMEMALIGN, CMEMALIGN, RESIZE, REALLOC, FREE };
[bcb14b5]167
[433905a]168struct StatsOverlay { // overlay for iteration
169 unsigned int calls, calls_0;
170 unsigned long long int request, alloc;
171};
[d46ed6e]172
[433905a]173// Heap statistics counters.
174union HeapStatistics {
175 struct { // minimum qualification
176 unsigned int malloc_calls, malloc_0_calls;
177 unsigned long long int malloc_storage_request, malloc_storage_alloc;
178 unsigned int aalloc_calls, aalloc_0_calls;
179 unsigned long long int aalloc_storage_request, aalloc_storage_alloc;
180 unsigned int calloc_calls, calloc_0_calls;
181 unsigned long long int calloc_storage_request, calloc_storage_alloc;
182 unsigned int memalign_calls, memalign_0_calls;
183 unsigned long long int memalign_storage_request, memalign_storage_alloc;
184 unsigned int amemalign_calls, amemalign_0_calls;
185 unsigned long long int amemalign_storage_request, amemalign_storage_alloc;
186 unsigned int cmemalign_calls, cmemalign_0_calls;
187 unsigned long long int cmemalign_storage_request, cmemalign_storage_alloc;
188 unsigned int resize_calls, resize_0_calls;
189 unsigned long long int resize_storage_request, resize_storage_alloc;
190 unsigned int realloc_calls, realloc_0_calls;
191 unsigned long long int realloc_storage_request, realloc_storage_alloc;
[feb999f]192 unsigned int free_calls, free_null_0_calls;
[433905a]193 unsigned long long int free_storage_request, free_storage_alloc;
[116a2ea]194 unsigned int return_pulls, return_pushes;
195 unsigned long long int return_storage_request, return_storage_alloc;
[433905a]196 unsigned int mmap_calls, mmap_0_calls; // no zero calls
197 unsigned long long int mmap_storage_request, mmap_storage_alloc;
198 unsigned int munmap_calls, munmap_0_calls; // no zero calls
199 unsigned long long int munmap_storage_request, munmap_storage_alloc;
200 };
201 struct StatsOverlay counters[CntTriples]; // overlay for iteration
202}; // HeapStatistics
[1e034d9]203
[433905a]204static_assert( sizeof(HeapStatistics) == CntTriples * sizeof(StatsOverlay),
[116a2ea]205 "Heap statistics counter-triplets does not match with array size" );
[433905a]206
207static void HeapStatisticsCtor( HeapStatistics & stats ) {
208 memset( &stats, '\0', sizeof(stats) ); // very fast
209 // for ( unsigned int i = 0; i < CntTriples; i += 1 ) {
210 // stats.counters[i].calls = stats.counters[i].calls_0 = stats.counters[i].request = stats.counters[i].alloc = 0;
211 // } // for
212} // HeapStatisticsCtor
213
214static HeapStatistics & ?+=?( HeapStatistics & lhs, const HeapStatistics & rhs ) {
215 for ( unsigned int i = 0; i < CntTriples; i += 1 ) {
216 lhs.counters[i].calls += rhs.counters[i].calls;
217 lhs.counters[i].calls_0 += rhs.counters[i].calls_0;
218 lhs.counters[i].request += rhs.counters[i].request;
219 lhs.counters[i].alloc += rhs.counters[i].alloc;
220 } // for
221 return lhs;
222} // ?+=?
223#endif // __STATISTICS__
[e723100]224
225
226// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
[31a5f418]227// Break recursion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]228enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]229
[31a5f418]230struct Heap {
[c4f68dc]231 struct Storage {
[bcb14b5]232 struct Header { // header
[c4f68dc]233 union Kind {
[feb999f]234 struct RealHeader { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[c4f68dc]235 union {
[feb999f]236 // 2nd low-order bit => zero filled, 3rd low-order bit => mmapped
237 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
238 void * home; // allocated block points back to home locations (must overlay alignment)
239 size_t blockSize; // size for munmap (must overlay alignment)
240 Storage * next; // freed block points to next freed block of same size
[c4f68dc]241 };
[feb999f]242 size_t size; // allocation size in bytes
[93c2e0a]243 } real; // RealHeader
[9c438546]244
[c4f68dc]245 struct FakeHeader {
[31a5f418]246 uintptr_t alignment; // 1st low-order bit => fake header & alignment
247 uintptr_t offset;
[93c2e0a]248 } fake; // FakeHeader
249 } kind; // Kind
[bcb14b5]250 } header; // Header
[31a5f418]251
[95eb7cf]252 char pad[libAlign() - sizeof( Header )];
[bcb14b5]253 char data[0]; // storage
[c4f68dc]254 }; // Storage
255
[31a5f418]256 static_assert( libAlign() >= sizeof( Storage ), "minimum alignment < sizeof( Storage )" );
[c4f68dc]257
[8ee54963]258 struct CALIGN FreeHeader {
[116a2ea]259 #ifdef OWNERSHIP
260 #ifdef RETURNSPIN
261 SpinLock_t returnLock;
262 #endif // RETURNSPIN
263 Storage * returnList; // other thread return list
264 #endif // OWNERSHIP
[7a2057a]265
[116a2ea]266 Storage * freeList; // thread free list
267 Heap * homeManager; // heap owner (free storage to bucket, from bucket to heap)
[feb999f]268 size_t blockSize; // size of allocations on this list
[116a2ea]269 }; // FreeHeader
[c4f68dc]270
271 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
[116a2ea]272 void * heapBuffer; // start of free storage in buffer
273 size_t heapReserve; // amount of remaining free storage in buffer
[c4f68dc]274
[116a2ea]275 #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
276 Heap * nextHeapManager; // intrusive link of existing heaps; traversed to collect statistics or check unfreed storage
277 #endif // __STATISTICS__ || __CFA_DEBUG__
278 Heap * nextFreeHeapManager; // intrusive link of free heaps from terminated threads; reused by new threads
279
280 #ifdef __CFA_DEBUG__
[8ee54963]281 ptrdiff_t allocUnfreed; // running total of allocations minus frees; can be negative
[116a2ea]282 #endif // __CFA_DEBUG__
283
284 #ifdef __STATISTICS__
285 HeapStatistics stats; // local statistic table for this heap
286 #endif // __STATISTICS__
[31a5f418]287}; // Heap
[c4f68dc]288
[116a2ea]289
290struct HeapMaster {
291 SpinLock_t extLock; // protects allocation-buffer extension
292 SpinLock_t mgrLock; // protects freeHeapManagersList, heapManagersList, heapManagersStorage, heapManagersStorageEnd
293
294 void * heapBegin; // start of heap
295 void * heapEnd; // logical end of heap
296 size_t heapRemaining; // amount of storage not allocated in the current chunk
297 size_t pageSize; // architecture pagesize
298 size_t heapExpand; // sbrk advance
299 size_t mmapStart; // cross over point for mmap
300 unsigned int maxBucketsUsed; // maximum number of buckets in use
301
302 Heap * heapManagersList; // heap-list head
303 Heap * freeHeapManagersList; // free-list head
304
305 // Heap superblocks are not linked; heaps in superblocks are linked via intrusive links.
306 Heap * heapManagersStorage; // next heap to use in heap superblock
307 Heap * heapManagersStorageEnd; // logical heap outside of superblock's end
308
309 #ifdef __STATISTICS__
310 HeapStatistics stats; // global stats for thread-local heaps to add there counters when exiting
311 unsigned long int threads_started, threads_exited; // counts threads that have started and exited
312 unsigned long int reused_heap, new_heap; // counts reusability of heaps
313 unsigned int sbrk_calls;
314 unsigned long long int sbrk_storage;
315 int stats_fd;
316 #endif // __STATISTICS__
317}; // HeapMaster
[5d4fa18]318
[e723100]319
[31a5f418]320#ifdef FASTLOOKUP
[116a2ea]321enum { LookupSizes = 65_536 + sizeof(Heap.Storage) }; // number of fast lookup sizes
[31a5f418]322static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
323#endif // FASTLOOKUP
324
[116a2ea]325static volatile bool heapMasterBootFlag = false; // trigger for first heap
326static HeapMaster heapMaster @= {}; // program global
327
328static void heapMasterCtor();
329static void heapMasterDtor();
330static Heap * getHeap();
[31a5f418]331
[5d4fa18]332
[c1f38e6c]333// Size of array must harmonize with NoBucketSizes and individual bucket sizes must be multiple of 16.
[d5d3a90]334// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
335// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
[e723100]336static const unsigned int bucketSizes[] @= { // different bucket sizes
[31a5f418]337 16 + sizeof(Heap.Storage), 32 + sizeof(Heap.Storage), 48 + sizeof(Heap.Storage), 64 + sizeof(Heap.Storage), // 4
338 96 + sizeof(Heap.Storage), 112 + sizeof(Heap.Storage), 128 + sizeof(Heap.Storage), // 3
339 160, 192, 224, 256 + sizeof(Heap.Storage), // 4
340 320, 384, 448, 512 + sizeof(Heap.Storage), // 4
341 640, 768, 896, 1_024 + sizeof(Heap.Storage), // 4
342 1_536, 2_048 + sizeof(Heap.Storage), // 2
343 2_560, 3_072, 3_584, 4_096 + sizeof(Heap.Storage), // 4
344 6_144, 8_192 + sizeof(Heap.Storage), // 2
345 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(Heap.Storage), // 8
346 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(Heap.Storage), // 8
347 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(Heap.Storage), // 8
348 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(Heap.Storage), // 8
349 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(Heap.Storage), // 8
350 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(Heap.Storage), // 8
351 655_360, 786_432, 917_504, 1_048_576 + sizeof(Heap.Storage), // 4
352 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(Heap.Storage), // 8
353 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(Heap.Storage), // 4
[5d4fa18]354};
[e723100]355
[df2e00f]356static_assert( sizeof(bucketSizes) == NoBucketSizes * sizeof(unsigned int), "size of bucket array wrong" );
[e723100]357
[5d4fa18]358
[116a2ea]359// extern visibility, used by runtime kernel
360libcfa_public size_t __page_size; // architecture pagesize
361libcfa_public int __map_prot; // common mmap/mprotect protection
[c4f68dc]362
[19e5d65d]363
[116a2ea]364// Thread-local storage is allocated lazily when the storage is accessed.
