source: libcfa/src/heap.cfa@ 21b0a23

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 21b0a23 was d5d3a90, checked in by Peter A. Buhr <pabuhr@…>, 5 years ago

abort when out of memory, return 0p for zero size allocation request, reduce storage zeroing in calloc and realloc, modify resize/realloc aligned

  • Property mode set to 100644
File size: 49.9 KB
RevLine 
[73abe95]1//
[c4f68dc]2// Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[73abe95]6//
7// heap.c --
8//
[c4f68dc]9// Author : Peter A. Buhr
10// Created On : Tue Dec 19 21:58:35 2017
11// Last Modified By : Peter A. Buhr
[d5d3a90]12// Last Modified On : Mon Aug 3 19:01:22 2020
13// Update Count : 828
[73abe95]14//
[c4f68dc]15
16#include <unistd.h> // sbrk, sysconf
17#include <stdbool.h> // true, false
18#include <stdio.h> // snprintf, fileno
19#include <errno.h> // errno
[1e034d9]20#include <string.h> // memset, memcpy
[1076d05]21#include <limits.h> // ULONG_MAX
[ada0246d]22#include <malloc.h> // memalign, malloc_usable_size
[c4f68dc]23#include <sys/mman.h> // mmap, munmap
24
[bcb14b5]25#include "bits/align.hfa" // libPow2
26#include "bits/defs.hfa" // likely, unlikely
27#include "bits/locks.hfa" // __spinlock_t
[73abe95]28#include "startup.hfa" // STARTUP_PRIORITY_MEMORY
[1e034d9]29//#include "stdlib.hfa" // bsearchl
[1076d05]30#include "bitmanip.hfa" // ceiling
[c4f68dc]31
[95eb7cf]32#define MIN(x, y) (y > x ? x : y)
[c4f68dc]33
[93c2e0a]34static bool traceHeap = false;
[d46ed6e]35
[baf608a]36inline bool traceHeap() { return traceHeap; }
[d46ed6e]37
[93c2e0a]38bool traceHeapOn() {
39 bool temp = traceHeap;
[d46ed6e]40 traceHeap = true;
41 return temp;
42} // traceHeapOn
43
[93c2e0a]44bool traceHeapOff() {
45 bool temp = traceHeap;
[d46ed6e]46 traceHeap = false;
47 return temp;
48} // traceHeapOff
49
[baf608a]50bool traceHeapTerm() { return false; }
51
[d46ed6e]52
[95eb7cf]53static bool prtFree = false;
[d46ed6e]54
[95eb7cf]55inline bool prtFree() {
56 return prtFree;
57} // prtFree
[5d4fa18]58
[95eb7cf]59bool prtFreeOn() {
60 bool temp = prtFree;
61 prtFree = true;
[5d4fa18]62 return temp;
[95eb7cf]63} // prtFreeOn
[5d4fa18]64
[95eb7cf]65bool prtFreeOff() {
66 bool temp = prtFree;
67 prtFree = false;
[5d4fa18]68 return temp;
[95eb7cf]69} // prtFreeOff
[5d4fa18]70
71
[e723100]72enum {
[1e034d9]73 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address,
74 // the brk address is extended by the extension amount.
[e723100]75 __CFA_DEFAULT_HEAP_EXPANSION__ = (1 * 1024 * 1024),
[1e034d9]76
77 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;
78 // values greater than or equal to this value are mmap from the operating system.
