source: libcfa/src/heap.cfa@ 2cb15b0

Last change on this file since 2cb15b0 was 07b59ec, checked in by Peter A. Buhr <pabuhr@…>, 2 years ago

change startup sequence by adding back heapManagerBootFlag, add build flag for non-null return for malloc(0)

  • Property mode set to 100644
File size: 67.3 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
[92aca37]7// heap.cfa --
[73abe95]8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[07b59ec]12// Last Modified On : Fri Jul 28 18:27:53 2023
13// Update Count : 1612
[73abe95]14//
[c4f68dc]15
[116a2ea]16#include <stdio.h>
[1e034d9]17#include <string.h> // memset, memcpy
[1076d05]18#include <limits.h> // ULONG_MAX
[31a5f418]19#include <errno.h> // errno, ENOMEM, EINVAL
[8ee54963]20#include <unistd.h> // STDERR_FILENO, sbrk, sysconf, write
[c4f68dc]21#include <sys/mman.h> // mmap, munmap
[116a2ea]22extern "C" {
[31a5f418]23#include <sys/sysinfo.h> // get_nprocs
[116a2ea]24} // extern "C"
[c4f68dc]25
[8ee54963]26#include "heap.hfa"
[92aca37]27#include "bits/align.hfa" // libAlign
[bcb14b5]28#include "bits/defs.hfa" // likely, unlikely
[116a2ea]29#include "concurrency/kernel/fwd.hfa" // __POLL_PREEMPTION
[73abe95]30#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[116a2ea]31#include "math.hfa" // ceiling, min
[7cfef0d]32#include "bitmanip.hfa" // is_pow2, ceiling2
[c4f68dc]33
[116a2ea]34// supported mallopt options
35#ifndef M_MMAP_THRESHOLD
36#define M_MMAP_THRESHOLD (-1)
37#endif // M_MMAP_THRESHOLD
38
39#ifndef M_TOP_PAD
40#define M_TOP_PAD (-2)
41#endif // M_TOP_PAD
42
43#define FASTLOOKUP // use O(1) table lookup from allocation size to bucket size
44#define OWNERSHIP // return freed memory to owner thread
[7a2057a]45#define RETURNSPIN // toggle spinlock / lockfree queue
46#if ! defined( OWNERSHIP ) && defined( RETURNSPIN )
47#warning "RETURNSPIN is ignored without OWNERSHIP; suggest commenting out RETURNSPIN"
48#endif // ! OWNERSHIP && RETURNSPIN
[116a2ea]49
50#define CACHE_ALIGN 64
51#define CALIGN __attribute__(( aligned(CACHE_ALIGN) ))
52
53#define TLSMODEL __attribute__(( tls_model("initial-exec") ))
54
55//#define __STATISTICS__
56
57enum {
58 // The default extension heap amount in units of bytes. When the current heap reaches the brk address, the brk
59 // address is extended by the extension amount.
60 __CFA_DEFAULT_HEAP_EXPANSION__ = 10 * 1024 * 1024,
61
62 // The mmap crossover point during allocation. Allocations less than this amount are allocated from buckets; values
63 // greater than or equal to this value are mmap from the operating system.
64 __CFA_DEFAULT_MMAP_START__ = 512 * 1024 + 1,
65
66 // The default unfreed storage amount in units of bytes. When the uC++ program ends it subtracts this amount from
67 // the malloc/free counter to adjust for storage the program does not free.
68 __CFA_DEFAULT_HEAP_UNFREED__ = 0
69}; // enum
70
71
72//####################### Heap Trace/Print ####################
[31a5f418]73
74
[93c2e0a]75static bool traceHeap = false;
[d46ed6e]76
[032234bd]77inline bool traceHeap() libcfa_public { return traceHeap; }
[d46ed6e]78
[032234bd]79bool traceHeapOn() libcfa_public {
[93c2e0a]80 bool temp = traceHeap;
[d46ed6e]81 traceHeap = true;
82 return temp;
83} // traceHeapOn
84
[032234bd]85bool traceHeapOff() libcfa_public {
[93c2e0a]86 bool temp = traceHeap;
[d46ed6e]87 traceHeap = false;
88 return temp;
89} // traceHeapOff
90
[032234bd]91bool traceHeapTerm() libcfa_public { return false; }
[baf608a]92
[d46ed6e]93
[95eb7cf]94static bool prtFree = false;
[d46ed6e]95
[116a2ea]96bool prtFree() {
[95eb7cf]97 return prtFree;
98} // prtFree
[5d4fa18]99
[116a2ea]100bool prtFreeOn() {
[95eb7cf]101 bool temp = prtFree;
102 prtFree = true;
[5d4fa18]103 return temp;
[95eb7cf]104} // prtFreeOn
[5d4fa18]105
[116a2ea]106bool prtFreeOff() {
[95eb7cf]107 bool temp = prtFree;
108 prtFree = false;
[5d4fa18]109 return temp;
[95eb7cf]110} // prtFreeOff
[5d4fa18]111
112
[7a2057a]113//######################### Helpers #########################
114
115
116// generic Bsearchl does not inline, so substitute with hand-coded binary-search.
117inline __attribute__((always_inline))
118static size_t Bsearchl( unsigned int key, const unsigned int vals[], size_t dim ) {
119 size_t l = 0, m, h = dim;
120 while ( l < h ) {
121 m = (l + h) / 2;
122 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
123 l = m + 1;
124 } else {
125 h = m;
126 } // if
127 } // while
128 return l;
129} // Bsearchl
[1e034d9]130
[dd23e66]131
[116a2ea]132// pause to prevent excess processor bus usage
133#if defined( __i386 ) || defined( __x86_64 )
134 #define Pause() __asm__ __volatile__ ( "pause" : : : )
135#elif defined(__ARM_ARCH)
136 #define Pause() __asm__ __volatile__ ( "YIELD" : : : )
137#else
138 #error unsupported architecture
139#endif
140
[8ee54963]141typedef volatile uintptr_t SpinLock_t;
[116a2ea]142
143static inline __attribute__((always_inline)) void lock( volatile SpinLock_t & slock ) {
144 enum { SPIN_START = 4, SPIN_END = 64 * 1024, };
145 unsigned int spin = SPIN_START;
146
147 for ( unsigned int i = 1;; i += 1 ) {
[8ee54963]148 if ( slock == 0 && __atomic_test_and_set( &slock, __ATOMIC_ACQUIRE ) == 0 ) break; // Fence
[116a2ea]149 for ( volatile unsigned int s = 0; s < spin; s += 1 ) Pause(); // exponential spin
150 spin += spin; // powers of 2
151 //if ( i % 64 == 0 ) spin += spin; // slowly increase by powers of 2
152 if ( spin > SPIN_END ) spin = SPIN_END; // cap spinning
153 } // for
154} // spin_lock
155
156static inline __attribute__((always_inline)) void unlock( volatile SpinLock_t & slock ) {
[8ee54963]157 __atomic_clear( &slock, __ATOMIC_RELEASE ); // Fence
[116a2ea]158} // spin_unlock
[e723100]159
160
[433905a]161//####################### Heap Statistics ####################
[d46ed6e]162
163
[433905a]164#ifdef __STATISTICS__
165enum { CntTriples = 12 }; // number of counter triples
166enum { MALLOC, AALLOC, CALLOC, MEMALIGN, AMEMALIGN, CMEMALIGN, RESIZE, REALLOC, FREE };
[bcb14b5]167
[433905a]168struct StatsOverlay { // overlay for iteration
169 unsigned int calls, calls_0;
170 unsigned long long int request, alloc;
171};
[d46ed6e]172
[433905a]173// Heap statistics counters.
174union HeapStatistics {
175 struct { // minimum qualification
176 unsigned int malloc_calls, malloc_0_calls;
177 unsigned long long int malloc_storage_request, malloc_storage_alloc;
178 unsigned int aalloc_calls, aalloc_0_calls;
179 unsigned long long int aalloc_storage_request, aalloc_storage_alloc;
180 unsigned int calloc_calls, calloc_0_calls;
181 unsigned long long int calloc_storage_request, calloc_storage_alloc;
182 unsigned int memalign_calls, memalign_0_calls;
183 unsigned long long int memalign_storage_request, memalign_storage_alloc;
184 unsigned int amemalign_calls, amemalign_0_calls;
185 unsigned long long int amemalign_storage_request, amemalign_storage_alloc;
186 unsigned int cmemalign_calls, cmemalign_0_calls;
187 unsigned long long int cmemalign_storage_request, cmemalign_storage_alloc;
188 unsigned int resize_calls, resize_0_calls;
189 unsigned long long int resize_storage_request, resize_storage_alloc;
190 unsigned int realloc_calls, realloc_0_calls;
191 unsigned long long int realloc_storage_request, realloc_storage_alloc;
192 unsigned int free_calls, free_null_calls;
193 unsigned long long int free_storage_request, free_storage_alloc;
[116a2ea]194 unsigned int return_pulls, return_pushes;
195 unsigned long long int return_storage_request, return_storage_alloc;
[433905a]196 unsigned int mmap_calls, mmap_0_calls; // no zero calls
197 unsigned long long int mmap_storage_request, mmap_storage_alloc;
198 unsigned int munmap_calls, munmap_0_calls; // no zero calls
199 unsigned long long int munmap_storage_request, munmap_storage_alloc;
200 };
201 struct StatsOverlay counters[CntTriples]; // overlay for iteration
202}; // HeapStatistics
[1e034d9]203
[433905a]204static_assert( sizeof(HeapStatistics) == CntTriples * sizeof(StatsOverlay),
[116a2ea]205 "Heap statistics counter-triplets does not match with array size" );
[433905a]206
207static void HeapStatisticsCtor( HeapStatistics & stats ) {
208 memset( &stats, '\0', sizeof(stats) ); // very fast
209 // for ( unsigned int i = 0; i < CntTriples; i += 1 ) {
210 // stats.counters[i].calls = stats.counters[i].calls_0 = stats.counters[i].request = stats.counters[i].alloc = 0;
211 // } // for
212} // HeapStatisticsCtor
213
214static HeapStatistics & ?+=?( HeapStatistics & lhs, const HeapStatistics & rhs ) {
215 for ( unsigned int i = 0; i < CntTriples; i += 1 ) {
216 lhs.counters[i].calls += rhs.counters[i].calls;
217 lhs.counters[i].calls_0 += rhs.counters[i].calls_0;
218 lhs.counters[i].request += rhs.counters[i].request;
219 lhs.counters[i].alloc += rhs.counters[i].alloc;
220 } // for
221 return lhs;
222} // ?+=?