365static __thread size_t PAD1 CALIGN TLSMODEL __attribute__(( unused )); // protect false sharing
[8ee54963]366static __thread Heap * heapManager CALIGN TLSMODEL;
[feb999f]367static __thread bool heapManagerBootFlag CALIGN TLSMODEL = false;
[116a2ea]368static __thread size_t PAD2 CALIGN TLSMODEL __attribute__(( unused )); // protect further false sharing
[19e5d65d]369
[31a5f418]370
[116a2ea]371// declare helper functions for HeapMaster
372void noMemory(); // forward, called by "builtin_new" when malloc returns 0
373
374
375void heapMasterCtor() with( heapMaster ) {
376 // Singleton pattern to initialize heap master
377
378 verify( bucketSizes[0] == (16 + sizeof(Heap.Storage)) );
379
380 __page_size = sysconf( _SC_PAGESIZE );
381 __map_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
382
[7a2057a]383 extLock = 0;
384 mgrLock = 0;
[116a2ea]385
386 char * end = (char *)sbrk( 0 );
387 heapBegin = heapEnd = sbrk( (char *)ceiling2( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment
388 heapRemaining = 0;
389 heapExpand = malloc_expansion();
390 mmapStart = malloc_mmap_start();
391
392 // find the closest bucket size less than or equal to the mmapStart size
393 maxBucketsUsed = Bsearchl( mmapStart, bucketSizes, NoBucketSizes ); // binary search
394
395 verify( (mmapStart >= pageSize) && (bucketSizes[NoBucketSizes - 1] >= mmapStart) );
396 verify( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
397 verify( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
398
399 heapManagersList = 0p;
400 freeHeapManagersList = 0p;
401
402 heapManagersStorage = 0p;
403 heapManagersStorageEnd = 0p;
404
405 #ifdef __STATISTICS__
406 HeapStatisticsCtor( stats ); // clear statistic counters
407 threads_started = threads_exited = 0;
408 reused_heap = new_heap = 0;
409 sbrk_calls = sbrk_storage = 0;
410 stats_fd = STDERR_FILENO;
411 #endif // __STATISTICS__
412
413 #ifdef FASTLOOKUP
414 for ( unsigned int i = 0, idx = 0; i < LookupSizes; i += 1 ) {
415 if ( i > bucketSizes[idx] ) idx += 1;
416 lookup[i] = idx;
417 verify( i <= bucketSizes[idx] );
418 verify( (i <= 32 && idx == 0) || (i > bucketSizes[idx - 1]) );
419 } // for
420 #endif // FASTLOOKUP
421
422 heapMasterBootFlag = true;
423} // heapMasterCtor
424
425
[7671c6d]426#define NO_MEMORY_MSG "**** Error **** insufficient heap memory available to allocate %zd new bytes."
[116a2ea]427
428Heap * getHeap() with( heapMaster ) {
429 Heap * heap;
430 if ( freeHeapManagersList ) { // free heap for reused ?
431 heap = freeHeapManagersList;
432 freeHeapManagersList = heap->nextFreeHeapManager;
433
434 #ifdef __STATISTICS__
435 reused_heap += 1;
436 #endif // __STATISTICS__
437 } else { // free heap not found, create new
438 // Heap size is about 12K, FreeHeader (128 bytes because of cache alignment) * NoBucketSizes (91) => 128 heaps *
439 // 12K ~= 120K byte superblock. Where 128-heap superblock handles a medium sized multi-processor server.
440 size_t remaining = heapManagersStorageEnd - heapManagersStorage; // remaining free heaps in superblock
[8ee54963]441 if ( ! heapManagersStorage || remaining == 0 ) {
[116a2ea]442 // Each block of heaps is a multiple of the number of cores on the computer.
443 int HeapDim = get_nprocs(); // get_nprocs_conf does not work
444 size_t size = HeapDim * sizeof( Heap );
445
446 heapManagersStorage = (Heap *)mmap( 0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 );
447 if ( unlikely( heapManagersStorage == (Heap *)MAP_FAILED ) ) { // failed ?
448 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, size ); // no memory
449 // Do not call strerror( errno ) as it may call malloc.
[7671c6d]450 abort( "**** Error **** attempt to allocate block of heaps of size %zu bytes and mmap failed with errno %d.", size, errno );
[116a2ea]451 } // if
452 heapManagersStorageEnd = &heapManagersStorage[HeapDim]; // outside array
453 } // if
454
455 heap = heapManagersStorage;
456 heapManagersStorage = heapManagersStorage + 1; // bump next heap
457
458 #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
459 heap->nextHeapManager = heapManagersList;
460 #endif // __STATISTICS__ || __CFA_DEBUG__
461 heapManagersList = heap;
462
463 #ifdef __STATISTICS__
464 new_heap += 1;
465 #endif // __STATISTICS__
466
467 with( *heap ) {
468 for ( unsigned int j = 0; j < NoBucketSizes; j += 1 ) { // initialize free lists
469 #ifdef OWNERSHIP
470 #ifdef RETURNSPIN
[7a2057a]471 freeLists[j].returnLock = 0;
[116a2ea]472 freeLists[j].returnList = 0p;
[7a2057a]473 #endif // RETURNSPIN
[116a2ea]474 #endif // OWNERSHIP
[7a2057a]475
[116a2ea]476 freeLists[j].freeList = 0p;
477 freeLists[j].homeManager = heap;
478 freeLists[j].blockSize = bucketSizes[j];
479 } // for
[88ac843e]480
[116a2ea]481 heapBuffer = 0p;
482 heapReserve = 0;
483 nextFreeHeapManager = 0p;
484 #ifdef __CFA_DEBUG__
485 allocUnfreed = 0;
486 #endif // __CFA_DEBUG__
[07b59ec]487 heapManagerBootFlag = true;
[116a2ea]488 } // with
[433905a]489 } // if
[5951956]490
[116a2ea]491 return heap;
492} // getHeap
493
494
495void heapManagerCtor() libcfa_public {
496 if ( unlikely( ! heapMasterBootFlag ) ) heapMasterCtor();
497
[0bdfcc3]498 lock( heapMaster.mgrLock ); // protect heapMaster counters
[116a2ea]499
[07b59ec]500 assert( ! heapManagerBootFlag );
501
[116a2ea]502 // get storage for heap manager
503
504 heapManager = getHeap();
505
506 #ifdef __STATISTICS__
507 HeapStatisticsCtor( heapManager->stats ); // heap local
508 heapMaster.threads_started += 1;
509 #endif // __STATISTICS__
510
511 unlock( heapMaster.mgrLock );
512} // heapManagerCtor
513
514
515void heapManagerDtor() libcfa_public {
[07b59ec]516 if ( unlikely( ! heapManagerBootFlag ) ) return; // thread never used ?
517
[116a2ea]518 lock( heapMaster.mgrLock );
519
520 // place heap on list of free heaps for reusability
521 heapManager->nextFreeHeapManager = heapMaster.freeHeapManagersList;
522 heapMaster.freeHeapManagersList = heapManager;
523
524 #ifdef __STATISTICS__
[a47fe52]525 heapMaster.stats += heapManager->stats; // retain this heap's statistics
[116a2ea]526 heapMaster.threads_exited += 1;
527 #endif // __STATISTICS__
528
529 // Do not set heapManager to NULL because it is used after Cforall is shutdown but before the program shuts down.
530
[07b59ec]531 heapManagerBootFlag = false;
[116a2ea]532 unlock( heapMaster.mgrLock );
533} // heapManagerDtor
534
535
536//####################### Memory Allocation Routines Helpers ####################
537
[31a5f418]538
[433905a]539extern int cfa_main_returned; // from interpose.cfa
540extern "C" {
[07b59ec]541 void memory_startup( void ) { // singleton => called once at start of program
[116a2ea]542 if ( ! heapMasterBootFlag ) heapManagerCtor(); // sanity check
543 } // memory_startup
544
545 void memory_shutdown( void ) {
546 heapManagerDtor();
547 } // memory_shutdown
548
[433905a]549 void heapAppStart() { // called by __cfaabi_appready_startup
[116a2ea]550 verify( heapManager );
551 #ifdef __CFA_DEBUG__
552 heapManager->allocUnfreed = 0; // clear prior allocation counts
553 #endif // __CFA_DEBUG__
554
555 #ifdef __STATISTICS__
556 HeapStatisticsCtor( heapManager->stats ); // clear prior statistic counters
557 #endif // __STATISTICS__
[433905a]558 } // heapAppStart
[31a5f418]559
[433905a]560 void heapAppStop() { // called by __cfaabi_appready_startdown
[116a2ea]561 fclose( stdin ); fclose( stdout ); // free buffer storage
562 if ( ! cfa_main_returned ) return; // do not check unfreed storage if exit called
563
[a47fe52]564 #ifdef __STATISTICS__
565 if ( getenv( "CFA_MALLOC_STATS" ) ) { // check for external printing
566 malloc_stats();
567 } // if
568 #endif // __STATISTICS__
569
[116a2ea]570 #ifdef __CFA_DEBUG__
571 // allocUnfreed is set to 0 when a heap is created and it accumulates any unfreed storage during its multiple thread
572 // usages. At the end, add up each heap allocUnfreed value across all heaps to get the total unfreed storage.