79 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),
[e723100]80};
81
82size_t default_heap_expansion() __attribute__(( weak )) {
83 return __CFA_DEFAULT_HEAP_EXPANSION__;
84} // default_heap_expansion
85
[1076d05]86size_t default_mmap_start() __attribute__(( weak )) {
87 return __CFA_DEFAULT_MMAP_START__;
88} // default_mmap_start
89
[e723100]90
[f0b3f51]91#ifdef __CFA_DEBUG__
[93c2e0a]92static unsigned int allocFree; // running total of allocations minus frees
[d46ed6e]93
[95eb7cf]94static void prtUnfreed() {
[b6830d74]95 if ( allocFree != 0 ) {
[d46ed6e]96 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
[4ea1c6d]97 char helpText[512];
98 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %u(0x%x) bytes of storage allocated but not freed.\n"
99 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",
100 (long int)getpid(), allocFree, allocFree ); // always print the UNIX pid
101 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[b6830d74]102 } // if
[95eb7cf]103} // prtUnfreed
[d46ed6e]104
105extern "C" {
[bcb14b5]106 void heapAppStart() { // called by __cfaabi_appready_startup
107 allocFree = 0;
108 } // heapAppStart
109
110 void heapAppStop() { // called by __cfaabi_appready_startdown
111 fclose( stdin ); fclose( stdout );
[95eb7cf]112 prtUnfreed();
[bcb14b5]113 } // heapAppStop
[d46ed6e]114} // extern "C"
115#endif // __CFA_DEBUG__
116
[1e034d9]117
[e723100]118// statically allocated variables => zero filled.
119static size_t pageSize; // architecture pagesize
120static size_t heapExpand; // sbrk advance
121static size_t mmapStart; // cross over point for mmap
122static unsigned int maxBucketsUsed; // maximum number of buckets in use
123
124
125#define SPINLOCK 0
126#define LOCKFREE 1
127#define BUCKETLOCK SPINLOCK
[9c438546]128#if BUCKETLOCK == SPINLOCK
129#elif BUCKETLOCK == LOCKFREE
130#include <stackLockFree.hfa>
131#else
132 #error undefined lock type for bucket lock
[e723100]133#endif // LOCKFREE
134
135// Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage.
136// Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined.
[95eb7cf]137enum { NoBucketSizes = 91 }; // number of buckets sizes
[d46ed6e]138
[c4f68dc]139struct HeapManager {
140 struct Storage {
[bcb14b5]141 struct Header { // header
[c4f68dc]142 union Kind {
143 struct RealHeader {
144 union {
[bcb14b5]145 struct { // 4-byte word => 8-byte header, 8-byte word => 16-byte header
[f0b3f51]146 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]147 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]148 #endif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]149
150 union {
[9c438546]151 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment)
[cfbc703d]152 // 2nd low-order bit => zero filled
[c4f68dc]153 void * home; // allocated block points back to home locations (must overlay alignment)
154 size_t blockSize; // size for munmap (must overlay alignment)
[9c438546]155 #if BUCKETLOCK == SPINLOCK
[c4f68dc]156 Storage * next; // freed block points next freed block of same size
157 #endif // SPINLOCK
158 };
[9c438546]159 size_t size; // allocation size in bytes
[c4f68dc]160
[f0b3f51]161 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[9c438546]162 uint64_t padding; // unused, force home/blocksize to overlay alignment in fake header
[bcb14b5]163 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ && __SIZEOF_POINTER__ == 4
[c4f68dc]164 };
[9c438546]165 #if BUCKETLOCK == LOCKFREE
166 Link(Storage) next; // freed block points next freed block of same size (double-wide)
[c4f68dc]167 #endif // LOCKFREE
168 };
[93c2e0a]169 } real; // RealHeader
[9c438546]170
[c4f68dc]171 struct FakeHeader {
172 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
[9c438546]173 uint32_t alignment; // 1st low-order bit => fake header & alignment
[f0b3f51]174 #endif // __ORDER_LITTLE_ENDIAN__
[c4f68dc]175
176 uint32_t offset;
177
178 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
179 uint32_t alignment; // low-order bits of home/blockSize used for tricks