223#endif // __STATISTICS__
[e723100]224
225
226// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
[31a5f418]227// Break recursion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]228enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]229
[31a5f418]230struct Heap {
[c4f68dc]231 struct Storage {
[bcb14b5]232 struct Header { // header
[c4f68dc]233 union Kind {
234 struct RealHeader {
235 union {
[bcb14b5]236 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[c4f68dc]237 union {
[31a5f418]238 // 2nd low-order bit => zero filled, 3rd low-order bit => mmapped
[9c438546]239 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
[c4f68dc]240 void * home; // allocated block points back to home locations (must overlay alignment)
241 size_t blockSize; // size for munmap (must overlay alignment)
[31a5f418]242 Storage * next; // freed block points to next freed block of same size
[c4f68dc]243 };
[9c438546]244 size_t size; // allocation size in bytes
[c4f68dc]245 };
246 };
[93c2e0a]247 } real; // RealHeader
[9c438546]248
[c4f68dc]249 struct FakeHeader {
[31a5f418]250 uintptr_t alignment; // 1st low-order bit => fake header & alignment
251 uintptr_t offset;
[93c2e0a]252 } fake; // FakeHeader
253 } kind; // Kind
[bcb14b5]254 } header; // Header
[31a5f418]255
[95eb7cf]256 char pad[libAlign() - sizeof( Header )];
[bcb14b5]257 char data[0]; // storage
[c4f68dc]258 }; // Storage
259
[31a5f418]260 static_assert( libAlign() >= sizeof( Storage ), "minimum alignment < sizeof( Storage )" );
[c4f68dc]261
[8ee54963]262 struct CALIGN FreeHeader {
263 size_t blockSize CALIGN; // size of allocations on this list
[116a2ea]264 #ifdef OWNERSHIP
265 #ifdef RETURNSPIN
266 SpinLock_t returnLock;
267 #endif // RETURNSPIN
268 Storage * returnList; // other thread return list
269 #endif // OWNERSHIP
[7a2057a]270
[116a2ea]271 Storage * freeList; // thread free list
272 Heap * homeManager; // heap owner (free storage to bucket, from bucket to heap)
273 }; // FreeHeader
[c4f68dc]274
275 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
[116a2ea]276 void * heapBuffer; // start of free storage in buffer
277 size_t heapReserve; // amount of remaining free storage in buffer
[c4f68dc]278
[116a2ea]279 #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
280 Heap * nextHeapManager; // intrusive link of existing heaps; traversed to collect statistics or check unfreed storage
281 #endif // __STATISTICS__ || __CFA_DEBUG__
282 Heap * nextFreeHeapManager; // intrusive link of free heaps from terminated threads; reused by new threads
283
284 #ifdef __CFA_DEBUG__
[8ee54963]285 ptrdiff_t allocUnfreed; // running total of allocations minus frees; can be negative
[116a2ea]286 #endif // __CFA_DEBUG__
287
288 #ifdef __STATISTICS__
289 HeapStatistics stats; // local statistic table for this heap
290 #endif // __STATISTICS__
[31a5f418]291}; // Heap
[c4f68dc]292
[116a2ea]293
294struct HeapMaster {
295 SpinLock_t extLock; // protects allocation-buffer extension
296 SpinLock_t mgrLock; // protects freeHeapManagersList, heapManagersList, heapManagersStorage, heapManagersStorageEnd
297
298 void * heapBegin; // start of heap
299 void * heapEnd; // logical end of heap
300 size_t heapRemaining; // amount of storage not allocated in the current chunk
301 size_t pageSize; // architecture pagesize
302 size_t heapExpand; // sbrk advance
303 size_t mmapStart; // cross over point for mmap
304 unsigned int maxBucketsUsed; // maximum number of buckets in use
305
306 Heap * heapManagersList; // heap-list head
307 Heap * freeHeapManagersList; // free-list head
308
309 // Heap superblocks are not linked; heaps in superblocks are linked via intrusive links.
310 Heap * heapManagersStorage; // next heap to use in heap superblock
311 Heap * heapManagersStorageEnd; // logical heap outside of superblock's end
312
313 #ifdef __STATISTICS__
314 HeapStatistics stats; // global stats for thread-local heaps to add there counters when exiting
315 unsigned long int threads_started, threads_exited; // counts threads that have started and exited
316 unsigned long int reused_heap, new_heap; // counts reusability of heaps
317 unsigned int sbrk_calls;
318 unsigned long long int sbrk_storage;
319 int stats_fd;
320 #endif // __STATISTICS__
321}; // HeapMaster
[5d4fa18]322
[e723100]323
[31a5f418]324#ifdef FASTLOOKUP
[116a2ea]325enum { LookupSizes = 65_536 + sizeof(Heap.Storage) }; // number of fast lookup sizes
[31a5f418]326static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
327#endif // FASTLOOKUP
328
[116a2ea]329static volatile bool heapMasterBootFlag = false; // trigger for first heap
330static HeapMaster heapMaster @= {}; // program global
331
332static void heapMasterCtor();
333static void heapMasterDtor();
334static Heap * getHeap();
[31a5f418]335
[5d4fa18]336
[c1f38e6c]337// Size of array must harmonize with NoBucketSizes and individual bucket sizes must be multiple of 16.
[d5d3a90]338// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
339// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
[e723100]340static const unsigned int bucketSizes[] @= { // different bucket sizes
[31a5f418]341 16 + sizeof(Heap.Storage), 32 + sizeof(Heap.Storage), 48 + sizeof(Heap.Storage), 64 + sizeof(Heap.Storage), // 4
342 96 + sizeof(Heap.Storage), 112 + sizeof(Heap.Storage), 128 + sizeof(Heap.Storage), // 3
343 160, 192, 224, 256 + sizeof(Heap.Storage), // 4
344 320, 384, 448, 512 + sizeof(Heap.Storage), // 4
345 640, 768, 896, 1_024 + sizeof(Heap.Storage), // 4
346 1_536, 2_048 + sizeof(Heap.Storage), // 2
347 2_560, 3_072, 3_584, 4_096 + sizeof(Heap.Storage), // 4
348 6_144, 8_192 + sizeof(Heap.Storage), // 2
349 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(Heap.Storage), // 8
350 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(Heap.Storage), // 8
351 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(Heap.Storage), // 8
352 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(Heap.Storage), // 8
353 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(Heap.Storage), // 8
354 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(Heap.Storage), // 8
355 655_360, 786_432, 917_504, 1_048_576 + sizeof(Heap.Storage), // 4
356 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(Heap.Storage), // 8
357 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(Heap.Storage), // 4
[5d4fa18]358};
[e723100]359
[c1f38e6c]360static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0] ), "size of bucket array wrong" );
[e723100]361
[5d4fa18]362
[116a2ea]363// extern visibility, used by runtime kernel
364libcfa_public size_t __page_size; // architecture pagesize
365libcfa_public int __map_prot; // common mmap/mprotect protection
[c4f68dc]366
[19e5d65d]367
[116a2ea]368// Thread-local storage is allocated lazily when the storage is accessed.
369static __thread size_t PAD1 CALIGN TLSMODEL __attribute__(( unused )); // protect false sharing
[8ee54963]370static __thread Heap * heapManager CALIGN TLSMODEL;
[07b59ec]371static __thread bool heapManagerBootFlag CALIGN TLSMODEL = false;
[116a2ea]372static __thread size_t PAD2 CALIGN TLSMODEL __attribute__(( unused )); // protect further false sharing
[19e5d65d]373
[31a5f418]374
[116a2ea]375// declare helper functions for HeapMaster
376void noMemory(); // forward, called by "builtin_new" when malloc returns 0
377
378
379void heapMasterCtor() with( heapMaster ) {
380 // Singleton pattern to initialize heap master
381
382 verify( bucketSizes[0] == (16 + sizeof(Heap.Storage)) );
383
384 __page_size = sysconf( _SC_PAGESIZE );
385 __map_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
386
[7a2057a]387 extLock = 0;
388 mgrLock = 0;
[116a2ea]389
390 char * end = (char *)sbrk( 0 );
391 heapBegin = heapEnd = sbrk( (char *)ceiling2( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment
392 heapRemaining = 0;
393 heapExpand = malloc_expansion();
394 mmapStart = malloc_mmap_start();
395
396 // find the closest bucket size less than or equal to the mmapStart size
397 maxBucketsUsed = Bsearchl( mmapStart, bucketSizes, NoBucketSizes ); // binary search
398
399 verify( (mmapStart >= pageSize) && (bucketSizes[NoBucketSizes - 1] >= mmapStart) );
400 verify( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
401 verify( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
402
403 heapManagersList = 0p;
404 freeHeapManagersList = 0p;
405
406 heapManagersStorage = 0p;
407 heapManagersStorageEnd = 0p;
408
409 #ifdef __STATISTICS__
410 HeapStatisticsCtor( stats ); // clear statistic counters
411 threads_started = threads_exited = 0;
412 reused_heap = new_heap = 0;
413 sbrk_calls = sbrk_storage = 0;
414 stats_fd = STDERR_FILENO;
415 #endif // __STATISTICS__
416
417 #ifdef FASTLOOKUP
418 for ( unsigned int i = 0, idx = 0; i < LookupSizes; i += 1 ) {
419 if ( i > bucketSizes[idx] ) idx += 1;
420 lookup[i] = idx;
421 verify( i <= bucketSizes[idx] );
422 verify( (i <= 32 && idx == 0) || (i > bucketSizes[idx - 1]) );
423 } // for
424 #endif // FASTLOOKUP
425
426 heapMasterBootFlag = true;
427} // heapMasterCtor
428
429
[7671c6d]430#define NO_MEMORY_MSG "**** Error **** insufficient heap memory available to allocate %zd new bytes."
[116a2ea]431
432Heap * getHeap() with( heapMaster ) {
433 Heap * heap;
434 if ( freeHeapManagersList ) { // free heap for reused ?
435 heap = freeHeapManagersList;
436 freeHeapManagersList = heap->nextFreeHeapManager;
437
438 #ifdef __STATISTICS__
439 reused_heap += 1;
440 #endif // __STATISTICS__
441 } else { // free heap not found, create new
442 // Heap size is about 12K, FreeHeader (128 bytes because of cache alignment) * NoBucketSizes (91) => 128 heaps *
443 // 12K ~= 120K byte superblock. Where 128-heap superblock handles a medium sized multi-processor server.
444 size_t remaining = heapManagersStorageEnd - heapManagersStorage; // remaining free heaps in superblock
[8ee54963]445 if ( ! heapManagersStorage || remaining == 0 ) {
[116a2ea]446 // Each block of heaps is a multiple of the number of cores on the computer.
447 int HeapDim = get_nprocs(); // get_nprocs_conf does not work
448 size_t size = HeapDim * sizeof( Heap );
449
450 heapManagersStorage = (Heap *)mmap( 0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 );
451 if ( unlikely( heapManagersStorage == (Heap *)MAP_FAILED ) ) { // failed ?
452 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, size ); // no memory
453 // Do not call strerror( errno ) as it may call malloc.