[8ee54963]573 ptrdiff_t allocUnfreed = 0;
[116a2ea]574 for ( Heap * heap = heapMaster.heapManagersList; heap; heap = heap->nextHeapManager ) {
575 allocUnfreed += heap->allocUnfreed;
576 } // for
577
578 allocUnfreed -= malloc_unfreed(); // subtract any user specified unfreed storage
579 if ( allocUnfreed > 0 ) {
580 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
581 char helpText[512];
582 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[8ee54963]583 "CFA warning (UNIX pid:%ld) : program terminating with %td(%#tx) bytes of storage allocated but not freed.\n"
[4e09af2]584 "Possible cause is mismatched allocation/deallocation calls (malloc/free), direct constructor call without a direct destructor call, or system/library routines not freeing storage.\n",
[116a2ea]585 (long int)getpid(), allocUnfreed, allocUnfreed ); // always print the UNIX pid
586 } // if
587 #endif // __CFA_DEBUG__
[433905a]588 } // heapAppStop
589} // extern "C"
[31a5f418]590
591
[433905a]592#ifdef __STATISTICS__
[31a5f418]593#define prtFmt \
594 "\nHeap statistics: (storage request / allocation)\n" \
595 " malloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
596 " aalloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
597 " calloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
598 " memalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
599 " amemalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
600 " cmemalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
601 " resize >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
602 " realloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
[feb999f]603 " free !null calls %'u; null/0 calls %'u; storage %'llu / %'llu bytes\n" \
[116a2ea]604 " return pulls %'u; pushes %'u; storage %'llu / %'llu bytes\n" \
605 " sbrk calls %'u; storage %'llu bytes\n" \
606 " mmap calls %'u; storage %'llu / %'llu bytes\n" \
607 " munmap calls %'u; storage %'llu / %'llu bytes\n" \
608 " threads started %'lu; exited %'lu\n" \
609 " heaps new %'lu; reused %'lu\n"
[31a5f418]610
[c4f68dc]611// Use "write" because streams may be shutdown when calls are made.
[116a2ea]612static int printStats( HeapStatistics & stats ) with( heapMaster, stats ) { // see malloc_stats
[31a5f418]613 char helpText[sizeof(prtFmt) + 1024]; // space for message and values
[116a2ea]614 return __cfaabi_bits_print_buffer( stats_fd, helpText, sizeof(helpText), prtFmt,
615 malloc_calls, malloc_0_calls, malloc_storage_request, malloc_storage_alloc,
616 aalloc_calls, aalloc_0_calls, aalloc_storage_request, aalloc_storage_alloc,
617 calloc_calls, calloc_0_calls, calloc_storage_request, calloc_storage_alloc,
618 memalign_calls, memalign_0_calls, memalign_storage_request, memalign_storage_alloc,
619 amemalign_calls, amemalign_0_calls, amemalign_storage_request, amemalign_storage_alloc,
620 cmemalign_calls, cmemalign_0_calls, cmemalign_storage_request, cmemalign_storage_alloc,
621 resize_calls, resize_0_calls, resize_storage_request, resize_storage_alloc,
622 realloc_calls, realloc_0_calls, realloc_storage_request, realloc_storage_alloc,
[feb999f]623 free_calls, free_null_0_calls, free_storage_request, free_storage_alloc,
[116a2ea]624 return_pulls, return_pushes, return_storage_request, return_storage_alloc,
[31a5f418]625 sbrk_calls, sbrk_storage,
[116a2ea]626 mmap_calls, mmap_storage_request, mmap_storage_alloc,
627 munmap_calls, munmap_storage_request, munmap_storage_alloc,
628 threads_started, threads_exited,
629 new_heap, reused_heap
[c4f68dc]630 );
[d46ed6e]631} // printStats
[c4f68dc]632
[31a5f418]633#define prtFmtXML \
634 "<malloc version=\"1\">\n" \
635 "<heap nr=\"0\">\n" \
636 "<sizes>\n" \
637 "</sizes>\n" \
638 "<total type=\"malloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
639 "<total type=\"aalloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
640 "<total type=\"calloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
641 "<total type=\"memalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
642 "<total type=\"amemalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
643 "<total type=\"cmemalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
644 "<total type=\"resize\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
645 "<total type=\"realloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[feb999f]646 "<total type=\"free\" !null=\"%'u;\" 0 null/0=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[116a2ea]647 "<total type=\"return\" pulls=\"%'u;\" 0 pushes=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[31a5f418]648 "<total type=\"sbrk\" count=\"%'u;\" size=\"%'llu\"/> bytes\n" \
649 "<total type=\"mmap\" count=\"%'u;\" size=\"%'llu / %'llu\" / > bytes\n" \
650 "<total type=\"munmap\" count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[116a2ea]651 "<total type=\"threads\" started=\"%'lu;\" exited=\"%'lu\"/>\n" \
652 "<total type=\"heaps\" new=\"%'lu;\" reused=\"%'lu\"/>\n" \
[31a5f418]653 "</malloc>"
654
[116a2ea]655static int printStatsXML( HeapStatistics & stats, FILE * stream ) with( heapMaster, stats ) { // see malloc_info
[31a5f418]656 char helpText[sizeof(prtFmtXML) + 1024]; // space for message and values
657 return __cfaabi_bits_print_buffer( fileno( stream ), helpText, sizeof(helpText), prtFmtXML,
[116a2ea]658 malloc_calls, malloc_0_calls, malloc_storage_request, malloc_storage_alloc,
659 aalloc_calls, aalloc_0_calls, aalloc_storage_request, aalloc_storage_alloc,
660 calloc_calls, calloc_0_calls, calloc_storage_request, calloc_storage_alloc,
661 memalign_calls, memalign_0_calls, memalign_storage_request, memalign_storage_alloc,
662 amemalign_calls, amemalign_0_calls, amemalign_storage_request, amemalign_storage_alloc,
663 cmemalign_calls, cmemalign_0_calls, cmemalign_storage_request, cmemalign_storage_alloc,
664 resize_calls, resize_0_calls, resize_storage_request, resize_storage_alloc,
665 realloc_calls, realloc_0_calls, realloc_storage_request, realloc_storage_alloc,
[feb999f]666 free_calls, free_null_0_calls, free_storage_request, free_storage_alloc,
[116a2ea]667 return_pulls, return_pushes, return_storage_request, return_storage_alloc,
[31a5f418]668 sbrk_calls, sbrk_storage,
[116a2ea]669 mmap_calls, mmap_storage_request, mmap_storage_alloc,
670 munmap_calls, munmap_storage_request, munmap_storage_alloc,
671 threads_started, threads_exited,
672 new_heap, reused_heap
[c4f68dc]673 );
[d46ed6e]674} // printStatsXML
[95eb7cf]675
[116a2ea]676static HeapStatistics & collectStats( HeapStatistics & stats ) with( heapMaster ) {
[1e7a765]677 lock( heapMaster.mgrLock );
[433905a]678
[116a2ea]679 stats += heapMaster.stats;
680 for ( Heap * heap = heapManagersList; heap; heap = heap->nextHeapManager ) {
681 stats += heap->stats;
682 } // for
[433905a]683
[1e7a765]684 unlock( heapMaster.mgrLock );
[116a2ea]685 return stats;
686} // collectStats
[c58ead7]687
688static inline void clearStats() {
[1e7a765]689 lock( heapMaster.mgrLock );
[c58ead7]690
691 // Zero the heap master and all active thread heaps.
692 HeapStatisticsCtor( heapMaster.stats );
693 for ( Heap * heap = heapMaster.heapManagersList; heap; heap = heap->nextHeapManager ) {
694 HeapStatisticsCtor( heap->stats );
695 } // for
696
[1e7a765]697 unlock( heapMaster.mgrLock );
[c58ead7]698} // clearStats
[116a2ea]699#endif // __STATISTICS__
[1e034d9]700
701
[116a2ea]702static bool setMmapStart( size_t value ) with( heapMaster ) { // true => mmapped, false => sbrk
[ad2dced]703 if ( value < __page_size || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]704 mmapStart = value; // set global
705
706 // find the closest bucket size less than or equal to the mmapStart size
[116a2ea]707 maxBucketsUsed = Bsearchl( mmapStart, bucketSizes, NoBucketSizes ); // binary search
[7a2057a]708
[116a2ea]709 verify( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
710 verify( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]711 return true;
[95eb7cf]712} // setMmapStart
713
714
[cfbc703d]715// <-------+----------------------------------------------------> bsize (bucket size)
716// |header |addr
717//==================================================================================
718// align/offset |
719// <-----------------<------------+-----------------------------> bsize (bucket size)
720// |fake-header | addr
[19e5d65d]721#define HeaderAddr( addr ) ((Heap.Storage.Header *)( (char *)addr - sizeof(Heap.Storage) ))
722#define RealHeader( header ) ((Heap.Storage.Header *)((char *)header - header->kind.fake.offset))
[cfbc703d]723
724// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
725// |header |addr
726//==================================================================================
727// align/offset |
728// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
729// |fake-header |addr
[19e5d65d]730#define DataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
[cfbc703d]731
732
[116a2ea]733inline __attribute__((always_inline))
734static void checkAlign( size_t alignment ) {
[19e5d65d]735 if ( unlikely( alignment < libAlign() || ! is_pow2( alignment ) ) ) {
736 abort( "**** Error **** alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
[cfbc703d]737 } // if
738} // checkAlign
739
740
[116a2ea]741inline __attribute__((always_inline))
742static void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]743 if ( unlikely( check ) ) { // bad address ?
[19e5d65d]744 abort( "**** Error **** attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]745 "Possible cause is duplicate free on same block or overwriting of memory.",
746 name, addr );
[b6830d74]747 } // if
[c4f68dc]748} // checkHeader
749
[95eb7cf]750
[19e5d65d]751// Manipulate sticky bits stored in unused 3 low-order bits of an address.
752// bit0 => alignment => fake header
753// bit1 => zero filled (calloc)
754// bit2 => mapped allocation versus sbrk
755#define StickyBits( header ) (((header)->kind.real.blockSize & 0x7))
756#define ClearStickyBits( addr ) (typeof(addr))((uintptr_t)(addr) & ~7)
757#define MarkAlignmentBit( align ) ((align) | 1)
758#define AlignmentBit( header ) ((((header)->kind.fake.alignment) & 1))
759#define ClearAlignmentBit( header ) (((header)->kind.fake.alignment) & ~1)
760#define ZeroFillBit( header ) ((((header)->kind.real.blockSize) & 2))
761#define ClearZeroFillBit( header ) ((((header)->kind.real.blockSize) &= ~2))
762#define MarkZeroFilledBit( header ) ((header)->kind.real.blockSize |= 2)
763#define MmappedBit( header ) ((((header)->kind.real.blockSize) & 4))
764#define MarkMmappedBit( size ) ((size) | 4)
765
766
[116a2ea]767inline __attribute__((always_inline))
768static void fakeHeader( Heap.Storage.Header *& header, size_t & alignment ) {
[19e5d65d]769 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
770 alignment = ClearAlignmentBit( header ); // clear flag from value
[c4f68dc]771 #ifdef __CFA_DEBUG__
772 checkAlign( alignment ); // check alignment
773 #endif // __CFA_DEBUG__
[19e5d65d]774 header = RealHeader( header ); // backup from fake to real header
[d5d3a90]775 } else {
[c1f38e6c]776 alignment = libAlign(); // => no fake header
[b6830d74]777 } // if
[c4f68dc]778} // fakeHeader
779
[95eb7cf]780
[116a2ea]781inline __attribute__((always_inline))
782static bool headers( const char name[] __attribute__(( unused )), void * addr, Heap.Storage.Header *& header,
783 Heap.FreeHeader *& freeHead, size_t & size, size_t & alignment ) with( heapMaster, *heapManager ) {
[19e5d65d]784 header = HeaderAddr( addr );
[c4f68dc]785
786 #ifdef __CFA_DEBUG__
[31a5f418]787 checkHeader( header < (Heap.Storage.Header *)heapBegin, name, addr ); // bad low address ?