[f0b3f51]180 #endif // __ORDER_BIG_ENDIAN__
[93c2e0a]181 } fake; // FakeHeader
182 } kind; // Kind
[bcb14b5]183 } header; // Header
[95eb7cf]184 char pad[libAlign() - sizeof( Header )];
[bcb14b5]185 char data[0]; // storage
[c4f68dc]186 }; // Storage
187
[95eb7cf]188 static_assert( libAlign() >= sizeof( Storage ), "libAlign() < sizeof( Storage )" );
[c4f68dc]189
190 struct FreeHeader {
[9c438546]191 #if BUCKETLOCK == SPINLOCK
[bcb14b5]192 __spinlock_t lock; // must be first field for alignment
193 Storage * freeList;
[c4f68dc]194 #else
[9c438546]195 StackLF(Storage) freeList;
196 #endif // BUCKETLOCK
[bcb14b5]197 size_t blockSize; // size of allocations on this list
[c4f68dc]198 }; // FreeHeader
199
200 // must be first fields for alignment
201 __spinlock_t extlock; // protects allocation-buffer extension
202 FreeHeader freeLists[NoBucketSizes]; // buckets for different allocation sizes
203
204 void * heapBegin; // start of heap
205 void * heapEnd; // logical end of heap
206 size_t heapRemaining; // amount of storage not allocated in the current chunk
207}; // HeapManager
208
[9c438546]209#if BUCKETLOCK == LOCKFREE
[c45d2fa]210static inline {
[8b58bae]211 Link(HeapManager.Storage) * ?`next( HeapManager.Storage * this ) { return &this->header.kind.real.next; }
[c45d2fa]212 void ?{}( HeapManager.FreeHeader & ) {}
213 void ^?{}( HeapManager.FreeHeader & ) {}
214} // distribution
[9c438546]215#endif // LOCKFREE
216
[7b149bc]217static inline size_t getKey( const HeapManager.FreeHeader & freeheader ) { return freeheader.blockSize; }
[5d4fa18]218
[e723100]219
220#define FASTLOOKUP
221#define __STATISTICS__
[5d4fa18]222
[1e034d9]223// Bucket size must be multiple of 16.
[d5d3a90]224// Smaller multiples of 16 and powers of 2 are common allocation sizes, so make them generate the minimum required bucket size.
225// malloc(0) returns 0p, so no bucket is necessary for 0 bytes returning an address that can be freed.
[e723100]226static const unsigned int bucketSizes[] @= { // different bucket sizes
[d5d3a90]227 16 + sizeof(HeapManager.Storage), 32 + sizeof(HeapManager.Storage), 48 + sizeof(HeapManager.Storage), 64 + sizeof(HeapManager.Storage), // 4
228 96 + sizeof(HeapManager.Storage), 112 + sizeof(HeapManager.Storage), 128 + sizeof(HeapManager.Storage), // 3
[95eb7cf]229 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4
230 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4
231 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4
232 1_536, 2_048 + sizeof(HeapManager.Storage), // 2
233 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4
234 6_144, 8_192 + sizeof(HeapManager.Storage), // 2
235 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8
236 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8
237 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8
238 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8
239 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8
240 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8
241 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4
242 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8
243 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4
[5d4fa18]244};
[e723100]245
246static_assert( NoBucketSizes == sizeof(bucketSizes) / sizeof(bucketSizes[0]), "size of bucket array wrong" );
247
[5d4fa18]248#ifdef FASTLOOKUP
[a92a4fe]249enum { LookupSizes = 65_536 + sizeof(HeapManager.Storage) }; // number of fast lookup sizes
[5d4fa18]250static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes
251#endif // FASTLOOKUP
252
[95eb7cf]253static int mmapFd = -1; // fake or actual fd for anonymous file
[5d4fa18]254#ifdef __CFA_DEBUG__
[93c2e0a]255static bool heapBoot = 0; // detect recursion during boot
[5d4fa18]256#endif // __CFA_DEBUG__
[9c438546]257
258// The constructor for heapManager is called explicitly in memory_startup.
[5d4fa18]259static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing
260
[c4f68dc]261
262#ifdef __STATISTICS__
[95eb7cf]263// Heap statistics counters.