[7671c6d]454 abort( "**** Error **** attempt to allocate block of heaps of size %zu bytes and mmap failed with errno %d.", size, errno );
[116a2ea]455 } // if
456 heapManagersStorageEnd = &heapManagersStorage[HeapDim]; // outside array
457 } // if
458
459 heap = heapManagersStorage;
460 heapManagersStorage = heapManagersStorage + 1; // bump next heap
461
462 #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
463 heap->nextHeapManager = heapManagersList;
464 #endif // __STATISTICS__ || __CFA_DEBUG__
465 heapManagersList = heap;
466
467 #ifdef __STATISTICS__
468 new_heap += 1;
469 #endif // __STATISTICS__
470
471 with( *heap ) {
472 for ( unsigned int j = 0; j < NoBucketSizes; j += 1 ) { // initialize free lists
473 #ifdef OWNERSHIP
474 #ifdef RETURNSPIN
[7a2057a]475 freeLists[j].returnLock = 0;
[116a2ea]476 freeLists[j].returnList = 0p;
[7a2057a]477 #endif // RETURNSPIN
[116a2ea]478 #endif // OWNERSHIP
[7a2057a]479
[116a2ea]480 freeLists[j].freeList = 0p;
481 freeLists[j].homeManager = heap;
482 freeLists[j].blockSize = bucketSizes[j];
483 } // for
[88ac843e]484
[116a2ea]485 heapBuffer = 0p;
486 heapReserve = 0;
487 nextFreeHeapManager = 0p;
488 #ifdef __CFA_DEBUG__
489 allocUnfreed = 0;
490 #endif // __CFA_DEBUG__
[07b59ec]491 heapManagerBootFlag = true;
[116a2ea]492 } // with
[433905a]493 } // if
[5951956]494
[116a2ea]495 return heap;
496} // getHeap
497
498
499void heapManagerCtor() libcfa_public {
500 if ( unlikely( ! heapMasterBootFlag ) ) heapMasterCtor();
501
[0bdfcc3]502 lock( heapMaster.mgrLock ); // protect heapMaster counters
[116a2ea]503
[07b59ec]504 assert( ! heapManagerBootFlag );
505
[116a2ea]506 // get storage for heap manager
507
508 heapManager = getHeap();
509
510 #ifdef __STATISTICS__
511 HeapStatisticsCtor( heapManager->stats ); // heap local
512 heapMaster.threads_started += 1;
513 #endif // __STATISTICS__
514
515 unlock( heapMaster.mgrLock );
516} // heapManagerCtor
517
518
519void heapManagerDtor() libcfa_public {
[07b59ec]520 if ( unlikely( ! heapManagerBootFlag ) ) return; // thread never used ?
521
[116a2ea]522 lock( heapMaster.mgrLock );
523
524 // place heap on list of free heaps for reusability
525 heapManager->nextFreeHeapManager = heapMaster.freeHeapManagersList;
526 heapMaster.freeHeapManagersList = heapManager;
527
528 #ifdef __STATISTICS__
529 heapMaster.threads_exited += 1;
530 #endif // __STATISTICS__
531
532 // Do not set heapManager to NULL because it is used after Cforall is shutdown but before the program shuts down.
533
[07b59ec]534 heapManagerBootFlag = false;
[116a2ea]535 unlock( heapMaster.mgrLock );
536} // heapManagerDtor
537
538
539//####################### Memory Allocation Routines Helpers ####################
540
[31a5f418]541
[433905a]542extern int cfa_main_returned; // from interpose.cfa
543extern "C" {
[07b59ec]544 void memory_startup( void ) { // singleton => called once at start of program
[116a2ea]545 if ( ! heapMasterBootFlag ) heapManagerCtor(); // sanity check
546 } // memory_startup
547
548 void memory_shutdown( void ) {
549 heapManagerDtor();
550 } // memory_shutdown
551
[433905a]552 void heapAppStart() { // called by __cfaabi_appready_startup
[116a2ea]553 verify( heapManager );
554 #ifdef __CFA_DEBUG__
555 heapManager->allocUnfreed = 0; // clear prior allocation counts
556 #endif // __CFA_DEBUG__
557
558 #ifdef __STATISTICS__
559 HeapStatisticsCtor( heapManager->stats ); // clear prior statistic counters
560 #endif // __STATISTICS__
[433905a]561 } // heapAppStart
[31a5f418]562
[433905a]563 void heapAppStop() { // called by __cfaabi_appready_startdown
[116a2ea]564 fclose( stdin ); fclose( stdout ); // free buffer storage
565 if ( ! cfa_main_returned ) return; // do not check unfreed storage if exit called
566
567 #ifdef __CFA_DEBUG__
568 // allocUnfreed is set to 0 when a heap is created and it accumulates any unfreed storage during its multiple thread
569 // usages. At the end, add up each heap allocUnfreed value across all heaps to get the total unfreed storage.
[8ee54963]570 ptrdiff_t allocUnfreed = 0;
[116a2ea]571 for ( Heap * heap = heapMaster.heapManagersList; heap; heap = heap->nextHeapManager ) {
572 allocUnfreed += heap->allocUnfreed;
573 } // for
574
575 allocUnfreed -= malloc_unfreed(); // subtract any user specified unfreed storage
576 if ( allocUnfreed > 0 ) {
577 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
578 char helpText[512];
579 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[8ee54963]580 "CFA warning (UNIX pid:%ld) : program terminating with %td(%#tx) bytes of storage allocated but not freed.\n"
[116a2ea]581 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
582 (long int)getpid(), allocUnfreed, allocUnfreed ); // always print the UNIX pid
583 } // if
584 #endif // __CFA_DEBUG__
[433905a]585 } // heapAppStop
586} // extern "C"
[31a5f418]587
588
[433905a]589#ifdef __STATISTICS__
[31a5f418]590static HeapStatistics stats; // zero filled
[c4f68dc]591
[31a5f418]592#define prtFmt \
593 "\nHeap statistics: (storage request / allocation)\n" \
594 " malloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
595 " aalloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
596 " calloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
597 " memalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
598 " amemalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
599 " cmemalign >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
600 " resize >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
601 " realloc >0 calls %'u; 0 calls %'u; storage %'llu / %'llu bytes\n" \
602 " free !null calls %'u; null calls %'u; storage %'llu / %'llu bytes\n" \
[116a2ea]603 " return pulls %'u; pushes %'u; storage %'llu / %'llu bytes\n" \
604 " sbrk calls %'u; storage %'llu bytes\n" \
605 " mmap calls %'u; storage %'llu / %'llu bytes\n" \
606 " munmap calls %'u; storage %'llu / %'llu bytes\n" \
607 " threads started %'lu; exited %'lu\n" \
608 " heaps new %'lu; reused %'lu\n"
[31a5f418]609
[c4f68dc]610// Use "write" because streams may be shutdown when calls are made.
[116a2ea]611static int printStats( HeapStatistics & stats ) with( heapMaster, stats ) { // see malloc_stats
[31a5f418]612 char helpText[sizeof(prtFmt) + 1024]; // space for message and values
[116a2ea]613 return __cfaabi_bits_print_buffer( stats_fd, helpText, sizeof(helpText), prtFmt,
614 malloc_calls, malloc_0_calls, malloc_storage_request, malloc_storage_alloc,
615 aalloc_calls, aalloc_0_calls, aalloc_storage_request, aalloc_storage_alloc,
616 calloc_calls, calloc_0_calls, calloc_storage_request, calloc_storage_alloc,
617 memalign_calls, memalign_0_calls, memalign_storage_request, memalign_storage_alloc,
618 amemalign_calls, amemalign_0_calls, amemalign_storage_request, amemalign_storage_alloc,
619 cmemalign_calls, cmemalign_0_calls, cmemalign_storage_request, cmemalign_storage_alloc,
620 resize_calls, resize_0_calls, resize_storage_request, resize_storage_alloc,
621 realloc_calls, realloc_0_calls, realloc_storage_request, realloc_storage_alloc,
622 free_calls, free_null_calls, free_storage_request, free_storage_alloc,
623 return_pulls, return_pushes, return_storage_request, return_storage_alloc,
[31a5f418]624 sbrk_calls, sbrk_storage,
[116a2ea]625 mmap_calls, mmap_storage_request, mmap_storage_alloc,
626 munmap_calls, munmap_storage_request, munmap_storage_alloc,
627 threads_started, threads_exited,
628 new_heap, reused_heap
[c4f68dc]629 );
[d46ed6e]630} // printStats
[c4f68dc]631
[31a5f418]632#define prtFmtXML \
633 "<malloc version=\"1\">\n" \
634 "<heap nr=\"0\">\n" \
635 "<sizes>\n" \
636 "</sizes>\n" \
637 "<total type=\"malloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
638 "<total type=\"aalloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
639 "<total type=\"calloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
640 "<total type=\"memalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
641 "<total type=\"amemalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
642 "<total type=\"cmemalign\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
643 "<total type=\"resize\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
644 "<total type=\"realloc\" >0 count=\"%'u;\" 0 count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
645 "<total type=\"free\" !null=\"%'u;\" 0 null=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[116a2ea]646 "<total type=\"return\" pulls=\"%'u;\" 0 pushes=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[31a5f418]647 "<total type=\"sbrk\" count=\"%'u;\" size=\"%'llu\"/> bytes\n" \
648 "<total type=\"mmap\" count=\"%'u;\" size=\"%'llu / %'llu\" / > bytes\n" \
649 "<total type=\"munmap\" count=\"%'u;\" size=\"%'llu / %'llu\"/> bytes\n" \
[116a2ea]650 "<total type=\"threads\" started=\"%'lu;\" exited=\"%'lu\"/>\n" \
651 "<total type=\"heaps\" new=\"%'lu;\" reused=\"%'lu\"/>\n" \
[31a5f418]652 "</malloc>"
653
[116a2ea]654static int printStatsXML( HeapStatistics & stats, FILE * stream ) with( heapMaster, stats ) { // see malloc_info
[31a5f418]655 char helpText[sizeof(prtFmtXML) + 1024]; // space for message and values
656 return __cfaabi_bits_print_buffer( fileno( stream ), helpText, sizeof(helpText), prtFmtXML,
[116a2ea]657 malloc_calls, malloc_0_calls, malloc_storage_request, malloc_storage_alloc,
658 aalloc_calls, aalloc_0_calls, aalloc_storage_request, aalloc_storage_alloc,
659 calloc_calls, calloc_0_calls, calloc_storage_request, calloc_storage_alloc,
660 memalign_calls, memalign_0_calls, memalign_storage_request, memalign_storage_alloc,
661 amemalign_calls, amemalign_0_calls, amemalign_storage_request, amemalign_storage_alloc,
662 cmemalign_calls, cmemalign_0_calls, cmemalign_storage_request, cmemalign_storage_alloc,
663 resize_calls, resize_0_calls, resize_storage_request, resize_storage_alloc,
664 realloc_calls, realloc_0_calls, realloc_storage_request, realloc_storage_alloc,
665 free_calls, free_null_calls, free_storage_request, free_storage_alloc,
666 return_pulls, return_pushes, return_storage_request, return_storage_alloc,
[31a5f418]667 sbrk_calls, sbrk_storage,
[116a2ea]668 mmap_calls, mmap_storage_request, mmap_storage_alloc,
669 munmap_calls, munmap_storage_request, munmap_storage_alloc,
670 threads_started, threads_exited,
671 new_heap, reused_heap
[c4f68dc]672 );
[d46ed6e]673} // printStatsXML
[95eb7cf]674
[116a2ea]675static HeapStatistics & collectStats( HeapStatistics & stats ) with( heapMaster ) {
676 lock( mgrLock );
[433905a]677
[116a2ea]678 stats += heapMaster.stats;
679 for ( Heap * heap = heapManagersList; heap; heap = heap->nextHeapManager ) {
680 stats += heap->stats;
681 } // for
[433905a]682
[116a2ea]683 unlock( mgrLock );
684 return stats;
685} // collectStats
686#endif // __STATISTICS__
[1e034d9]687
688
[116a2ea]689static bool setMmapStart( size_t value ) with( heapMaster ) { // true => mmapped, false => sbrk
[ad2dced]690 if ( value < __page_size || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]691 mmapStart = value; // set global
692
693 // find the closest bucket size less than or equal to the mmapStart size
[116a2ea]694 maxBucketsUsed = Bsearchl( mmapStart, bucketSizes, NoBucketSizes ); // binary search
[7a2057a]695
[116a2ea]696 verify( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
697 verify( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]698 return true;
[95eb7cf]699} // setMmapStart
700
701
[cfbc703d]702// <-------+----------------------------------------------------> bsize (bucket size)
703// |header |addr
704//==================================================================================
705// align/offset |
706// <-----------------<------------+-----------------------------> bsize (bucket size)
707// |fake-header | addr
[19e5d65d]708#define HeaderAddr( addr ) ((Heap.Storage.Header *)( (char *)addr - sizeof(Heap.Storage) ))
709#define RealHeader( header ) ((Heap.Storage.Header *)((char *)header - header->kind.fake.offset))
[cfbc703d]710
711// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
712// |header |addr
713//==================================================================================
714// align/offset |
715// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
716// |fake-header |addr
[19e5d65d]717#define DataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
[cfbc703d]718
719
[116a2ea]720inline __attribute__((always_inline))
721static void checkAlign( size_t alignment ) {
[19e5d65d]722 if ( unlikely( alignment < libAlign() || ! is_pow2( alignment ) ) ) {
723 abort( "**** Error **** alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
[cfbc703d]724 } // if
725} // checkAlign
726
727
[116a2ea]728inline __attribute__((always_inline))
729static void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]730 if ( unlikely( check ) ) { // bad address ?