[c4f68dc]788 #endif // __CFA_DEBUG__
[b6830d74]789
[19e5d65d]790 if ( likely( ! StickyBits( header ) ) ) { // no sticky bits ?
791 freeHead = (Heap.FreeHeader *)(header->kind.real.home);
792 alignment = libAlign();
793 } else {
794 fakeHeader( header, alignment );
[feb999f]795 if ( unlikely( MmappedBit( header ) ) ) { // mmapped storage ?
[433905a]796 verify( addr < heapBegin || heapEnd < addr );
[19e5d65d]797 size = ClearStickyBits( header->kind.real.blockSize ); // mmap size
[feb999f]798 freeHead = 0p; // prevent uninitialized warning
[19e5d65d]799 return true;
800 } // if
801
802 freeHead = (Heap.FreeHeader *)(ClearStickyBits( header->kind.real.home ));
803 } // if
804 size = freeHead->blockSize;
805
[c4f68dc]806 #ifdef __CFA_DEBUG__
[31a5f418]807 checkHeader( header < (Heap.Storage.Header *)heapBegin || (Heap.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]808
[116a2ea]809 Heap * homeManager;
[433905a]810 if ( unlikely( freeHead == 0p || // freed and only free-list node => null link
811 // freed and link points at another free block not to a bucket in the bucket array.
[116a2ea]812 (homeManager = freeHead->homeManager, freeHead < &homeManager->freeLists[0] ||
813 &homeManager->freeLists[NoBucketSizes] <= freeHead ) ) ) {
[433905a]814 abort( "**** Error **** attempt to %s storage %p with corrupted header.\n"
815 "Possible cause is duplicate free on same block or overwriting of header information.",
816 name, addr );
817 } // if
[c4f68dc]818 #endif // __CFA_DEBUG__
[19e5d65d]819
[bcb14b5]820 return false;
[c4f68dc]821} // headers
822
823
[116a2ea]824static void * master_extend( size_t size ) with( heapMaster ) {
825 lock( extLock );
[19e5d65d]826
[b6830d74]827 ptrdiff_t rem = heapRemaining - size;
[a7662b8]828 if ( unlikely( rem < 0 ) ) { // negative ?
[c4f68dc]829 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
830
[116a2ea]831 size_t increase = ceiling2( size > heapExpand ? size : heapExpand, libAlign() );
832 if ( unlikely( sbrk( increase ) == (void *)-1 ) ) { // failed, no memory ?
833 unlock( extLock );
[0bdfcc3]834 abort( NO_MEMORY_MSG, size ); // give up
[92aca37]835 } // if
[7671c6d]836
837 // Make storage executable for thunks.
838 if ( mprotect( (char *)heapEnd + heapRemaining, increase, __map_prot ) ) {
839 unlock( extLock );
840 abort( "**** Error **** attempt to make heap storage executable for thunks and mprotect failed with errno %d.", errno );
841 } // if
842
[116a2ea]843 rem = heapRemaining + increase - size;
[19e5d65d]844
[bcb14b5]845 #ifdef __STATISTICS__
[c4f68dc]846 sbrk_calls += 1;
847 sbrk_storage += increase;
[bcb14b5]848 #endif // __STATISTICS__
[b6830d74]849 } // if
[c4f68dc]850
[31a5f418]851 Heap.Storage * block = (Heap.Storage *)heapEnd;
[b6830d74]852 heapRemaining = rem;
853 heapEnd = (char *)heapEnd + size;
[116a2ea]854
855 unlock( extLock );
856 return block;
857} // master_extend
858
859
860__attribute__(( noinline ))
861static void * manager_extend( size_t size ) with( *heapManager ) {
862 ptrdiff_t rem = heapReserve - size;
863
[a7662b8]864 if ( unlikely( rem < 0 ) ) { // negative ?
[116a2ea]865 // If the size requested is bigger than the current remaining reserve, use the current reserve to populate
866 // smaller freeLists, and increase the reserve.
867
868 rem = heapReserve; // positive
869
[a7662b8]870 if ( (unsigned int)rem >= bucketSizes[0] ) { // minimal size ? otherwise ignore
[116a2ea]871 size_t bucket;
872 #ifdef FASTLOOKUP
873 if ( likely( rem < LookupSizes ) ) bucket = lookup[rem];
874 #endif // FASTLOOKUP
875 bucket = Bsearchl( rem, bucketSizes, heapMaster.maxBucketsUsed );
876 verify( 0 <= bucket && bucket <= heapMaster.maxBucketsUsed );
877 Heap.FreeHeader * freeHead = &(freeLists[bucket]);
878
[a7662b8]879 // The remaining storage may not be bucket size, whereas all other allocations are. Round down to previous
[116a2ea]880 // bucket size in this case.
881 if ( unlikely( freeHead->blockSize > (size_t)rem ) ) freeHead -= 1;
882 Heap.Storage * block = (Heap.Storage *)heapBuffer;
883
884 block->header.kind.real.next = freeHead->freeList; // push on stack
885 freeHead->freeList = block;
886 } // if
887
888 size_t increase = ceiling( size > ( heapMaster.heapExpand / 10 ) ? size : ( heapMaster.heapExpand / 10 ), libAlign() );
889 heapBuffer = master_extend( increase );
890 rem = increase - size;
891 } // if
892
893 Heap.Storage * block = (Heap.Storage *)heapBuffer;
894 heapReserve = rem;
895 heapBuffer = (char *)heapBuffer + size;
896
[b6830d74]897 return block;
[116a2ea]898} // manager_extend
899
900
901#ifdef __STATISTICS__
902#define STAT_NAME __counter
903#define STAT_PARM , unsigned int STAT_NAME
904#define STAT_ARG( name ) , name
[feb999f]905#define STAT_0_CNT( counter ) heapManager->stats.counters[counter].calls_0 += 1
[116a2ea]906#else
907#define STAT_NAME
908#define STAT_PARM
909#define STAT_ARG( name )
910#define STAT_0_CNT( counter )
911#endif // __STATISTICS__
912
[feb999f]913#define BOOT_HEAP_MANAGER \
914 if ( unlikely( ! heapMasterBootFlag ) ) { \
915 heapManagerCtor(); /* trigger for first heap */ \
916 } /* if */ \
917 verify( heapManager );
918
919#define __NONNULL_0_ALLOC__ /* Uncomment to return non-null address for malloc( 0 ). */
920#ifndef __NONNULL_0_ALLOC__
921#define __NULL_0_ALLOC__( counter, ... ) /* 0 byte allocation returns null pointer */ \
922 if ( unlikely( size == 0 ) ) { \
923 STAT_0_CNT( counter ); \
924 __VA_ARGS__; /* call routine, if specified */ \
925 return 0p; \
926 } /* if */
[07b59ec]927#else
[feb999f]928#define __NULL_0_ALLOC__( counter, ... )
[07b59ec]929#endif // __NONNULL_0_ALLOC__
930
[feb999f]931#ifdef __DEBUG__
932#define __OVERFLOW_MALLOC__( ... ) \
933 if ( unlikely( size > ULONG_MAX - sizeof(Heap.Storage) ) ) { /* error check */ \
934 __VA_ARGS__; /* call routine, if specified */ \
[116a2ea]935 return 0p; \
936 } /* if */
[feb999f]937#else
938#define __OVERFLOW_MALLOC__( ... )
939#endif // __DEBUG__
[116a2ea]940
[feb999f]941#define PROLOG( counter, ... ) \
942 BOOT_HEAP_MANAGER; \
943 __NULL_0_ALLOC__( counter, __VA_ARGS__ ) \
944 __OVERFLOW_MALLOC__( __VA_ARGS__ )
[c4f68dc]945
[116a2ea]946#define SCRUB_SIZE 1024lu
947// Do not use '\xfe' for scrubbing because dereferencing an address composed of it causes a SIGSEGV *without* a valid IP
948// pointer in the interrupt frame.
949#define SCRUB '\xff'
[c4f68dc]950
[116a2ea]951static void * doMalloc( size_t size STAT_PARM ) libcfa_nopreempt with( *heapManager ) {
952 PROLOG( STAT_NAME );
953
954 Heap.Storage * block; // pointer to new block of storage
[c4f68dc]955
[b6830d74]956 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
957 // along with the block and is a multiple of the alignment size.
[31a5f418]958 size_t tsize = size + sizeof(Heap.Storage);
[19e5d65d]959
[116a2ea]960 #ifdef __STATISTICS__
[feb999f]961 #ifdef __NONNULL_0_ALLOC__
962 if ( unlikely( size == 0 ) ) // malloc( 0 ) ?
963 stats.counters[STAT_NAME].calls_0 += 1;
964 else
965 #endif // __NONNULL_0_ALLOC__
966 stats.counters[STAT_NAME].calls += 1;
[116a2ea]967 stats.counters[STAT_NAME].request += size;
968 #endif // __STATISTICS__
969
970 #ifdef __CFA_DEBUG__
971 allocUnfreed += size;
972 #endif // __CFA_DEBUG__
973
974 if ( likely( tsize < heapMaster.mmapStart ) ) { // small size => sbrk
975 size_t bucket;
[cfbfd31]976 // Find smallest bucket that is >= the allocation side.