264static unsigned long long int mmap_storage;
[c4f68dc]265static unsigned int mmap_calls;
266static unsigned long long int munmap_storage;
267static unsigned int munmap_calls;
268static unsigned long long int sbrk_storage;
269static unsigned int sbrk_calls;
270static unsigned long long int malloc_storage;
271static unsigned int malloc_calls;
272static unsigned long long int free_storage;
273static unsigned int free_calls;
[76e2113]274static unsigned long long int aalloc_storage;
275static unsigned int aalloc_calls;
[c4f68dc]276static unsigned long long int calloc_storage;
277static unsigned int calloc_calls;
278static unsigned long long int memalign_storage;
279static unsigned int memalign_calls;
[76e2113]280static unsigned long long int amemalign_storage;
281static unsigned int amemalign_calls;
[c4f68dc]282static unsigned long long int cmemalign_storage;
283static unsigned int cmemalign_calls;
[cfbc703d]284static unsigned long long int resize_storage;
285static unsigned int resize_calls;
[c4f68dc]286static unsigned long long int realloc_storage;
287static unsigned int realloc_calls;
[95eb7cf]288// Statistics file descriptor (changed by malloc_stats_fd).
289static int statfd = STDERR_FILENO; // default stderr
[c4f68dc]290
291// Use "write" because streams may be shutdown when calls are made.
[d46ed6e]292static void printStats() {
[76e2113]293 char helpText[1024];
[95eb7cf]294 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText),
[bcb14b5]295 "\nHeap statistics:\n"
296 " malloc: calls %u / storage %llu\n"
[76e2113]297 " aalloc: calls %u / storage %llu\n"
[bcb14b5]298 " calloc: calls %u / storage %llu\n"
299 " memalign: calls %u / storage %llu\n"
[76e2113]300 " amemalign: calls %u / storage %llu\n"
[bcb14b5]301 " cmemalign: calls %u / storage %llu\n"
[cfbc703d]302 " resize: calls %u / storage %llu\n"
[bcb14b5]303 " realloc: calls %u / storage %llu\n"
304 " free: calls %u / storage %llu\n"
305 " mmap: calls %u / storage %llu\n"
306 " munmap: calls %u / storage %llu\n"
307 " sbrk: calls %u / storage %llu\n",
308 malloc_calls, malloc_storage,
[76e2113]309 aalloc_calls, calloc_storage,
[bcb14b5]310 calloc_calls, calloc_storage,
311 memalign_calls, memalign_storage,
[76e2113]312 amemalign_calls, amemalign_storage,
[bcb14b5]313 cmemalign_calls, cmemalign_storage,
[cfbc703d]314 resize_calls, resize_storage,
[bcb14b5]315 realloc_calls, realloc_storage,
316 free_calls, free_storage,
317 mmap_calls, mmap_storage,
318 munmap_calls, munmap_storage,
319 sbrk_calls, sbrk_storage
[c4f68dc]320 );
[d46ed6e]321} // printStats
[c4f68dc]322
[bcb14b5]323static int printStatsXML( FILE * stream ) { // see malloc_info
[76e2113]324 char helpText[1024];
[b6830d74]325 int len = snprintf( helpText, sizeof(helpText),
[c4f68dc]326 "<malloc version=\"1\">\n"
327 "<heap nr=\"0\">\n"
328 "<sizes>\n"
329 "</sizes>\n"
330 "<total type=\"malloc\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]331 "<total type=\"aalloc\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]332 "<total type=\"calloc\" count=\"%u\" size=\"%llu\"/>\n"
333 "<total type=\"memalign\" count=\"%u\" size=\"%llu\"/>\n"
[76e2113]334 "<total type=\"amemalign\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]335 "<total type=\"cmemalign\" count=\"%u\" size=\"%llu\"/>\n"
[cfbc703d]336 "<total type=\"resize\" count=\"%u\" size=\"%llu\"/>\n"
[c4f68dc]337 "<total type=\"realloc\" count=\"%u\" size=\"%llu\"/>\n"
338 "<total type=\"free\" count=\"%u\" size=\"%llu\"/>\n"
339 "<total type=\"mmap\" count=\"%u\" size=\"%llu\"/>\n"
340 "<total type=\"munmap\" count=\"%u\" size=\"%llu\"/>\n"
341 "<total type=\"sbrk\" count=\"%u\" size=\"%llu\"/>\n"
342 "</malloc>",
343 malloc_calls, malloc_storage,
[76e2113]344 aalloc_calls, aalloc_storage,
[c4f68dc]345 calloc_calls, calloc_storage,
346 memalign_calls, memalign_storage,
[76e2113]347 amemalign_calls, amemalign_storage,
[c4f68dc]348 cmemalign_calls, cmemalign_storage,