[19e5d65d]731 abort( "**** Error **** attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]732 "Possible cause is duplicate free on same block or overwriting of memory.",
733 name, addr );
[b6830d74]734 } // if
[c4f68dc]735} // checkHeader
736
[95eb7cf]737
[19e5d65d]738// Manipulate sticky bits stored in unused 3 low-order bits of an address.
739// bit0 => alignment => fake header
740// bit1 => zero filled (calloc)
741// bit2 => mapped allocation versus sbrk
742#define StickyBits( header ) (((header)->kind.real.blockSize & 0x7))
743#define ClearStickyBits( addr ) (typeof(addr))((uintptr_t)(addr) & ~7)
744#define MarkAlignmentBit( align ) ((align) | 1)
745#define AlignmentBit( header ) ((((header)->kind.fake.alignment) & 1))
746#define ClearAlignmentBit( header ) (((header)->kind.fake.alignment) & ~1)
747#define ZeroFillBit( header ) ((((header)->kind.real.blockSize) & 2))
748#define ClearZeroFillBit( header ) ((((header)->kind.real.blockSize) &= ~2))
749#define MarkZeroFilledBit( header ) ((header)->kind.real.blockSize |= 2)
750#define MmappedBit( header ) ((((header)->kind.real.blockSize) & 4))
751#define MarkMmappedBit( size ) ((size) | 4)
752
753
[116a2ea]754inline __attribute__((always_inline))
755static void fakeHeader( Heap.Storage.Header *& header, size_t & alignment ) {
[19e5d65d]756 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
757 alignment = ClearAlignmentBit( header ); // clear flag from value
[c4f68dc]758 #ifdef __CFA_DEBUG__
759 checkAlign( alignment ); // check alignment
760 #endif // __CFA_DEBUG__
[19e5d65d]761 header = RealHeader( header ); // backup from fake to real header
[d5d3a90]762 } else {
[c1f38e6c]763 alignment = libAlign(); // => no fake header
[b6830d74]764 } // if
[c4f68dc]765} // fakeHeader
766
[95eb7cf]767
[116a2ea]768inline __attribute__((always_inline))
769static bool headers( const char name[] __attribute__(( unused )), void * addr, Heap.Storage.Header *& header,
770 Heap.FreeHeader *& freeHead, size_t & size, size_t & alignment ) with( heapMaster, *heapManager ) {
[19e5d65d]771 header = HeaderAddr( addr );
[c4f68dc]772
773 #ifdef __CFA_DEBUG__
[31a5f418]774 checkHeader( header < (Heap.Storage.Header *)heapBegin, name, addr ); // bad low address ?
[c4f68dc]775 #endif // __CFA_DEBUG__
[b6830d74]776
[19e5d65d]777 if ( likely( ! StickyBits( header ) ) ) { // no sticky bits ?
778 freeHead = (Heap.FreeHeader *)(header->kind.real.home);
779 alignment = libAlign();
780 } else {
781 fakeHeader( header, alignment );
[433905a]782 if ( unlikely( MmappedBit( header ) ) ) { // mmapped ?
783 verify( addr < heapBegin || heapEnd < addr );
[19e5d65d]784 size = ClearStickyBits( header->kind.real.blockSize ); // mmap size
785 return true;
786 } // if
787
788 freeHead = (Heap.FreeHeader *)(ClearStickyBits( header->kind.real.home ));
789 } // if
790 size = freeHead->blockSize;
791
[c4f68dc]792 #ifdef __CFA_DEBUG__
[31a5f418]793 checkHeader( header < (Heap.Storage.Header *)heapBegin || (Heap.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]794
[116a2ea]795 Heap * homeManager;
[433905a]796 if ( unlikely( freeHead == 0p || // freed and only free-list node => null link
797 // freed and link points at another free block not to a bucket in the bucket array.
[116a2ea]798 (homeManager = freeHead->homeManager, freeHead < &homeManager->freeLists[0] ||
799 &homeManager->freeLists[NoBucketSizes] <= freeHead ) ) ) {
[433905a]800 abort( "**** Error **** attempt to %s storage %p with corrupted header.\n"
801 "Possible cause is duplicate free on same block or overwriting of header information.",
802 name, addr );
803 } // if
[c4f68dc]804 #endif // __CFA_DEBUG__
[19e5d65d]805
[bcb14b5]806 return false;
[c4f68dc]807} // headers
808
809
[116a2ea]810static void * master_extend( size_t size ) with( heapMaster ) {
811 lock( extLock );
[19e5d65d]812
[b6830d74]813 ptrdiff_t rem = heapRemaining - size;
[a7662b8]814 if ( unlikely( rem < 0 ) ) { // negative ?
[c4f68dc]815 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
816
[116a2ea]817 size_t increase = ceiling2( size > heapExpand ? size : heapExpand, libAlign() );
818 if ( unlikely( sbrk( increase ) == (void *)-1 ) ) { // failed, no memory ?
819 unlock( extLock );
[0bdfcc3]820 abort( NO_MEMORY_MSG, size ); // give up
[92aca37]821 } // if
[7671c6d]822
823 // Make storage executable for thunks.
824 if ( mprotect( (char *)heapEnd + heapRemaining, increase, __map_prot ) ) {
825 unlock( extLock );
826 abort( "**** Error **** attempt to make heap storage executable for thunks and mprotect failed with errno %d.", errno );
827 } // if
828
[116a2ea]829 rem = heapRemaining + increase - size;
[19e5d65d]830
[bcb14b5]831 #ifdef __STATISTICS__
[c4f68dc]832 sbrk_calls += 1;
833 sbrk_storage += increase;
[bcb14b5]834 #endif // __STATISTICS__
[b6830d74]835 } // if
[c4f68dc]836
[31a5f418]837 Heap.Storage * block = (Heap.Storage *)heapEnd;
[b6830d74]838 heapRemaining = rem;
839 heapEnd = (char *)heapEnd + size;
[116a2ea]840
841 unlock( extLock );
842 return block;
843} // master_extend
844
845
846__attribute__(( noinline ))
847static void * manager_extend( size_t size ) with( *heapManager ) {
848 ptrdiff_t rem = heapReserve - size;
849
[a7662b8]850 if ( unlikely( rem < 0 ) ) { // negative ?
[116a2ea]851 // If the size requested is bigger than the current remaining reserve, use the current reserve to populate
852 // smaller freeLists, and increase the reserve.
853
854 rem = heapReserve; // positive
855
[a7662b8]856 if ( (unsigned int)rem >= bucketSizes[0] ) { // minimal size ? otherwise ignore
[116a2ea]857 size_t bucket;
858 #ifdef FASTLOOKUP
859 if ( likely( rem < LookupSizes ) ) bucket = lookup[rem];
860 #endif // FASTLOOKUP
861 bucket = Bsearchl( rem, bucketSizes, heapMaster.maxBucketsUsed );
862 verify( 0 <= bucket && bucket <= heapMaster.maxBucketsUsed );
863 Heap.FreeHeader * freeHead = &(freeLists[bucket]);
864
[a7662b8]865 // The remaining storage may not be bucket size, whereas all other allocations are. Round down to previous
[116a2ea]866 // bucket size in this case.
867 if ( unlikely( freeHead->blockSize > (size_t)rem ) ) freeHead -= 1;
868 Heap.Storage * block = (Heap.Storage *)heapBuffer;
869
870 block->header.kind.real.next = freeHead->freeList; // push on stack
871 freeHead->freeList = block;
872 } // if
873
874 size_t increase = ceiling( size > ( heapMaster.heapExpand / 10 ) ? size : ( heapMaster.heapExpand / 10 ), libAlign() );
875 heapBuffer = master_extend( increase );
876 rem = increase - size;
877 } // if
878
879 Heap.Storage * block = (Heap.Storage *)heapBuffer;
880 heapReserve = rem;
881 heapBuffer = (char *)heapBuffer + size;
882
[b6830d74]883 return block;
[116a2ea]884} // manager_extend
885
886
887#define BOOT_HEAP_MANAGER \
888 if ( unlikely( ! heapMasterBootFlag ) ) { \
889 heapManagerCtor(); /* trigger for first heap */ \
890 } /* if */
891
892#ifdef __STATISTICS__
893#define STAT_NAME __counter
894#define STAT_PARM , unsigned int STAT_NAME
895#define STAT_ARG( name ) , name
896#define STAT_0_CNT( counter ) stats.counters[counter].calls_0 += 1
897#else
898#define STAT_NAME
899#define STAT_PARM
900#define STAT_ARG( name )
901#define STAT_0_CNT( counter )
902#endif // __STATISTICS__
903
[07b59ec]904// Uncomment to get allocation addresses for a 0-sized allocation rather than a null pointer.