[e723100]977 #ifdef FASTLOOKUP
[116a2ea]978 if ( likely( tsize < LookupSizes ) ) bucket = lookup[tsize];
[e723100]979 else
980 #endif // FASTLOOKUP
[116a2ea]981 bucket = Bsearchl( tsize, bucketSizes, heapMaster.maxBucketsUsed );
982 verify( 0 <= bucket && bucket <= heapMaster.maxBucketsUsed );
983 Heap.FreeHeader * freeHead = &freeLists[bucket];
984
985 verify( freeHead <= &freeLists[heapMaster.maxBucketsUsed] ); // subscripting error ?
986 verify( tsize <= freeHead->blockSize ); // search failure ?
987
988 tsize = freeHead->blockSize; // total space needed for request
989 #ifdef __STATISTICS__
990 stats.counters[STAT_NAME].alloc += tsize;
991 #endif // __STATISTICS__
[c4f68dc]992
[116a2ea]993 block = freeHead->freeList; // remove node from stack
[95eb7cf]994 if ( unlikely( block == 0p ) ) { // no free block ?
[8ee54963]995 // Freelist for this size is empty, so check return list (OWNERSHIP), or carve it out of the heap if there
[7a2057a]996 // is enough left, or get some more heap storage and carve it off.
[116a2ea]997 #ifdef OWNERSHIP
[7a2057a]998 if ( unlikely( freeHead->returnList ) ) { // race, get next time if lose race
999 #ifdef RETURNSPIN
1000 lock( freeHead->returnLock );
1001 block = freeHead->returnList;
1002 freeHead->returnList = 0p;
1003 unlock( freeHead->returnLock );
1004 #else
1005 block = __atomic_exchange_n( &freeHead->returnList, 0p, __ATOMIC_SEQ_CST );
1006 #endif // RETURNSPIN
1007
1008 verify( block );
1009 #ifdef __STATISTICS__
1010 stats.return_pulls += 1;
1011 #endif // __STATISTICS__
1012
1013 // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
[116a2ea]1014
[7a2057a]1015 freeHead->freeList = block->header.kind.real.next; // merge returnList into freeHead
1016 } else {
[116a2ea]1017 #endif // OWNERSHIP
1018 // Do not leave kernel thread as manager_extend accesses heapManager.
1019 disable_interrupts();
1020 block = (Heap.Storage *)manager_extend( tsize ); // mutual exclusion on call
1021 enable_interrupts( false );
1022
1023 // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1024
1025 #ifdef __CFA_DEBUG__
[7a2057a]1026 // Scrub new memory so subsequent uninitialized usages might fail. Only scrub the first SCRUB_SIZE bytes.
[116a2ea]1027 memset( block->data, SCRUB, min( SCRUB_SIZE, tsize - sizeof(Heap.Storage) ) );
1028 #endif // __CFA_DEBUG__
1029 #ifdef OWNERSHIP
1030 } // if
1031 #endif // OWNERSHIP
[c4f68dc]1032 } else {
[116a2ea]1033 // Memory is scrubbed in doFree.
1034 freeHead->freeList = block->header.kind.real.next;
[c4f68dc]1035 } // if
1036
[116a2ea]1037 block->header.kind.real.home = freeHead; // pointer back to free list of apropriate size
[bcb14b5]1038 } else { // large size => mmap
[ad2dced]1039 if ( unlikely( size > ULONG_MAX - __page_size ) ) return 0p;
1040 tsize = ceiling2( tsize, __page_size ); // must be multiple of page size
[7a2057a]1041
[c4f68dc]1042 #ifdef __STATISTICS__
[116a2ea]1043 stats.counters[STAT_NAME].alloc += tsize;
1044 stats.mmap_calls += 1;
1045 stats.mmap_storage_request += size;
1046 stats.mmap_storage_alloc += tsize;
[c4f68dc]1047 #endif // __STATISTICS__
[92aca37]1048
[116a2ea]1049 disable_interrupts();
1050 block = (Heap.Storage *)mmap( 0, tsize, __map_prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 );
1051 enable_interrupts( false );
1052
1053 // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1054
1055 if ( unlikely( block == (Heap.Storage *)MAP_FAILED ) ) { // failed ?
[92aca37]1056 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize ); // no memory
[c4f68dc]1057 // Do not call strerror( errno ) as it may call malloc.
[7a2057a]1058 abort( "**** Error **** attempt to allocate large object (> %zu) of size %zu bytes and mmap failed with errno %d.",
1059 size, heapMaster.mmapStart, errno );
[116a2ea]1060 } // if
1061 block->header.kind.real.blockSize = MarkMmappedBit( tsize ); // storage size for munmap
1062
[bcb14b5]1063 #ifdef __CFA_DEBUG__
[7a2057a]1064 // Scrub new memory so subsequent uninitialized usages might fail. Only scrub the first SCRUB_SIZE bytes. The
1065 // rest of the storage set to 0 by mmap.
[116a2ea]1066 memset( block->data, SCRUB, min( SCRUB_SIZE, tsize - sizeof(Heap.Storage) ) );
[bcb14b5]1067 #endif // __CFA_DEBUG__
1068 } // if
[c4f68dc]1069
[9c438546]1070 block->header.kind.real.size = size; // store allocation size
[95eb7cf]1071 void * addr = &(block->data); // adjust off header to user bytes
[c1f38e6c]1072 verify( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[c4f68dc]1073
1074 #ifdef __CFA_DEBUG__
[bcb14b5]1075 if ( traceHeap() ) {
[433905a]1076 char helpText[64];
1077 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
1078 "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize ); // print debug/nodebug
[bcb14b5]1079 } // if
[c4f68dc]1080 #endif // __CFA_DEBUG__
1081
[116a2ea]1082// poll_interrupts(); // call rollforward
1083
[95eb7cf]1084 return addr;
[c4f68dc]1085} // doMalloc
1086
1087
[116a2ea]1088static void doFree( void * addr ) libcfa_nopreempt with( *heapManager ) {
[feb999f]1089 // char buf[64];
1090 // int len = sprintf( buf, "doFree addr %p\n", addr );
1091 // write( 2, buf, len );
1092
[116a2ea]1093 verify( addr );
1094
1095 // detect free after thread-local storage destruction and use global stats in that case
[c4f68dc]1096
[31a5f418]1097 Heap.Storage.Header * header;
[116a2ea]1098 Heap.FreeHeader * freeHead;
1099 size_t size, alignment;
1100
1101 bool mapped = headers( "free", addr, header, freeHead, size, alignment );
1102 #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
1103 size_t rsize = header->kind.real.size; // optimization
1104 #endif // __STATISTICS__ || __CFA_DEBUG__
1105
[feb999f]1106 // Do not move these down because heap can be null!
[116a2ea]1107 #ifdef __STATISTICS__
[feb999f]1108 #ifdef __NONNULL_0_ALLOC__
1109 if ( unlikely( rsize == 0 ) ) // malloc( 0 ) ?
1110 stats.free_null_0_calls += 1;
1111 else
1112 #endif // __NONNULL_0_ALLOC__
1113 heapManager->stats.free_calls += 1; // count free amd implicit frees from resize/realloc
[116a2ea]1114 stats.free_storage_request += rsize;
1115 stats.free_storage_alloc += size;
1116 #endif // __STATISTICS__
1117
1118 #ifdef __CFA_DEBUG__
1119 allocUnfreed -= rsize;
1120 #endif // __CFA_DEBUG__
[c4f68dc]1121
[116a2ea]1122 if ( unlikely( mapped ) ) { // mmapped ?
[c4f68dc]1123 #ifdef __STATISTICS__
[116a2ea]1124 stats.munmap_calls += 1;
1125 stats.munmap_storage_request += rsize;
1126 stats.munmap_storage_alloc += size;
[c4f68dc]1127 #endif // __STATISTICS__
[116a2ea]1128
1129 // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1130
1131 // Does not matter where this storage is freed.
1132 if ( unlikely( munmap( header, size ) == -1 ) ) {
1133 // Do not call strerror( errno ) as it may call malloc.
[5951956]1134 abort( "**** Error **** attempt to deallocate large object %p and munmap failed with errno %d.\n"
[116a2ea]1135 "Possible cause is invalid delete pointer: either not allocated or with corrupt header.",
1136 addr, errno );
[c4f68dc]1137 } // if
[bcb14b5]1138 } else {
[feb999f]1139 assert( freeHead );
[c4f68dc]1140 #ifdef __CFA_DEBUG__
[116a2ea]1141 // memset is NOT always inlined!
1142 disable_interrupts();
1143 // Scrub old memory so subsequent usages might fail. Only scrub the first/last SCRUB_SIZE bytes.
1144 char * data = ((Heap.Storage *)header)->data; // data address
1145 size_t dsize = size - sizeof(Heap.Storage); // data size
1146 if ( dsize <= SCRUB_SIZE * 2 ) {
1147 memset( data, SCRUB, dsize ); // scrub all
1148 } else {
1149 memset( data, SCRUB, SCRUB_SIZE ); // scrub front
1150 memset( data + dsize - SCRUB_SIZE, SCRUB, SCRUB_SIZE ); // scrub back
1151 } // if
1152 enable_interrupts( false );
[c4f68dc]1153 #endif // __CFA_DEBUG__
1154
[7a2057a]1155 #ifdef OWNERSHIP
[116a2ea]1156 if ( likely( heapManager == freeHead->homeManager ) ) { // belongs to this thread
1157 header->kind.real.next = freeHead->freeList; // push on stack
1158 freeHead->freeList = (Heap.Storage *)header;
1159 } else { // return to thread owner
1160 verify( heapManager );
1161
1162 #ifdef RETURNSPIN
1163 lock( freeHead->returnLock );
1164 header->kind.real.next = freeHead->returnList; // push to bucket return list
1165 freeHead->returnList = (Heap.Storage *)header;
1166 unlock( freeHead->returnLock );
1167 #else // lock free
1168 header->kind.real.next = freeHead->returnList; // link new node to top node
1169 // CAS resets header->kind.real.next = freeHead->returnList on failure
[7a2057a]1170 while ( ! __atomic_compare_exchange_n( &freeHead->returnList, &header->kind.real.next, (Heap.Storage *)header,
[116a2ea]1171 false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) );
[8ee54963]1172
1173 #ifdef __STATISTICS__
1174 stats.return_pushes += 1;
1175 stats.return_storage_request += rsize;
1176 stats.return_storage_alloc += size;
1177 #endif // __STATISTICS__
[116a2ea]1178 #endif // RETURNSPIN
[7a2057a]1179 } // if
[116a2ea]1180
[7a2057a]1181 #else // no OWNERSHIP
[116a2ea]1182
[7a2057a]1183 // kind.real.home is address in owner thread's freeLists, so compute the equivalent position in this thread's freeList.