[cfbc703d]349 resize_calls, resize_storage,
[c4f68dc]350 realloc_calls, realloc_storage,
351 free_calls, free_storage,
352 mmap_calls, mmap_storage,
353 munmap_calls, munmap_storage,
354 sbrk_calls, sbrk_storage
355 );
[95eb7cf]356 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit
357 return len;
[d46ed6e]358} // printStatsXML
[c4f68dc]359#endif // __STATISTICS__
360
[95eb7cf]361
[1e034d9]362// thunk problem
363size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) {
364 size_t l = 0, m, h = dim;
365 while ( l < h ) {
366 m = (l + h) / 2;
367 if ( (unsigned int &)(vals[m]) < key ) { // cast away const
368 l = m + 1;
369 } else {
370 h = m;
371 } // if
372 } // while
373 return l;
374} // Bsearchl
375
376
[95eb7cf]377static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk
[1076d05]378 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return false;
[95eb7cf]379 mmapStart = value; // set global
380
381 // find the closest bucket size less than or equal to the mmapStart size
[1e034d9]382 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search
[95eb7cf]383 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?
384 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?
[1076d05]385 return true;
[95eb7cf]386} // setMmapStart
387
388
[cfbc703d]389// <-------+----------------------------------------------------> bsize (bucket size)
390// |header |addr
391//==================================================================================
392// align/offset |
393// <-----------------<------------+-----------------------------> bsize (bucket size)
394// |fake-header | addr
395#define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))
396#define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset))
397
398// <-------<<--------------------- dsize ---------------------->> bsize (bucket size)
399// |header |addr
400//==================================================================================
401// align/offset |
402// <------------------------------<<---------- dsize --------->>> bsize (bucket size)
403// |fake-header |addr
404#define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))
405
406
[9c438546]407// static inline void noMemory() {
408// abort( "Heap memory exhausted at %zu bytes.\n"
409// "Possible cause is very large memory allocation and/or large amount of unfreed storage allocated by the program or system/library routines.",
410// ((char *)(sbrk( 0 )) - (char *)(heapManager.heapBegin)) );
411// } // noMemory
412
413
[cfbc703d]414static inline void checkAlign( size_t alignment ) {
415 if ( alignment < libAlign() || ! libPow2( alignment ) ) {
416 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );
417 } // if
418} // checkAlign
419
420
[e3fea42]421static inline void checkHeader( bool check, const char name[], void * addr ) {
[b6830d74]422 if ( unlikely( check ) ) { // bad address ?
[c4f68dc]423 abort( "Attempt to %s storage %p with address outside the heap.\n"
[bcb14b5]424 "Possible cause is duplicate free on same block or overwriting of memory.",
425 name, addr );
[b6830d74]426 } // if
[c4f68dc]427} // checkHeader
428
[95eb7cf]429
430static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {
[b6830d74]431 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?
[c4f68dc]432 alignment = header->kind.fake.alignment & -2; // remove flag from value
433 #ifdef __CFA_DEBUG__
434 checkAlign( alignment ); // check alignment
435 #endif // __CFA_DEBUG__
[cfbc703d]436 header = realHeader( header ); // backup from fake to real header
[d5d3a90]437 } else {
438 alignment = 0;
[b6830d74]439 } // if
[c4f68dc]440} // fakeHeader
441
[95eb7cf]442
[9c438546]443static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem,
444 size_t & size, size_t & alignment ) with( heapManager ) {
[b6830d74]445 header = headerAddr( addr );
[c4f68dc]446
[b6830d74]447 if ( unlikely( heapEnd < addr ) ) { // mmapped ?