905//#define __NONNULL_0_ALLOC__
906#if ! defined( __NONNULL_0_ALLOC__ )
907#define __NULL_0_ALLOC__ unlikely( size == 0 ) || /* 0 BYTE ALLOCATION RETURNS NULL POINTER */
908#else
909#define __NULL_0_ALLOC__
910#endif // __NONNULL_0_ALLOC__
911
[116a2ea]912#define PROLOG( counter, ... ) \
913 BOOT_HEAP_MANAGER; \
[07b59ec]914 if ( \
915 __NULL_0_ALLOC__ \
[116a2ea]916 unlikely( size > ULONG_MAX - sizeof(Heap.Storage) ) ) { /* error check */ \
917 STAT_0_CNT( counter ); \
918 __VA_ARGS__; \
919 return 0p; \
920 } /* if */
921
[c4f68dc]922
[116a2ea]923#define SCRUB_SIZE 1024lu
924// Do not use '\xfe' for scrubbing because dereferencing an address composed of it causes a SIGSEGV *without* a valid IP
925// pointer in the interrupt frame.
926#define SCRUB '\xff'
[c4f68dc]927
[116a2ea]928static void * doMalloc( size_t size STAT_PARM ) libcfa_nopreempt with( *heapManager ) {
929 PROLOG( STAT_NAME );
930
931 verify( heapManager );
932 Heap.Storage * block; // pointer to new block of storage
[c4f68dc]933
[b6830d74]934 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
935 // along with the block and is a multiple of the alignment size.
[31a5f418]936 size_t tsize = size + sizeof(Heap.Storage);
[19e5d65d]937
[116a2ea]938 #ifdef __STATISTICS__
939 stats.counters[STAT_NAME].calls += 1;
940 stats.counters[STAT_NAME].request += size;
941 #endif // __STATISTICS__
942
943 #ifdef __CFA_DEBUG__
944 allocUnfreed += size;
945 #endif // __CFA_DEBUG__
946
947 if ( likely( tsize < heapMaster.mmapStart ) ) { // small size => sbrk
948 size_t bucket;
[e723100]949 #ifdef FASTLOOKUP
[116a2ea]950 if ( likely( tsize < LookupSizes ) ) bucket = lookup[tsize];
[e723100]951 else
952 #endif // FASTLOOKUP
[116a2ea]953 bucket = Bsearchl( tsize, bucketSizes, heapMaster.maxBucketsUsed );
954 verify( 0 <= bucket && bucket <= heapMaster.maxBucketsUsed );
955 Heap.FreeHeader * freeHead = &freeLists[bucket];
956
957 verify( freeHead <= &freeLists[heapMaster.maxBucketsUsed] ); // subscripting error ?
958 verify( tsize <= freeHead->blockSize ); // search failure ?
959
960 tsize = freeHead->blockSize; // total space needed for request
961 #ifdef __STATISTICS__
962 stats.counters[STAT_NAME].alloc += tsize;
963 #endif // __STATISTICS__
[c4f68dc]964
[116a2ea]965 block = freeHead->freeList; // remove node from stack
[95eb7cf]966 if ( unlikely( block == 0p ) ) { // no free block ?
[8ee54963]967 // Freelist for this size is empty, so check return list (OWNERSHIP), or carve it out of the heap if there
[7a2057a]968 // is enough left, or get some more heap storage and carve it off.
[116a2ea]969 #ifdef OWNERSHIP
[7a2057a]970 if ( unlikely( freeHead->returnList ) ) { // race, get next time if lose race
971 #ifdef RETURNSPIN
972 lock( freeHead->returnLock );
973 block = freeHead->returnList;
974 freeHead->returnList = 0p;
975 unlock( freeHead->returnLock );
976 #else
977 block = __atomic_exchange_n( &freeHead->returnList, 0p, __ATOMIC_SEQ_CST );
978 #endif // RETURNSPIN
979
980 verify( block );
981 #ifdef __STATISTICS__
982 stats.return_pulls += 1;
983 #endif // __STATISTICS__
984
985 // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
[116a2ea]986
[7a2057a]987 freeHead->freeList = block->header.kind.real.next; // merge returnList into freeHead
988 } else {
[116a2ea]989 #endif // OWNERSHIP
990 // Do not leave kernel thread as manager_extend accesses heapManager.
991 disable_interrupts();
992 block = (Heap.Storage *)manager_extend( tsize ); // mutual exclusion on call
993 enable_interrupts( false );
994
995 // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
996
997 #ifdef __CFA_DEBUG__
[7a2057a]998 // Scrub new memory so subsequent uninitialized usages might fail. Only scrub the first SCRUB_SIZE bytes.
[116a2ea]999 memset( block->data, SCRUB, min( SCRUB_SIZE, tsize - sizeof(Heap.Storage) ) );
1000 #endif // __CFA_DEBUG__
1001 #ifdef OWNERSHIP
1002 } // if
1003 #endif // OWNERSHIP
[c4f68dc]1004 } else {
[116a2ea]1005 // Memory is scrubbed in doFree.
1006 freeHead->freeList = block->header.kind.real.next;
[c4f68dc]1007 } // if
1008
[116a2ea]1009 block->header.kind.real.home = freeHead; // pointer back to free list of apropriate size
[bcb14b5]1010 } else { // large size => mmap
[ad2dced]1011 if ( unlikely( size > ULONG_MAX - __page_size ) ) return 0p;
1012 tsize = ceiling2( tsize, __page_size ); // must be multiple of page size
[7a2057a]1013
[c4f68dc]1014 #ifdef __STATISTICS__
[116a2ea]1015 stats.counters[STAT_NAME].alloc += tsize;
1016 stats.mmap_calls += 1;
1017 stats.mmap_storage_request += size;
1018 stats.mmap_storage_alloc += tsize;
[c4f68dc]1019 #endif // __STATISTICS__
[92aca37]1020
[116a2ea]1021 disable_interrupts();
1022 block = (Heap.Storage *)mmap( 0, tsize, __map_prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0 );
1023 enable_interrupts( false );
1024
1025 // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1026
1027 if ( unlikely( block == (Heap.Storage *)MAP_FAILED ) ) { // failed ?
[92aca37]1028 if ( errno == ENOMEM ) abort( NO_MEMORY_MSG, tsize ); // no memory
[c4f68dc]1029 // Do not call strerror( errno ) as it may call malloc.
[7a2057a]1030 abort( "**** Error **** attempt to allocate large object (> %zu) of size %zu bytes and mmap failed with errno %d.",
1031 size, heapMaster.mmapStart, errno );
[116a2ea]1032 } // if
1033 block->header.kind.real.blockSize = MarkMmappedBit( tsize ); // storage size for munmap
1034
[bcb14b5]1035 #ifdef __CFA_DEBUG__
[7a2057a]1036 // Scrub new memory so subsequent uninitialized usages might fail. Only scrub the first SCRUB_SIZE bytes. The
1037 // rest of the storage set to 0 by mmap.
[116a2ea]1038 memset( block->data, SCRUB, min( SCRUB_SIZE, tsize - sizeof(Heap.Storage) ) );
[bcb14b5]1039 #endif // __CFA_DEBUG__
1040 } // if
[c4f68dc]1041
[9c438546]1042 block->header.kind.real.size = size; // store allocation size
[95eb7cf]1043 void * addr = &(block->data); // adjust off header to user bytes
[c1f38e6c]1044 verify( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[c4f68dc]1045
1046 #ifdef __CFA_DEBUG__
[bcb14b5]1047 if ( traceHeap() ) {
[433905a]1048 char helpText[64];
1049 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
1050 "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize ); // print debug/nodebug
[bcb14b5]1051 } // if
[c4f68dc]1052 #endif // __CFA_DEBUG__
1053
[116a2ea]1054// poll_interrupts(); // call rollforward
1055
[95eb7cf]1056 return addr;
[c4f68dc]1057} // doMalloc
1058
1059
[116a2ea]1060static void doFree( void * addr ) libcfa_nopreempt with( *heapManager ) {
1061 verify( addr );
1062
1063 // detect free after thread-local storage destruction and use global stats in that case
[c4f68dc]1064
[31a5f418]1065 Heap.Storage.Header * header;
[116a2ea]1066 Heap.FreeHeader * freeHead;
1067 size_t size, alignment;
1068
1069 bool mapped = headers( "free", addr, header, freeHead, size, alignment );
1070 #if defined( __STATISTICS__ ) || defined( __CFA_DEBUG__ )
1071 size_t rsize = header->kind.real.size; // optimization
1072 #endif // __STATISTICS__ || __CFA_DEBUG__
1073
1074 #ifdef __STATISTICS__
1075 stats.free_storage_request += rsize;
1076 stats.free_storage_alloc += size;
1077 #endif // __STATISTICS__
1078
1079 #ifdef __CFA_DEBUG__
1080 allocUnfreed -= rsize;
1081 #endif // __CFA_DEBUG__
[c4f68dc]1082
[116a2ea]1083 if ( unlikely( mapped ) ) { // mmapped ?
[c4f68dc]1084 #ifdef __STATISTICS__
[116a2ea]1085 stats.munmap_calls += 1;
1086 stats.munmap_storage_request += rsize;
1087 stats.munmap_storage_alloc += size;
[c4f68dc]1088 #endif // __STATISTICS__
[116a2ea]1089
1090 // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
1091
1092 // Does not matter where this storage is freed.
1093 if ( unlikely( munmap( header, size ) == -1 ) ) {
1094 // Do not call strerror( errno ) as it may call malloc.
[5951956]1095 abort( "**** Error **** attempt to deallocate large object %p and munmap failed with errno %d.\n"
[116a2ea]1096 "Possible cause is invalid delete pointer: either not allocated or with corrupt header.",
1097 addr, errno );
[c4f68dc]1098 } // if
[bcb14b5]1099 } else {
[c4f68dc]1100 #ifdef __CFA_DEBUG__
[116a2ea]1101 // memset is NOT always inlined!
1102 disable_interrupts();
1103 // Scrub old memory so subsequent usages might fail. Only scrub the first/last SCRUB_SIZE bytes.