1184 freeHead = &freeLists[ClearStickyBits( (Heap.FreeHeader *)(header->kind.real.home) ) - &freeHead->homeManager->freeLists[0]];
1185 header->kind.real.next = freeHead->freeList; // push on stack
1186 freeHead->freeList = (Heap.Storage *)header;
1187 #endif // ! OWNERSHIP
[116a2ea]1188
[7a2057a]1189 // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
[bcb14b5]1190 } // if
[c4f68dc]1191
1192 #ifdef __CFA_DEBUG__
[bcb14b5]1193 if ( traceHeap() ) {
[92aca37]1194 char helpText[64];
[433905a]1195 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
1196 "Free( %p ) size:%zu\n", addr, size ); // print debug/nodebug
[bcb14b5]1197 } // if
[c4f68dc]1198 #endif // __CFA_DEBUG__
[116a2ea]1199
1200// poll_interrupts(); // call rollforward
[c4f68dc]1201} // doFree
1202
1203
[116a2ea]1204size_t prtFree( Heap & manager ) with( manager ) {
[b6830d74]1205 size_t total = 0;
[c4f68dc]1206 #ifdef __STATISTICS__
[95eb7cf]1207 __cfaabi_bits_acquire();
1208 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]1209 #endif // __STATISTICS__
[116a2ea]1210 for ( unsigned int i = 0; i < heapMaster.maxBucketsUsed; i += 1 ) {
[d46ed6e]1211 size_t size = freeLists[i].blockSize;
1212 #ifdef __STATISTICS__
1213 unsigned int N = 0;
1214 #endif // __STATISTICS__
[b6830d74]1215
[31a5f418]1216 for ( Heap.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]1217 total += size;
1218 #ifdef __STATISTICS__
1219 N += 1;
1220 #endif // __STATISTICS__
[b6830d74]1221 } // for
1222
[d46ed6e]1223 #ifdef __STATISTICS__
[95eb7cf]1224 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
1225 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]1226 #endif // __STATISTICS__
1227 } // for
1228 #ifdef __STATISTICS__
[95eb7cf]1229 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
1230 __cfaabi_bits_release();
[d46ed6e]1231 #endif // __STATISTICS__
[116a2ea]1232 return (char *)heapMaster.heapEnd - (char *)heapMaster.heapBegin - total;
[95eb7cf]1233} // prtFree
1234
1235
[116a2ea]1236#ifdef __STATISTICS__
[8ee54963]1237static void incCalls( size_t statName ) libcfa_nopreempt {
[116a2ea]1238 heapManager->stats.counters[statName].calls += 1;
1239} // incCalls
[d5d3a90]1240
[8ee54963]1241static void incZeroCalls( size_t statName ) libcfa_nopreempt {
[116a2ea]1242 heapManager->stats.counters[statName].calls_0 += 1;
1243} // incZeroCalls
1244#endif // __STATISTICS__
[c4f68dc]1245
[116a2ea]1246#ifdef __CFA_DEBUG__
[5951956]1247static void incUnfreed( intptr_t offset ) libcfa_nopreempt {
[116a2ea]1248 heapManager->allocUnfreed += offset;
1249} // incUnfreed
1250#endif // __CFA_DEBUG__
[c4f68dc]1251
[d5d3a90]1252
[116a2ea]1253static void * memalignNoStats( size_t alignment, size_t size STAT_PARM ) {
[b6830d74]1254 checkAlign( alignment ); // check alignment
[c4f68dc]1255
[116a2ea]1256 // if alignment <= default alignment or size == 0, do normal malloc as two headers are unnecessary
1257 if ( unlikely( alignment <= libAlign() || size == 0 ) ) return doMalloc( size STAT_ARG( STAT_NAME ) );
[b6830d74]1258
1259 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
1260 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
1261 // .-------------v-----------------v----------------v----------,
1262 // | Real Header | ... padding ... | Fake Header | data ... |
1263 // `-------------^-----------------^-+--------------^----------'
1264 // |<--------------------------------' offset/align |<-- alignment boundary
1265
1266 // subtract libAlign() because it is already the minimum alignment
1267 // add sizeof(Storage) for fake header
[116a2ea]1268 size_t offset = alignment - libAlign() + sizeof(Heap.Storage);
1269 char * addr = (char *)doMalloc( size + offset STAT_ARG( STAT_NAME ) );
[b6830d74]1270
1271 // address in the block of the "next" alignment address
[31a5f418]1272 char * user = (char *)ceiling2( (uintptr_t)(addr + sizeof(Heap.Storage)), alignment );
[b6830d74]1273
1274 // address of header from malloc
[116a2ea]1275 Heap.Storage.Header * realHeader = HeaderAddr( addr );
1276 realHeader->kind.real.size = size; // correct size to eliminate above alignment offset
1277 #ifdef __CFA_DEBUG__
1278 incUnfreed( -offset ); // adjustment off the offset from call to doMalloc
1279 #endif // __CFA_DEBUG__
1280
1281 // address of fake header *before* the alignment location
[19e5d65d]1282 Heap.Storage.Header * fakeHeader = HeaderAddr( user );
[116a2ea]1283
[b6830d74]1284 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
[116a2ea]1285 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
[69ec0fb]1286 // SKULLDUGGERY: odd alignment implies fake header
[19e5d65d]1287 fakeHeader->kind.fake.alignment = MarkAlignmentBit( alignment );
[b6830d74]1288
1289 return user;
[bcb14b5]1290} // memalignNoStats
[c4f68dc]1291
1292
[19e5d65d]1293//####################### Memory Allocation Routines ####################
1294
1295
[c4f68dc]1296extern "C" {
[61248a4]1297 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
1298 // then malloc() returns a unique pointer value that can later be successfully passed to free().
[032234bd]1299 void * malloc( size_t size ) libcfa_public {
[116a2ea]1300 return doMalloc( size STAT_ARG( MALLOC ) );
[bcb14b5]1301 } // malloc
[c4f68dc]1302
[76e2113]1303
[61248a4]1304 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[032234bd]1305 void * aalloc( size_t dim, size_t elemSize ) libcfa_public {
[116a2ea]1306 return doMalloc( dim * elemSize STAT_ARG( AALLOC ) );
[76e2113]1307 } // aalloc
1308
1309
[61248a4]1310 // Same as aalloc() with memory set to zero.
[032234bd]1311 void * calloc( size_t dim, size_t elemSize ) libcfa_public {
[709b812]1312 size_t size = dim * elemSize;
[116a2ea]1313 char * addr = (char *)doMalloc( size STAT_ARG( CALLOC ) );
[c4f68dc]1314
[116a2ea]1315 if ( unlikely( addr == NULL ) ) return NULL; // stop further processing if 0p is returned
[709b812]1316
[31a5f418]1317 Heap.Storage.Header * header;
[116a2ea]1318 Heap.FreeHeader * freeHead;
[709b812]1319 size_t bsize, alignment;
1320
1321 #ifndef __CFA_DEBUG__
1322 bool mapped =
1323 #endif // __CFA_DEBUG__
[116a2ea]1324 headers( "calloc", addr, header, freeHead, bsize, alignment );
[709b812]1325
1326 #ifndef __CFA_DEBUG__
1327 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
[116a2ea]1328 if ( likely( ! mapped ) )
[709b812]1329 #endif // __CFA_DEBUG__
1330 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1331 // `-header`-addr `-size
1332 memset( addr, '\0', size ); // set to zeros
1333
[19e5d65d]1334 MarkZeroFilledBit( header ); // mark as zero fill
[709b812]1335 return addr;
[bcb14b5]1336 } // calloc
[c4f68dc]1337
[92aca37]1338
[61248a4]1339 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
1340 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
1341 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
1342 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[032234bd]1343 void * resize( void * oaddr, size_t size ) libcfa_public {
[feb999f]1344 if ( unlikely( oaddr == 0p ) ) { // => malloc( size )
[116a2ea]1345 return doMalloc( size STAT_ARG( RESIZE ) );
[709b812]1346 } // if
[cfbc703d]1347
[116a2ea]1348 PROLOG( RESIZE, doFree( oaddr ) ); // => free( oaddr )
[cfbc703d]1349
[31a5f418]1350 Heap.Storage.Header * header;
[116a2ea]1351 Heap.FreeHeader * freeHead;
[92aca37]1352 size_t bsize, oalign;
[116a2ea]1353 headers( "resize", oaddr, header, freeHead, bsize, oalign );
[92847f7]1354
[19e5d65d]1355 size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[feb999f]1356 // same size, DO NOT PRESERVE STICKY PROPERTIES.
[92847f7]1357 if ( oalign == libAlign() && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[19e5d65d]1358 ClearZeroFillBit( header ); // no alignment and turn off 0 fill
[116a2ea]1359 #ifdef __CFA_DEBUG__
1360 incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1361 #endif // __CFA_DEBUG__
[d5d3a90]1362 header->kind.real.size = size; // reset allocation size
[116a2ea]1363 #ifdef __STATISTICS__
1364 incCalls( RESIZE );
1365 #endif // __STATISTICS__
[cfbc703d]1366 return oaddr;
1367 } // if
[0f89d4f]1368
[feb999f]1369 // change size, DO NOT PRESERVE STICKY PROPERTIES.
[116a2ea]1370 doFree( oaddr ); // free previous storage
1371
1372 return doMalloc( size STAT_ARG( RESIZE ) ); // create new area
[cfbc703d]1373 } // resize
1374
1375
[61248a4]1376 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]1377 // the old and new sizes.