[95eb7cf]448 fakeHeader( header, alignment );
[c4f68dc]449 size = header->kind.real.blockSize & -3; // mmap size
450 return true;
[b6830d74]451 } // if
[c4f68dc]452
453 #ifdef __CFA_DEBUG__
[1076d05]454 checkHeader( addr < heapBegin, name, addr ); // bad low address ?
[c4f68dc]455 #endif // __CFA_DEBUG__
[b6830d74]456
[bcb14b5]457 // header may be safe to dereference
[95eb7cf]458 fakeHeader( header, alignment );
[c4f68dc]459 #ifdef __CFA_DEBUG__
[bcb14b5]460 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)
[c4f68dc]461 #endif // __CFA_DEBUG__
462
[bcb14b5]463 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);
[c4f68dc]464 #ifdef __CFA_DEBUG__
[bcb14b5]465 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {
466 abort( "Attempt to %s storage %p with corrupted header.\n"
467 "Possible cause is duplicate free on same block or overwriting of header information.",
468 name, addr );
469 } // if
[c4f68dc]470 #endif // __CFA_DEBUG__
[bcb14b5]471 size = freeElem->blockSize;
472 return false;
[c4f68dc]473} // headers
474
475
[9c438546]476static inline void * extend( size_t size ) with( heapManager ) {
[b6830d74]477 lock( extlock __cfaabi_dbg_ctx2 );
478 ptrdiff_t rem = heapRemaining - size;
479 if ( rem < 0 ) {
[c4f68dc]480 // If the size requested is bigger than the current remaining storage, increase the size of the heap.
481
482 size_t increase = libCeiling( size > heapExpand ? size : heapExpand, libAlign() );
483 if ( sbrk( increase ) == (void *)-1 ) {
484 unlock( extlock );
485 errno = ENOMEM;
[d5d3a90]486// return 0p;
487 abort( "no memory" );
[c4f68dc]488 } // if
[bcb14b5]489 #ifdef __STATISTICS__
[c4f68dc]490 sbrk_calls += 1;
491 sbrk_storage += increase;
[bcb14b5]492 #endif // __STATISTICS__
493 #ifdef __CFA_DEBUG__
[c4f68dc]494 // Set new memory to garbage so subsequent uninitialized usages might fail.
495 memset( (char *)heapEnd + heapRemaining, '\377', increase );
[bcb14b5]496 #endif // __CFA_DEBUG__
[c4f68dc]497 rem = heapRemaining + increase - size;
[b6830d74]498 } // if
[c4f68dc]499
[b6830d74]500 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;
501 heapRemaining = rem;
502 heapEnd = (char *)heapEnd + size;
503 unlock( extlock );
504 return block;
[c4f68dc]505} // extend
506
507
[9c438546]508static inline void * doMalloc( size_t size ) with( heapManager ) {
[7b149bc]509 HeapManager.Storage * block; // pointer to new block of storage
[c4f68dc]510
[b6830d74]511 // Look up size in the size list. Make sure the user request includes space for the header that must be allocated
512 // along with the block and is a multiple of the alignment size.
[c4f68dc]513
[1076d05]514 if ( unlikely( size > ULONG_MAX - sizeof(HeapManager.Storage) ) ) return 0p;
[b6830d74]515 size_t tsize = size + sizeof(HeapManager.Storage);
516 if ( likely( tsize < mmapStart ) ) { // small size => sbrk
[e723100]517 size_t posn;
518 #ifdef FASTLOOKUP
519 if ( tsize < LookupSizes ) posn = lookup[tsize];
520 else
521 #endif // FASTLOOKUP
522 posn = Bsearchl( (unsigned int)tsize, bucketSizes, (size_t)maxBucketsUsed );
523 HeapManager.FreeHeader * freeElem = &freeLists[posn];
524 // #ifdef FASTLOOKUP
525 // if ( tsize < LookupSizes )
526 // freeElem = &freeLists[lookup[tsize]];
527 // else
528 // #endif // FASTLOOKUP
529 // freeElem = bsearchl( tsize, freeLists, (size_t)maxBucketsUsed ); // binary search
530 // HeapManager.FreeHeader * freeElem =
531 // #ifdef FASTLOOKUP
532 // tsize < LookupSizes ? &freeLists[lookup[tsize]] :
533 // #endif // FASTLOOKUP
534 // bsearchl( tsize, freeLists, (size_t)maxBucketsUsed ); // binary search
[c4f68dc]535 assert( freeElem <= &freeLists[maxBucketsUsed] ); // subscripting error ?