1104 char * data = ((Heap.Storage *)header)->data; // data address
1105 size_t dsize = size - sizeof(Heap.Storage); // data size
1106 if ( dsize <= SCRUB_SIZE * 2 ) {
1107 memset( data, SCRUB, dsize ); // scrub all
1108 } else {
1109 memset( data, SCRUB, SCRUB_SIZE ); // scrub front
1110 memset( data + dsize - SCRUB_SIZE, SCRUB, SCRUB_SIZE ); // scrub back
1111 } // if
1112 enable_interrupts( false );
[c4f68dc]1113 #endif // __CFA_DEBUG__
1114
[7a2057a]1115 #ifdef OWNERSHIP
[116a2ea]1116 if ( likely( heapManager == freeHead->homeManager ) ) { // belongs to this thread
1117 header->kind.real.next = freeHead->freeList; // push on stack
1118 freeHead->freeList = (Heap.Storage *)header;
1119 } else { // return to thread owner
1120 verify( heapManager );
1121
1122 #ifdef RETURNSPIN
1123 lock( freeHead->returnLock );
1124 header->kind.real.next = freeHead->returnList; // push to bucket return list
1125 freeHead->returnList = (Heap.Storage *)header;
1126 unlock( freeHead->returnLock );
1127 #else // lock free
1128 header->kind.real.next = freeHead->returnList; // link new node to top node
1129 // CAS resets header->kind.real.next = freeHead->returnList on failure
[7a2057a]1130 while ( ! __atomic_compare_exchange_n( &freeHead->returnList, &header->kind.real.next, (Heap.Storage *)header,
[116a2ea]1131 false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) );
[8ee54963]1132
1133 #ifdef __STATISTICS__
1134 stats.return_pushes += 1;
1135 stats.return_storage_request += rsize;
1136 stats.return_storage_alloc += size;
1137 #endif // __STATISTICS__
[116a2ea]1138 #endif // RETURNSPIN
[7a2057a]1139 } // if
[116a2ea]1140
[7a2057a]1141 #else // no OWNERSHIP
[116a2ea]1142
[7a2057a]1143 // kind.real.home is address in owner thread's freeLists, so compute the equivalent position in this thread's freeList.
1144 freeHead = &freeLists[ClearStickyBits( (Heap.FreeHeader *)(header->kind.real.home) ) - &freeHead->homeManager->freeLists[0]];
1145 header->kind.real.next = freeHead->freeList; // push on stack
1146 freeHead->freeList = (Heap.Storage *)header;
1147 #endif // ! OWNERSHIP
[116a2ea]1148
[7a2057a]1149 // OK TO BE PREEMPTED HERE AS heapManager IS NO LONGER ACCESSED.
[bcb14b5]1150 } // if
[c4f68dc]1151
1152 #ifdef __CFA_DEBUG__
[bcb14b5]1153 if ( traceHeap() ) {
[92aca37]1154 char helpText[64];
[433905a]1155 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
1156 "Free( %p ) size:%zu\n", addr, size ); // print debug/nodebug
[bcb14b5]1157 } // if
[c4f68dc]1158 #endif // __CFA_DEBUG__
[116a2ea]1159
1160// poll_interrupts(); // call rollforward
[c4f68dc]1161} // doFree
1162
1163
[116a2ea]1164size_t prtFree( Heap & manager ) with( manager ) {
[b6830d74]1165 size_t total = 0;
[c4f68dc]1166 #ifdef __STATISTICS__
[95eb7cf]1167 __cfaabi_bits_acquire();
1168 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]1169 #endif // __STATISTICS__
[116a2ea]1170 for ( unsigned int i = 0; i < heapMaster.maxBucketsUsed; i += 1 ) {
[d46ed6e]1171 size_t size = freeLists[i].blockSize;
1172 #ifdef __STATISTICS__
1173 unsigned int N = 0;
1174 #endif // __STATISTICS__
[b6830d74]1175
[31a5f418]1176 for ( Heap.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]1177 total += size;
1178 #ifdef __STATISTICS__
1179 N += 1;
1180 #endif // __STATISTICS__
[b6830d74]1181 } // for
1182
[d46ed6e]1183 #ifdef __STATISTICS__
[95eb7cf]1184 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
1185 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]1186 #endif // __STATISTICS__
1187 } // for
1188 #ifdef __STATISTICS__
[95eb7cf]1189 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
1190 __cfaabi_bits_release();
[d46ed6e]1191 #endif // __STATISTICS__
[116a2ea]1192 return (char *)heapMaster.heapEnd - (char *)heapMaster.heapBegin - total;
[95eb7cf]1193} // prtFree
1194
1195
[116a2ea]1196#ifdef __STATISTICS__
[8ee54963]1197static void incCalls( size_t statName ) libcfa_nopreempt {
[116a2ea]1198 heapManager->stats.counters[statName].calls += 1;
1199} // incCalls
[d5d3a90]1200
[8ee54963]1201static void incZeroCalls( size_t statName ) libcfa_nopreempt {
[116a2ea]1202 heapManager->stats.counters[statName].calls_0 += 1;
1203} // incZeroCalls
1204#endif // __STATISTICS__
[c4f68dc]1205
[116a2ea]1206#ifdef __CFA_DEBUG__
[5951956]1207static void incUnfreed( intptr_t offset ) libcfa_nopreempt {
[116a2ea]1208 heapManager->allocUnfreed += offset;
1209} // incUnfreed
1210#endif // __CFA_DEBUG__
[c4f68dc]1211
[d5d3a90]1212
[116a2ea]1213static void * memalignNoStats( size_t alignment, size_t size STAT_PARM ) {
[b6830d74]1214 checkAlign( alignment ); // check alignment
[c4f68dc]1215
[116a2ea]1216 // if alignment <= default alignment or size == 0, do normal malloc as two headers are unnecessary
1217 if ( unlikely( alignment <= libAlign() || size == 0 ) ) return doMalloc( size STAT_ARG( STAT_NAME ) );
[b6830d74]1218
1219 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
1220 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
1221 // .-------------v-----------------v----------------v----------,
1222 // | Real Header | ... padding ... | Fake Header | data ... |
1223 // `-------------^-----------------^-+--------------^----------'
1224 // |<--------------------------------' offset/align |<-- alignment boundary
1225
1226 // subtract libAlign() because it is already the minimum alignment
1227 // add sizeof(Storage) for fake header
[116a2ea]1228 size_t offset = alignment - libAlign() + sizeof(Heap.Storage);
1229 char * addr = (char *)doMalloc( size + offset STAT_ARG( STAT_NAME ) );
[b6830d74]1230
1231 // address in the block of the "next" alignment address
[31a5f418]1232 char * user = (char *)ceiling2( (uintptr_t)(addr + sizeof(Heap.Storage)), alignment );
[b6830d74]1233
1234 // address of header from malloc
[116a2ea]1235 Heap.Storage.Header * realHeader = HeaderAddr( addr );
1236 realHeader->kind.real.size = size; // correct size to eliminate above alignment offset
1237 #ifdef __CFA_DEBUG__
1238 incUnfreed( -offset ); // adjustment off the offset from call to doMalloc
1239 #endif // __CFA_DEBUG__
1240
1241 // address of fake header *before* the alignment location
[19e5d65d]1242 Heap.Storage.Header * fakeHeader = HeaderAddr( user );
[116a2ea]1243
[b6830d74]1244 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
[116a2ea]1245 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
[69ec0fb]1246 // SKULLDUGGERY: odd alignment implies fake header
[19e5d65d]1247 fakeHeader->kind.fake.alignment = MarkAlignmentBit( alignment );
[b6830d74]1248
1249 return user;
[bcb14b5]1250} // memalignNoStats
[c4f68dc]1251
1252
[19e5d65d]1253//####################### Memory Allocation Routines ####################
1254
1255
[c4f68dc]1256extern "C" {
[61248a4]1257 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
1258 // then malloc() returns a unique pointer value that can later be successfully passed to free().
[032234bd]1259 void * malloc( size_t size ) libcfa_public {
[116a2ea]1260 return doMalloc( size STAT_ARG( MALLOC ) );
[bcb14b5]1261 } // malloc
[c4f68dc]1262
[76e2113]1263
[61248a4]1264 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[032234bd]1265 void * aalloc( size_t dim, size_t elemSize ) libcfa_public {
[116a2ea]1266 return doMalloc( dim * elemSize STAT_ARG( AALLOC ) );
[76e2113]1267 } // aalloc
1268
1269
[61248a4]1270 // Same as aalloc() with memory set to zero.
[032234bd]1271 void * calloc( size_t dim, size_t elemSize ) libcfa_public {
[709b812]1272 size_t size = dim * elemSize;
[116a2ea]1273 char * addr = (char *)doMalloc( size STAT_ARG( CALLOC ) );
[c4f68dc]1274
[116a2ea]1275 if ( unlikely( addr == NULL ) ) return NULL; // stop further processing if 0p is returned
[709b812]1276
[31a5f418]1277 Heap.Storage.Header * header;
[116a2ea]1278 Heap.FreeHeader * freeHead;
[709b812]1279 size_t bsize, alignment;
1280
1281 #ifndef __CFA_DEBUG__
1282 bool mapped =
1283 #endif // __CFA_DEBUG__
[116a2ea]1284 headers( "calloc", addr, header, freeHead, bsize, alignment );
[709b812]1285
1286 #ifndef __CFA_DEBUG__
1287 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
[116a2ea]1288 if ( likely( ! mapped ) )
[709b812]1289 #endif // __CFA_DEBUG__
1290 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1291 // `-header`-addr `-size
1292 memset( addr, '\0', size ); // set to zeros
1293
[19e5d65d]1294 MarkZeroFilledBit( header ); // mark as zero fill
[709b812]1295 return addr;
[bcb14b5]1296 } // calloc
[c4f68dc]1297
[92aca37]1298
[61248a4]1299 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
1300 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
1301 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
1302 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[032234bd]1303 void * resize( void * oaddr, size_t size ) libcfa_public {
[116a2ea]1304 if ( unlikely( oaddr == 0p ) ) { // => malloc( size )
1305 return doMalloc( size STAT_ARG( RESIZE ) );
[709b812]1306 } // if
[cfbc703d]1307
[116a2ea]1308 PROLOG( RESIZE, doFree( oaddr ) ); // => free( oaddr )
[cfbc703d]1309
[31a5f418]1310 Heap.Storage.Header * header;
[116a2ea]1311 Heap.FreeHeader * freeHead;
[92aca37]1312 size_t bsize, oalign;
[116a2ea]1313 headers( "resize", oaddr, header, freeHead, bsize, oalign );
[92847f7]1314
[19e5d65d]1315 size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[cfbc703d]1316 // same size, DO NOT preserve STICKY PROPERTIES.