[032234bd]1378 void * realloc( void * oaddr, size_t size ) libcfa_public {
[feb999f]1379 // char buf[64];
1380 // int len = sprintf( buf, "realloc1 oaddr %p size %d\n", oaddr, size );
1381 // write( 2, buf, len );
[116a2ea]1382 if ( unlikely( oaddr == 0p ) ) { // => malloc( size )
1383 return doMalloc( size STAT_ARG( REALLOC ) );
[709b812]1384 } // if
[c4f68dc]1385
[116a2ea]1386 PROLOG( REALLOC, doFree( oaddr ) ); // => free( oaddr )
[c4f68dc]1387
[31a5f418]1388 Heap.Storage.Header * header;
[116a2ea]1389 Heap.FreeHeader * freeHead;
[92aca37]1390 size_t bsize, oalign;
[116a2ea]1391 headers( "realloc", oaddr, header, freeHead, bsize, oalign );
[95eb7cf]1392
[19e5d65d]1393 size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[d5d3a90]1394 size_t osize = header->kind.real.size; // old allocation size
[19e5d65d]1395 bool ozfill = ZeroFillBit( header ); // old allocation zero filled
[92847f7]1396 if ( unlikely( size <= odsize ) && odsize <= size * 2 ) { // allow up to 50% wasted storage
[116a2ea]1397 #ifdef __CFA_DEBUG__
1398 incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1399 #endif // __CFA_DEBUG__
1400 header->kind.real.size = size; // reset allocation size
[d5d3a90]1401 if ( unlikely( ozfill ) && size > osize ) { // previous request zero fill and larger ?
[e4b6b7d3]1402 memset( (char *)oaddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1403 } // if
[116a2ea]1404 #ifdef __STATISTICS__
1405 incCalls( REALLOC );
1406 #endif // __STATISTICS__
[95eb7cf]1407 return oaddr;
[c4f68dc]1408 } // if
1409
[95eb7cf]1410 // change size and copy old content to new storage
1411
1412 void * naddr;
[116a2ea]1413 if ( likely( oalign <= libAlign() ) ) { // previous request not aligned ?
1414 naddr = doMalloc( size STAT_ARG( REALLOC ) ); // create new area
[c4f68dc]1415 } else {
[116a2ea]1416 naddr = memalignNoStats( oalign, size STAT_ARG( REALLOC ) ); // create new aligned area
[c4f68dc]1417 } // if
[1e034d9]1418
[116a2ea]1419 headers( "realloc", naddr, header, freeHead, bsize, oalign );
1420 // To preserve prior fill, the entire bucket must be copied versus the size.
[47dd0d2]1421 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[116a2ea]1422 doFree( oaddr ); // free previous storage
[d5d3a90]1423
1424 if ( unlikely( ozfill ) ) { // previous request zero fill ?
[19e5d65d]1425 MarkZeroFilledBit( header ); // mark new request as zero filled
[d5d3a90]1426 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]1427 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1428 } // if
1429 } // if
[95eb7cf]1430 return naddr;
[b6830d74]1431 } // realloc
[c4f68dc]1432
[c1f38e6c]1433
[19e5d65d]1434 // Same as realloc() except the new allocation size is large enough for an array of nelem elements of size elsize.
[032234bd]1435 void * reallocarray( void * oaddr, size_t dim, size_t elemSize ) libcfa_public {
[19e5d65d]1436 return realloc( oaddr, dim * elemSize );
1437 } // reallocarray
1438
1439
[61248a4]1440 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[032234bd]1441 void * memalign( size_t alignment, size_t size ) libcfa_public {
[116a2ea]1442 return memalignNoStats( alignment, size STAT_ARG( MEMALIGN ) );
[bcb14b5]1443 } // memalign
[c4f68dc]1444
[95eb7cf]1445
[76e2113]1446 // Same as aalloc() with memory alignment.
[032234bd]1447 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) libcfa_public {
[116a2ea]1448 return memalignNoStats( alignment, dim * elemSize STAT_ARG( AMEMALIGN ) );
[76e2113]1449 } // amemalign
1450
1451
[ca7949b]1452 // Same as calloc() with memory alignment.
[032234bd]1453 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) libcfa_public {
[709b812]1454 size_t size = dim * elemSize;
[116a2ea]1455 char * addr = (char *)memalignNoStats( alignment, size STAT_ARG( CMEMALIGN ) );
[95eb7cf]1456
[116a2ea]1457 if ( unlikely( addr == NULL ) ) return NULL; // stop further processing if 0p is returned
[709b812]1458
[31a5f418]1459 Heap.Storage.Header * header;
[116a2ea]1460 Heap.FreeHeader * freeHead;
[709b812]1461 size_t bsize;
1462
1463 #ifndef __CFA_DEBUG__
1464 bool mapped =
1465 #endif // __CFA_DEBUG__
[116a2ea]1466 headers( "cmemalign", addr, header, freeHead, bsize, alignment );
[709b812]1467
1468 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
1469 #ifndef __CFA_DEBUG__
1470 if ( ! mapped )
1471 #endif // __CFA_DEBUG__
1472 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1473 // `-header`-addr `-size
1474 memset( addr, '\0', size ); // set to zeros
1475
[19e5d65d]1476 MarkZeroFilledBit( header ); // mark as zero filled
[709b812]1477 return addr;
[95eb7cf]1478 } // cmemalign
1479
[13fece5]1480
[ca7949b]1481 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
[19e5d65d]1482 // of alignment. This requirement is universally ignored.
[032234bd]1483 void * aligned_alloc( size_t alignment, size_t size ) libcfa_public {
[c4f68dc]1484 return memalign( alignment, size );
[b6830d74]1485 } // aligned_alloc
[c4f68dc]1486
1487
[ca7949b]1488 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1489 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1490 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1491 // free(3).
[032234bd]1492 int posix_memalign( void ** memptr, size_t alignment, size_t size ) libcfa_public {
[69ec0fb]1493 if ( unlikely( alignment < libAlign() || ! is_pow2( alignment ) ) ) return EINVAL; // check alignment
[19e5d65d]1494 *memptr = memalign( alignment, size );
[c4f68dc]1495 return 0;
[b6830d74]1496 } // posix_memalign
[c4f68dc]1497
[13fece5]1498
[ca7949b]1499 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1500 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[032234bd]1501 void * valloc( size_t size ) libcfa_public {
[ad2dced]1502 return memalign( __page_size, size );
[b6830d74]1503 } // valloc
[c4f68dc]1504
1505
[ca7949b]1506 // Same as valloc but rounds size to multiple of page size.
[032234bd]1507 void * pvalloc( size_t size ) libcfa_public {
[19e5d65d]1508 return memalign( __page_size, ceiling2( size, __page_size ) ); // round size to multiple of page size
[ca7949b]1509 } // pvalloc
1510
1511
1512 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1513 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1514 // 0p, no operation is performed.
[032234bd]1515 void free( void * addr ) libcfa_public {
[95eb7cf]1516 if ( unlikely( addr == 0p ) ) { // special case
[709b812]1517 #ifdef __STATISTICS__
[116a2ea]1518 if ( heapManager )
1519 incZeroCalls( FREE );
[709b812]1520 #endif // __STATISTICS__
[c4f68dc]1521 return;
[116a2ea]1522 } // if
1523
1524 doFree( addr ); // handles heapManager == nullptr
[b6830d74]1525 } // free
[93c2e0a]1526
[c4f68dc]1527
[76e2113]1528 // Returns the alignment of an allocation.
[032234bd]1529 size_t malloc_alignment( void * addr ) libcfa_public {
[95eb7cf]1530 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[19e5d65d]1531 Heap.Storage.Header * header = HeaderAddr( addr );
1532 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
1533 return ClearAlignmentBit( header ); // clear flag from value
[c4f68dc]1534 } else {
[cfbc703d]1535 return libAlign(); // minimum alignment
[c4f68dc]1536 } // if
[bcb14b5]1537 } // malloc_alignment
[c4f68dc]1538
[92aca37]1539
[76e2113]1540 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[032234bd]1541 bool malloc_zero_fill( void * addr ) libcfa_public {
[95eb7cf]1542 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[19e5d65d]1543 Heap.Storage.Header * header = HeaderAddr( addr );
1544 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
1545 header = RealHeader( header ); // backup from fake to real header
[c4f68dc]1546 } // if
[19e5d65d]1547 return ZeroFillBit( header ); // zero filled ?
[bcb14b5]1548 } // malloc_zero_fill
[c4f68dc]1549
[19e5d65d]1550
1551 // Returns original total allocation size (not bucket size) => array size is dimension * sizeof(T).
[032234bd]1552 size_t malloc_size( void * addr ) libcfa_public {
[849fb370]1553 if ( unlikely( addr == 0p ) ) return 0; // null allocation has zero size
[19e5d65d]1554 Heap.Storage.Header * header = HeaderAddr( addr );
1555 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
1556 header = RealHeader( header ); // backup from fake to real header
[cfbc703d]1557 } // if
[9c438546]1558 return header->kind.real.size;
[76e2113]1559 } // malloc_size
1560
[cfbc703d]1561
[ca7949b]1562 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1563 // malloc or a related function.
[032234bd]1564 size_t malloc_usable_size( void * addr ) libcfa_public {
[95eb7cf]1565 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
[31a5f418]1566 Heap.Storage.Header * header;
[116a2ea]1567 Heap.FreeHeader * freeHead;
[95eb7cf]1568 size_t bsize, alignment;
1569
[116a2ea]1570 headers( "malloc_usable_size", addr, header, freeHead, bsize, alignment );
[19e5d65d]1571 return DataStorage( bsize, addr, header ); // data storage in bucket
[95eb7cf]1572 } // malloc_usable_size
1573
1574
[ca7949b]1575 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[032234bd]1576 void malloc_stats( void ) libcfa_public {
[c4f68dc]1577 #ifdef __STATISTICS__
[116a2ea]1578 HeapStatistics stats;
1579 HeapStatisticsCtor( stats );
1580 if ( printStats( collectStats( stats ) ) == -1 ) {
1581 #else
1582 #define MALLOC_STATS_MSG "malloc_stats statistics disabled.\n"
1583 if ( write( STDERR_FILENO, MALLOC_STATS_MSG, sizeof( MALLOC_STATS_MSG ) - 1 /* size includes '\0' */ ) == -1 ) {
[c4f68dc]1584 #endif // __STATISTICS__
[5951956]1585 abort( "**** Error **** write failed in malloc_stats" );
[116a2ea]1586 } // if
[bcb14b5]1587 } // malloc_stats
[c4f68dc]1588
[92aca37]1589
[c58ead7]1590 // Zero the heap master and all active thread heaps.