536 assert( tsize <= freeElem->blockSize ); // search failure ?
537 tsize = freeElem->blockSize; // total space needed for request
538
539 // Spin until the lock is acquired for this particular size of block.
540
[9c438546]541 #if BUCKETLOCK == SPINLOCK
[bcb14b5]542 lock( freeElem->lock __cfaabi_dbg_ctx2 );
543 block = freeElem->freeList; // remove node from stack
[c4f68dc]544 #else
[9c438546]545 block = pop( freeElem->freeList );
546 #endif // BUCKETLOCK
[95eb7cf]547 if ( unlikely( block == 0p ) ) { // no free block ?
[9c438546]548 #if BUCKETLOCK == SPINLOCK
[c4f68dc]549 unlock( freeElem->lock );
[9c438546]550 #endif // BUCKETLOCK
[bcb14b5]551
[c4f68dc]552 // Freelist for that size was empty, so carve it out of the heap if there's enough left, or get some more
553 // and then carve it off.
554
555 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call
[d5d3a90]556// if ( unlikely( block == 0p ) ) return 0p;
[9c438546]557 #if BUCKETLOCK == SPINLOCK
[c4f68dc]558 } else {
559 freeElem->freeList = block->header.kind.real.next;
560 unlock( freeElem->lock );
[9c438546]561 #endif // BUCKETLOCK
[c4f68dc]562 } // if
563
564 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size
[bcb14b5]565 } else { // large size => mmap
[1076d05]566 if ( unlikely( size > ULONG_MAX - pageSize ) ) return 0p;
[c4f68dc]567 tsize = libCeiling( tsize, pageSize ); // must be multiple of page size
568 #ifdef __STATISTICS__
[bcb14b5]569 __atomic_add_fetch( &mmap_calls, 1, __ATOMIC_SEQ_CST );
570 __atomic_add_fetch( &mmap_storage, tsize, __ATOMIC_SEQ_CST );
[c4f68dc]571 #endif // __STATISTICS__
572 block = (HeapManager.Storage *)mmap( 0, tsize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, mmapFd, 0 );
573 if ( block == (HeapManager.Storage *)MAP_FAILED ) {
574 // Do not call strerror( errno ) as it may call malloc.
575 abort( "(HeapManager &)0x%p.doMalloc() : internal error, mmap failure, size:%zu error:%d.", &heapManager, tsize, errno );
576 } // if
[bcb14b5]577 #ifdef __CFA_DEBUG__
[c4f68dc]578 // Set new memory to garbage so subsequent uninitialized usages might fail.
579 memset( block, '\377', tsize );
[bcb14b5]580 #endif // __CFA_DEBUG__
[c4f68dc]581 block->header.kind.real.blockSize = tsize; // storage size for munmap
[bcb14b5]582 } // if
[c4f68dc]583
[9c438546]584 block->header.kind.real.size = size; // store allocation size
[95eb7cf]585 void * addr = &(block->data); // adjust off header to user bytes
[c4f68dc]586
587 #ifdef __CFA_DEBUG__
[95eb7cf]588 assert( ((uintptr_t)addr & (libAlign() - 1)) == 0 ); // minimum alignment ?