[92847f7]1317 if ( oalign == libAlign() && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[19e5d65d]1318 ClearZeroFillBit( header ); // no alignment and turn off 0 fill
[116a2ea]1319 #ifdef __CFA_DEBUG__
1320 incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1321 #endif // __CFA_DEBUG__
[d5d3a90]1322 header->kind.real.size = size; // reset allocation size
[116a2ea]1323 #ifdef __STATISTICS__
1324 incCalls( RESIZE );
1325 #endif // __STATISTICS__
[cfbc703d]1326 return oaddr;
1327 } // if
[0f89d4f]1328
[cfbc703d]1329 // change size, DO NOT preserve STICKY PROPERTIES.
[116a2ea]1330 doFree( oaddr ); // free previous storage
1331
1332 return doMalloc( size STAT_ARG( RESIZE ) ); // create new area
[cfbc703d]1333 } // resize
1334
1335
[61248a4]1336 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]1337 // the old and new sizes.
[032234bd]1338 void * realloc( void * oaddr, size_t size ) libcfa_public {
[116a2ea]1339 if ( unlikely( oaddr == 0p ) ) { // => malloc( size )
1340 return doMalloc( size STAT_ARG( REALLOC ) );
[709b812]1341 } // if
[c4f68dc]1342
[116a2ea]1343 PROLOG( REALLOC, doFree( oaddr ) ); // => free( oaddr )
[c4f68dc]1344
[31a5f418]1345 Heap.Storage.Header * header;
[116a2ea]1346 Heap.FreeHeader * freeHead;
[92aca37]1347 size_t bsize, oalign;
[116a2ea]1348 headers( "realloc", oaddr, header, freeHead, bsize, oalign );
[95eb7cf]1349
[19e5d65d]1350 size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[d5d3a90]1351 size_t osize = header->kind.real.size; // old allocation size
[19e5d65d]1352 bool ozfill = ZeroFillBit( header ); // old allocation zero filled
[92847f7]1353 if ( unlikely( size <= odsize ) && odsize <= size * 2 ) { // allow up to 50% wasted storage
[116a2ea]1354 #ifdef __CFA_DEBUG__
1355 incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1356 #endif // __CFA_DEBUG__
1357 header->kind.real.size = size; // reset allocation size
[d5d3a90]1358 if ( unlikely( ozfill ) && size > osize ) { // previous request zero fill and larger ?
[e4b6b7d3]1359 memset( (char *)oaddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1360 } // if
[116a2ea]1361 #ifdef __STATISTICS__
1362 incCalls( REALLOC );
1363 #endif // __STATISTICS__
[95eb7cf]1364 return oaddr;
[c4f68dc]1365 } // if
1366
[95eb7cf]1367 // change size and copy old content to new storage
1368
1369 void * naddr;
[116a2ea]1370 if ( likely( oalign <= libAlign() ) ) { // previous request not aligned ?
1371 naddr = doMalloc( size STAT_ARG( REALLOC ) ); // create new area
[c4f68dc]1372 } else {
[116a2ea]1373 naddr = memalignNoStats( oalign, size STAT_ARG( REALLOC ) ); // create new aligned area
[c4f68dc]1374 } // if
[1e034d9]1375
[116a2ea]1376 headers( "realloc", naddr, header, freeHead, bsize, oalign );
1377 // To preserve prior fill, the entire bucket must be copied versus the size.
[47dd0d2]1378 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[116a2ea]1379 doFree( oaddr ); // free previous storage
[d5d3a90]1380
1381 if ( unlikely( ozfill ) ) { // previous request zero fill ?
[19e5d65d]1382 MarkZeroFilledBit( header ); // mark new request as zero filled
[d5d3a90]1383 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]1384 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1385 } // if
1386 } // if
[95eb7cf]1387 return naddr;
[b6830d74]1388 } // realloc
[c4f68dc]1389
[c1f38e6c]1390
[19e5d65d]1391 // Same as realloc() except the new allocation size is large enough for an array of nelem elements of size elsize.
[032234bd]1392 void * reallocarray( void * oaddr, size_t dim, size_t elemSize ) libcfa_public {
[19e5d65d]1393 return realloc( oaddr, dim * elemSize );
1394 } // reallocarray
1395
1396
[61248a4]1397 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[032234bd]1398 void * memalign( size_t alignment, size_t size ) libcfa_public {
[116a2ea]1399 return memalignNoStats( alignment, size STAT_ARG( MEMALIGN ) );
[bcb14b5]1400 } // memalign
[c4f68dc]1401
[95eb7cf]1402
[76e2113]1403 // Same as aalloc() with memory alignment.
[032234bd]1404 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) libcfa_public {
[116a2ea]1405 return memalignNoStats( alignment, dim * elemSize STAT_ARG( AMEMALIGN ) );
[76e2113]1406 } // amemalign
1407
1408
[ca7949b]1409 // Same as calloc() with memory alignment.
[032234bd]1410 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) libcfa_public {
[709b812]1411 size_t size = dim * elemSize;
[116a2ea]1412 char * addr = (char *)memalignNoStats( alignment, size STAT_ARG( CMEMALIGN ) );
[95eb7cf]1413
[116a2ea]1414 if ( unlikely( addr == NULL ) ) return NULL; // stop further processing if 0p is returned
[709b812]1415
[31a5f418]1416 Heap.Storage.Header * header;
[116a2ea]1417 Heap.FreeHeader * freeHead;
[709b812]1418 size_t bsize;
1419
1420 #ifndef __CFA_DEBUG__
1421 bool mapped =
1422 #endif // __CFA_DEBUG__
[116a2ea]1423 headers( "cmemalign", addr, header, freeHead, bsize, alignment );
[709b812]1424
1425 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
1426 #ifndef __CFA_DEBUG__
1427 if ( ! mapped )
1428 #endif // __CFA_DEBUG__
1429 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
1430 // `-header`-addr `-size
1431 memset( addr, '\0', size ); // set to zeros
1432
[19e5d65d]1433 MarkZeroFilledBit( header ); // mark as zero filled
[709b812]1434 return addr;
[95eb7cf]1435 } // cmemalign
1436
[13fece5]1437
[ca7949b]1438 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
[19e5d65d]1439 // of alignment. This requirement is universally ignored.
[032234bd]1440 void * aligned_alloc( size_t alignment, size_t size ) libcfa_public {
[c4f68dc]1441 return memalign( alignment, size );
[b6830d74]1442 } // aligned_alloc
[c4f68dc]1443
1444
[ca7949b]1445 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1446 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1447 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1448 // free(3).
[032234bd]1449 int posix_memalign( void ** memptr, size_t alignment, size_t size ) libcfa_public {
[69ec0fb]1450 if ( unlikely( alignment < libAlign() || ! is_pow2( alignment ) ) ) return EINVAL; // check alignment
[19e5d65d]1451 *memptr = memalign( alignment, size );
[c4f68dc]1452 return 0;
[b6830d74]1453 } // posix_memalign
[c4f68dc]1454
[13fece5]1455
[ca7949b]1456 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1457 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[032234bd]1458 void * valloc( size_t size ) libcfa_public {
[ad2dced]1459 return memalign( __page_size, size );
[b6830d74]1460 } // valloc
[c4f68dc]1461
1462
[ca7949b]1463 // Same as valloc but rounds size to multiple of page size.
[032234bd]1464 void * pvalloc( size_t size ) libcfa_public {
[19e5d65d]1465 return memalign( __page_size, ceiling2( size, __page_size ) ); // round size to multiple of page size
[ca7949b]1466 } // pvalloc
1467
1468
1469 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1470 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1471 // 0p, no operation is performed.
[032234bd]1472 void free( void * addr ) libcfa_public {
[95eb7cf]1473 if ( unlikely( addr == 0p ) ) { // special case
[709b812]1474 #ifdef __STATISTICS__
[116a2ea]1475 if ( heapManager )
1476 incZeroCalls( FREE );
[709b812]1477 #endif // __STATISTICS__
[c4f68dc]1478 return;
[116a2ea]1479 } // if
1480
1481 #ifdef __STATISTICS__
1482 incCalls( FREE );
1483 #endif // __STATISTICS__
[c4f68dc]1484
[116a2ea]1485 doFree( addr ); // handles heapManager == nullptr
[b6830d74]1486 } // free
[93c2e0a]1487
[c4f68dc]1488
[76e2113]1489 // Returns the alignment of an allocation.
[032234bd]1490 size_t malloc_alignment( void * addr ) libcfa_public {
[95eb7cf]1491 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[19e5d65d]1492 Heap.Storage.Header * header = HeaderAddr( addr );
1493 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
1494 return ClearAlignmentBit( header ); // clear flag from value
[c4f68dc]1495 } else {
[cfbc703d]1496 return libAlign(); // minimum alignment
[c4f68dc]1497 } // if
[bcb14b5]1498 } // malloc_alignment
[c4f68dc]1499
[92aca37]1500
[76e2113]1501 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[032234bd]1502 bool malloc_zero_fill( void * addr ) libcfa_public {
[95eb7cf]1503 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[19e5d65d]1504 Heap.Storage.Header * header = HeaderAddr( addr );
1505 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
1506 header = RealHeader( header ); // backup from fake to real header
[c4f68dc]1507 } // if
[19e5d65d]1508 return ZeroFillBit( header ); // zero filled ?
[bcb14b5]1509 } // malloc_zero_fill
[c4f68dc]1510
[19e5d65d]1511
1512 // Returns original total allocation size (not bucket size) => array size is dimension * sizeof(T).
[032234bd]1513 size_t malloc_size( void * addr ) libcfa_public {
[849fb370]1514 if ( unlikely( addr == 0p ) ) return 0; // null allocation has zero size
[19e5d65d]1515 Heap.Storage.Header * header = HeaderAddr( addr );
1516 if ( unlikely( AlignmentBit( header ) ) ) { // fake header ?
1517 header = RealHeader( header ); // backup from fake to real header
[cfbc703d]1518 } // if
[9c438546]1519 return header->kind.real.size;
[76e2113]1520 } // malloc_size
1521
[cfbc703d]1522
[ca7949b]1523 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1524 // malloc or a related function.
[032234bd]1525 size_t malloc_usable_size( void * addr ) libcfa_public {
[95eb7cf]1526 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
[31a5f418]1527 Heap.Storage.Header * header;
[116a2ea]1528 Heap.FreeHeader * freeHead;
[95eb7cf]1529 size_t bsize, alignment;
1530
[116a2ea]1531 headers( "malloc_usable_size", addr, header, freeHead, bsize, alignment );
[19e5d65d]1532 return DataStorage( bsize, addr, header ); // data storage in bucket
[95eb7cf]1533 } // malloc_usable_size
1534
1535
[ca7949b]1536 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[032234bd]1537 void malloc_stats( void ) libcfa_public {
[c4f68dc]1538 #ifdef __STATISTICS__
[116a2ea]1539 HeapStatistics stats;
1540 HeapStatisticsCtor( stats );
1541 if ( printStats( collectStats( stats ) ) == -1 ) {
1542 #else
1543 #define MALLOC_STATS_MSG "malloc_stats statistics disabled.\n"
1544 if ( write( STDERR_FILENO, MALLOC_STATS_MSG, sizeof( MALLOC_STATS_MSG ) - 1 /* size includes '\0' */ ) == -1 ) {
[c4f68dc]1545 #endif // __STATISTICS__
[5951956]1546 abort( "**** Error **** write failed in malloc_stats" );
[116a2ea]1547 } // if
[bcb14b5]1548 } // malloc_stats
[c4f68dc]1549
[92aca37]1550
[19e5d65d]1551 // Changes the file descriptor where malloc_stats() writes statistics.