1591 void malloc_stats_clear() {
1592 #ifdef __STATISTICS__
1593 clearStats();
1594 #else
1595 #define MALLOC_STATS_MSG "malloc_stats statistics disabled.\n"
1596 if ( write( STDERR_FILENO, MALLOC_STATS_MSG, sizeof( MALLOC_STATS_MSG ) - 1 /* size includes '\0' */ ) == -1 ) {
1597 abort( "**** Error **** write failed in malloc_stats" );
1598 } // if
1599 #endif // __STATISTICS__
1600 } // malloc_stats_clear
1601
[19e5d65d]1602 // Changes the file descriptor where malloc_stats() writes statistics.
[032234bd]1603 int malloc_stats_fd( int fd __attribute__(( unused )) ) libcfa_public {
[c4f68dc]1604 #ifdef __STATISTICS__
[116a2ea]1605 int temp = heapMaster.stats_fd;
1606 heapMaster.stats_fd = fd;
[bcb14b5]1607 return temp;
[c4f68dc]1608 #else
[19e5d65d]1609 return -1; // unsupported
[c4f68dc]1610 #endif // __STATISTICS__
[bcb14b5]1611 } // malloc_stats_fd
[c4f68dc]1612
[95eb7cf]1613
[19e5d65d]1614 // Prints an XML string that describes the current state of the memory-allocation implementation in the caller.
1615 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1616 // malloc).
[032234bd]1617 int malloc_info( int options, FILE * stream __attribute__(( unused )) ) libcfa_public {
[19e5d65d]1618 if ( options != 0 ) { errno = EINVAL; return -1; }
1619 #ifdef __STATISTICS__
[116a2ea]1620 HeapStatistics stats;
1621 HeapStatisticsCtor( stats );
1622 return printStatsXML( collectStats( stats ), stream ); // returns bytes written or -1
[19e5d65d]1623 #else
1624 return 0; // unsupported
1625 #endif // __STATISTICS__
1626 } // malloc_info
1627
1628
[1076d05]1629 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1630 // specifies the parameter to be modified, and value specifies the new value for that parameter.
[032234bd]1631 int mallopt( int option, int value ) libcfa_public {
[19e5d65d]1632 if ( value < 0 ) return 0;
[95eb7cf]1633 choose( option ) {
1634 case M_TOP_PAD:
[116a2ea]1635 heapMaster.heapExpand = ceiling2( value, __page_size );
[19e5d65d]1636 return 1;
[95eb7cf]1637 case M_MMAP_THRESHOLD:
1638 if ( setMmapStart( value ) ) return 1;
[19e5d65d]1639 } // choose
[95eb7cf]1640 return 0; // error, unsupported
1641 } // mallopt
1642
[c1f38e6c]1643
[ca7949b]1644 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[032234bd]1645 int malloc_trim( size_t ) libcfa_public {
[95eb7cf]1646 return 0; // => impossible to release memory
1647 } // malloc_trim
1648
1649
[ca7949b]1650 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1651 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1652 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1653 // result. (The caller must free this memory.)
[032234bd]1654 void * malloc_get_state( void ) libcfa_public {
[95eb7cf]1655 return 0p; // unsupported
[c4f68dc]1656 } // malloc_get_state
1657
[bcb14b5]1658
[ca7949b]1659 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1660 // structure pointed to by state.
[032234bd]1661 int malloc_set_state( void * ) libcfa_public {
[bcb14b5]1662 return 0; // unsupported
[c4f68dc]1663 } // malloc_set_state
[31a5f418]1664
[19e5d65d]1665
[31a5f418]1666 // Sets the amount (bytes) to extend the heap when there is insufficent free storage to service an allocation.
[032234bd]1667 __attribute__((weak)) size_t malloc_expansion() libcfa_public { return __CFA_DEFAULT_HEAP_EXPANSION__; }
[31a5f418]1668
1669 // Sets the crossover point between allocations occuring in the sbrk area or separately mmapped.
[032234bd]1670 __attribute__((weak)) size_t malloc_mmap_start() libcfa_public { return __CFA_DEFAULT_MMAP_START__; }
[31a5f418]1671
1672 // Amount subtracted to adjust for unfreed program storage (debug only).
[032234bd]1673 __attribute__((weak)) size_t malloc_unfreed() libcfa_public { return __CFA_DEFAULT_HEAP_UNFREED__; }
[c4f68dc]1674} // extern "C"
1675
1676
[95eb7cf]1677// Must have CFA linkage to overload with C linkage realloc.
[032234bd]1678void * resize( void * oaddr, size_t nalign, size_t size ) libcfa_public {
[116a2ea]1679 if ( unlikely( oaddr == 0p ) ) { // => malloc( size )
1680 return memalignNoStats( nalign, size STAT_ARG( RESIZE ) );
[709b812]1681 } // if
[95eb7cf]1682
[116a2ea]1683 PROLOG( RESIZE, doFree( oaddr ) ); // => free( oaddr )
[cfbc703d]1684
[92847f7]1685 // Attempt to reuse existing alignment.
[19e5d65d]1686 Heap.Storage.Header * header = HeaderAddr( oaddr );
1687 bool isFakeHeader = AlignmentBit( header ); // old fake header ?
[92847f7]1688 size_t oalign;
[19e5d65d]1689
1690 if ( unlikely( isFakeHeader ) ) {
[116a2ea]1691 checkAlign( nalign ); // check alignment
[19e5d65d]1692 oalign = ClearAlignmentBit( header ); // old alignment
1693 if ( unlikely( (uintptr_t)oaddr % nalign == 0 // lucky match ?
[92847f7]1694 && ( oalign <= nalign // going down
1695 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
[19e5d65d]1696 ) ) {
1697 HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
[116a2ea]1698 Heap.FreeHeader * freeHead;
[92847f7]1699 size_t bsize, oalign;
[116a2ea]1700 headers( "resize", oaddr, header, freeHead, bsize, oalign );
[19e5d65d]1701 size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[a3ade94]1702
[92847f7]1703 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted data storage
[19e5d65d]1704 HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
1705 ClearZeroFillBit( header ); // turn off 0 fill
[116a2ea]1706 #ifdef __CFA_DEBUG__
1707 incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1708 #endif // __CFA_DEBUG__
[92847f7]1709 header->kind.real.size = size; // reset allocation size
[116a2ea]1710 #ifdef __STATISTICS__
1711 incCalls( RESIZE );
1712 #endif // __STATISTICS__
[92847f7]1713 return oaddr;
1714 } // if
[cfbc703d]1715 } // if
[92847f7]1716 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1717 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
[113d785]1718 return resize( oaddr, size ); // duplicate special case checks
[cfbc703d]1719 } // if
1720
[feb999f]1721 // change size, DO NOT PRESERVE STICKY PROPERTIES.
[116a2ea]1722 doFree( oaddr ); // free previous storage
1723 return memalignNoStats( nalign, size STAT_ARG( RESIZE ) ); // create new aligned area
[cfbc703d]1724} // resize
1725
1726
[032234bd]1727void * realloc( void * oaddr, size_t nalign, size_t size ) libcfa_public {
[feb999f]1728 // char buf[64];
1729 // int len = sprintf( buf, "realloc2 oaddr %p size %d\n", oaddr, size );
1730 // write( 2, buf, len );
[116a2ea]1731 if ( unlikely( oaddr == 0p ) ) { // => malloc( size )
1732 return memalignNoStats( nalign, size STAT_ARG( REALLOC ) );
[709b812]1733 } // if
1734
[116a2ea]1735 PROLOG( REALLOC, doFree( oaddr ) ); // => free( oaddr )
[c86f587]1736
[92847f7]1737 // Attempt to reuse existing alignment.
[19e5d65d]1738 Heap.Storage.Header * header = HeaderAddr( oaddr );
1739 bool isFakeHeader = AlignmentBit( header ); // old fake header ?
[92847f7]1740 size_t oalign;
[19e5d65d]1741 if ( unlikely( isFakeHeader ) ) {
[116a2ea]1742 checkAlign( nalign ); // check alignment
[19e5d65d]1743 oalign = ClearAlignmentBit( header ); // old alignment
1744 if ( unlikely( (uintptr_t)oaddr % nalign == 0 // lucky match ?
[92847f7]1745 && ( oalign <= nalign // going down
1746 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
[19e5d65d]1747 ) ) {
1748 HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
1749 return realloc( oaddr, size ); // duplicate special case checks
[92847f7]1750 } // if
1751 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
[19e5d65d]1752 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
1753 return realloc( oaddr, size ); // duplicate special case checks
1754 } // if
[cfbc703d]1755
[116a2ea]1756 Heap.FreeHeader * freeHead;
[92847f7]1757 size_t bsize;
[116a2ea]1758 headers( "realloc", oaddr, header, freeHead, bsize, oalign );
[92847f7]1759
1760 // change size and copy old content to new storage
1761
[dd23e66]1762 size_t osize = header->kind.real.size; // old allocation size
[19e5d65d]1763 bool ozfill = ZeroFillBit( header ); // old allocation zero filled
[dd23e66]1764
[116a2ea]1765 void * naddr = memalignNoStats( nalign, size STAT_ARG( REALLOC ) ); // create new aligned area
[95eb7cf]1766
[116a2ea]1767 headers( "realloc", naddr, header, freeHead, bsize, oalign );
[47dd0d2]1768 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[116a2ea]1769 doFree( oaddr ); // free previous storage
[d5d3a90]1770
1771 if ( unlikely( ozfill ) ) { // previous request zero fill ?
[19e5d65d]1772 MarkZeroFilledBit( header ); // mark new request as zero filled
[d5d3a90]1773 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]1774 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1775 } // if
1776 } // if
[1e034d9]1777 return naddr;
[95eb7cf]1778} // realloc
1779
1780
[116a2ea]1781void * reallocarray( void * oaddr, size_t nalign, size_t dim, size_t elemSize ) __THROW {
1782 return realloc( oaddr, nalign, dim * elemSize );
1783} // reallocarray
1784
1785
[c4f68dc]1786// Local Variables: //
1787// tab-width: 4 //
[f8cd310]1788// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1789// End: //
Note: See TracBrowser for help on using the repository browser.