[032234bd]1552 int malloc_stats_fd( int fd __attribute__(( unused )) ) libcfa_public {
[c4f68dc]1553 #ifdef __STATISTICS__
[116a2ea]1554 int temp = heapMaster.stats_fd;
1555 heapMaster.stats_fd = fd;
[bcb14b5]1556 return temp;
[c4f68dc]1557 #else
[19e5d65d]1558 return -1; // unsupported
[c4f68dc]1559 #endif // __STATISTICS__
[bcb14b5]1560 } // malloc_stats_fd
[c4f68dc]1561
[95eb7cf]1562
[19e5d65d]1563 // Prints an XML string that describes the current state of the memory-allocation implementation in the caller.
1564 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1565 // malloc).
[032234bd]1566 int malloc_info( int options, FILE * stream __attribute__(( unused )) ) libcfa_public {
[19e5d65d]1567 if ( options != 0 ) { errno = EINVAL; return -1; }
1568 #ifdef __STATISTICS__
[116a2ea]1569 HeapStatistics stats;
1570 HeapStatisticsCtor( stats );
1571 return printStatsXML( collectStats( stats ), stream ); // returns bytes written or -1
[19e5d65d]1572 #else
1573 return 0; // unsupported
1574 #endif // __STATISTICS__
1575 } // malloc_info
1576
1577
[1076d05]1578 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1579 // specifies the parameter to be modified, and value specifies the new value for that parameter.
[032234bd]1580 int mallopt( int option, int value ) libcfa_public {
[19e5d65d]1581 if ( value < 0 ) return 0;
[95eb7cf]1582 choose( option ) {
1583 case M_TOP_PAD:
[116a2ea]1584 heapMaster.heapExpand = ceiling2( value, __page_size );
[19e5d65d]1585 return 1;
[95eb7cf]1586 case M_MMAP_THRESHOLD:
1587 if ( setMmapStart( value ) ) return 1;
[19e5d65d]1588 } // choose
[95eb7cf]1589 return 0; // error, unsupported
1590 } // mallopt
1591
[c1f38e6c]1592
[ca7949b]1593 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[032234bd]1594 int malloc_trim( size_t ) libcfa_public {
[95eb7cf]1595 return 0; // => impossible to release memory
1596 } // malloc_trim
1597
1598
[ca7949b]1599 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1600 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1601 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1602 // result. (The caller must free this memory.)
[032234bd]1603 void * malloc_get_state( void ) libcfa_public {
[95eb7cf]1604 return 0p; // unsupported
[c4f68dc]1605 } // malloc_get_state
1606
[bcb14b5]1607
[ca7949b]1608 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1609 // structure pointed to by state.
[032234bd]1610 int malloc_set_state( void * ) libcfa_public {
[bcb14b5]1611 return 0; // unsupported
[c4f68dc]1612 } // malloc_set_state
[31a5f418]1613
[19e5d65d]1614
[31a5f418]1615 // Sets the amount (bytes) to extend the heap when there is insufficent free storage to service an allocation.
[032234bd]1616 __attribute__((weak)) size_t malloc_expansion() libcfa_public { return __CFA_DEFAULT_HEAP_EXPANSION__; }
[31a5f418]1617
1618 // Sets the crossover point between allocations occuring in the sbrk area or separately mmapped.
[032234bd]1619 __attribute__((weak)) size_t malloc_mmap_start() libcfa_public { return __CFA_DEFAULT_MMAP_START__; }
[31a5f418]1620
1621 // Amount subtracted to adjust for unfreed program storage (debug only).
[032234bd]1622 __attribute__((weak)) size_t malloc_unfreed() libcfa_public { return __CFA_DEFAULT_HEAP_UNFREED__; }
[c4f68dc]1623} // extern "C"
1624
1625
[95eb7cf]1626// Must have CFA linkage to overload with C linkage realloc.
[032234bd]1627void * resize( void * oaddr, size_t nalign, size_t size ) libcfa_public {
[116a2ea]1628 if ( unlikely( oaddr == 0p ) ) { // => malloc( size )
1629 return memalignNoStats( nalign, size STAT_ARG( RESIZE ) );
[709b812]1630 } // if
[95eb7cf]1631
[116a2ea]1632 PROLOG( RESIZE, doFree( oaddr ) ); // => free( oaddr )
[cfbc703d]1633
[92847f7]1634 // Attempt to reuse existing alignment.
[19e5d65d]1635 Heap.Storage.Header * header = HeaderAddr( oaddr );
1636 bool isFakeHeader = AlignmentBit( header ); // old fake header ?
[92847f7]1637 size_t oalign;
[19e5d65d]1638
1639 if ( unlikely( isFakeHeader ) ) {
[116a2ea]1640 checkAlign( nalign ); // check alignment
[19e5d65d]1641 oalign = ClearAlignmentBit( header ); // old alignment
1642 if ( unlikely( (uintptr_t)oaddr % nalign == 0 // lucky match ?
[92847f7]1643 && ( oalign <= nalign // going down
1644 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
[19e5d65d]1645 ) ) {
1646 HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
[116a2ea]1647 Heap.FreeHeader * freeHead;
[92847f7]1648 size_t bsize, oalign;
[116a2ea]1649 headers( "resize", oaddr, header, freeHead, bsize, oalign );
[19e5d65d]1650 size_t odsize = DataStorage( bsize, oaddr, header ); // data storage available in bucket
[a3ade94]1651
[92847f7]1652 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted data storage
[19e5d65d]1653 HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
1654 ClearZeroFillBit( header ); // turn off 0 fill
[116a2ea]1655 #ifdef __CFA_DEBUG__
1656 incUnfreed( size - header->kind.real.size ); // adjustment off the size difference
1657 #endif // __CFA_DEBUG__
[92847f7]1658 header->kind.real.size = size; // reset allocation size
[116a2ea]1659 #ifdef __STATISTICS__
1660 incCalls( RESIZE );
1661 #endif // __STATISTICS__
[92847f7]1662 return oaddr;
1663 } // if
[cfbc703d]1664 } // if
[92847f7]1665 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
1666 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
[113d785]1667 return resize( oaddr, size ); // duplicate special case checks
[cfbc703d]1668 } // if
1669
[dd23e66]1670 // change size, DO NOT preserve STICKY PROPERTIES.
[116a2ea]1671 doFree( oaddr ); // free previous storage
1672 return memalignNoStats( nalign, size STAT_ARG( RESIZE ) ); // create new aligned area
[cfbc703d]1673} // resize
1674
1675
[032234bd]1676void * realloc( void * oaddr, size_t nalign, size_t size ) libcfa_public {
[116a2ea]1677 if ( unlikely( oaddr == 0p ) ) { // => malloc( size )
1678 return memalignNoStats( nalign, size STAT_ARG( REALLOC ) );
[709b812]1679 } // if
1680
[116a2ea]1681 PROLOG( REALLOC, doFree( oaddr ) ); // => free( oaddr )
[c86f587]1682
[92847f7]1683 // Attempt to reuse existing alignment.
[19e5d65d]1684 Heap.Storage.Header * header = HeaderAddr( oaddr );
1685 bool isFakeHeader = AlignmentBit( header ); // old fake header ?
[92847f7]1686 size_t oalign;
[19e5d65d]1687 if ( unlikely( isFakeHeader ) ) {
[116a2ea]1688 checkAlign( nalign ); // check alignment
[19e5d65d]1689 oalign = ClearAlignmentBit( header ); // old alignment
1690 if ( unlikely( (uintptr_t)oaddr % nalign == 0 // lucky match ?
[92847f7]1691 && ( oalign <= nalign // going down
1692 || (oalign >= nalign && oalign <= 256) ) // little alignment storage wasted ?
[19e5d65d]1693 ) ) {
1694 HeaderAddr( oaddr )->kind.fake.alignment = MarkAlignmentBit( nalign ); // update alignment (could be the same)
1695 return realloc( oaddr, size ); // duplicate special case checks
[92847f7]1696 } // if
1697 } else if ( ! isFakeHeader // old real header (aligned on libAlign) ?
[19e5d65d]1698 && nalign == libAlign() ) { // new alignment also on libAlign => no fake header needed
1699 return realloc( oaddr, size ); // duplicate special case checks
1700 } // if
[cfbc703d]1701
[116a2ea]1702 Heap.FreeHeader * freeHead;
[92847f7]1703 size_t bsize;
[116a2ea]1704 headers( "realloc", oaddr, header, freeHead, bsize, oalign );
[92847f7]1705
1706 // change size and copy old content to new storage
1707
[dd23e66]1708 size_t osize = header->kind.real.size; // old allocation size
[19e5d65d]1709 bool ozfill = ZeroFillBit( header ); // old allocation zero filled
[dd23e66]1710
[116a2ea]1711 void * naddr = memalignNoStats( nalign, size STAT_ARG( REALLOC ) ); // create new aligned area
[95eb7cf]1712
[116a2ea]1713 headers( "realloc", naddr, header, freeHead, bsize, oalign );
[47dd0d2]1714 memcpy( naddr, oaddr, min( osize, size ) ); // copy bytes
[116a2ea]1715 doFree( oaddr ); // free previous storage
[d5d3a90]1716
1717 if ( unlikely( ozfill ) ) { // previous request zero fill ?
[19e5d65d]1718 MarkZeroFilledBit( header ); // mark new request as zero filled
[d5d3a90]1719 if ( size > osize ) { // previous request larger ?
[e4b6b7d3]1720 memset( (char *)naddr + osize, '\0', size - osize ); // initialize added storage
[d5d3a90]1721 } // if
1722 } // if
[1e034d9]1723 return naddr;
[95eb7cf]1724} // realloc
1725
1726
[116a2ea]1727void * reallocarray( void * oaddr, size_t nalign, size_t dim, size_t elemSize ) __THROW {
1728 return realloc( oaddr, nalign, dim * elemSize );
1729} // reallocarray
1730
1731
[c4f68dc]1732// Local Variables: //
1733// tab-width: 4 //
[f8cd310]1734// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1735// End: //
Note: See TracBrowser for help on using the repository browser.