[bcb14b5]589 __atomic_add_fetch( &allocFree, tsize, __ATOMIC_SEQ_CST );
590 if ( traceHeap() ) {
591 enum { BufferSize = 64 };
592 char helpText[BufferSize];
[95eb7cf]593 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", addr, size, tsize );
594 // int len = snprintf( helpText, BufferSize, "Malloc %p %zu\n", addr, size );
595 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]596 } // if
[c4f68dc]597 #endif // __CFA_DEBUG__
598
[95eb7cf]599 return addr;
[c4f68dc]600} // doMalloc
601
602
[9c438546]603static inline void doFree( void * addr ) with( heapManager ) {
[c4f68dc]604 #ifdef __CFA_DEBUG__
[95eb7cf]605 if ( unlikely( heapManager.heapBegin == 0p ) ) {
[bcb14b5]606 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr );
607 } // if
[c4f68dc]608 #endif // __CFA_DEBUG__
609
[b6830d74]610 HeapManager.Storage.Header * header;
611 HeapManager.FreeHeader * freeElem;
612 size_t size, alignment; // not used (see realloc)
[c4f68dc]613
[b6830d74]614 if ( headers( "free", addr, header, freeElem, size, alignment ) ) { // mmapped ?
[c4f68dc]615 #ifdef __STATISTICS__
[bcb14b5]616 __atomic_add_fetch( &munmap_calls, 1, __ATOMIC_SEQ_CST );
617 __atomic_add_fetch( &munmap_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]618 #endif // __STATISTICS__
619 if ( munmap( header, size ) == -1 ) {
620 #ifdef __CFA_DEBUG__
621 abort( "Attempt to deallocate storage %p not allocated or with corrupt header.\n"
[bcb14b5]622 "Possible cause is invalid pointer.",
623 addr );
[c4f68dc]624 #endif // __CFA_DEBUG__
625 } // if
[bcb14b5]626 } else {
[c4f68dc]627 #ifdef __CFA_DEBUG__
[bcb14b5]628 // Set free memory to garbage so subsequent usages might fail.
629 memset( ((HeapManager.Storage *)header)->data, '\377', freeElem->blockSize - sizeof( HeapManager.Storage ) );
[c4f68dc]630 #endif // __CFA_DEBUG__
631
632 #ifdef __STATISTICS__
[bcb14b5]633 free_storage += size;
[c4f68dc]634 #endif // __STATISTICS__
[9c438546]635 #if BUCKETLOCK == SPINLOCK
[bcb14b5]636 lock( freeElem->lock __cfaabi_dbg_ctx2 ); // acquire spin lock
637 header->kind.real.next = freeElem->freeList; // push on stack
638 freeElem->freeList = (HeapManager.Storage *)header;
639 unlock( freeElem->lock ); // release spin lock
[c4f68dc]640 #else
[9c438546]641 push( freeElem->freeList, *(HeapManager.Storage *)header );
642 #endif // BUCKETLOCK
[bcb14b5]643 } // if
[c4f68dc]644
645 #ifdef __CFA_DEBUG__
[bcb14b5]646 __atomic_add_fetch( &allocFree, -size, __ATOMIC_SEQ_CST );
647 if ( traceHeap() ) {
[7b149bc]648 enum { BufferSize = 64 };
649 char helpText[BufferSize];
[bcb14b5]650 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size );
[95eb7cf]651 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug
[bcb14b5]652 } // if
[c4f68dc]653 #endif // __CFA_DEBUG__
654} // doFree
655
656
[9c438546]657size_t prtFree( HeapManager & manager ) with( manager ) {
[b6830d74]658 size_t total = 0;
[c4f68dc]659 #ifdef __STATISTICS__
[95eb7cf]660 __cfaabi_bits_acquire();
661 __cfaabi_bits_print_nolock( STDERR_FILENO, "\nBin lists (bin size : free blocks on list)\n" );
[c4f68dc]662 #endif // __STATISTICS__
[b6830d74]663 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) {
[d46ed6e]664 size_t size = freeLists[i].blockSize;
665 #ifdef __STATISTICS__
666 unsigned int N = 0;
667 #endif // __STATISTICS__
[b6830d74]668
[9c438546]669 #if BUCKETLOCK == SPINLOCK
[95eb7cf]670 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0p; p = p->header.kind.real.next ) {
[d46ed6e]671 #else
[9c438546]672 for ( HeapManager.Storage * p = top( freeLists[i].freeList ); p != 0p; /* p = getNext( p )->top */) {
[0f89d4f]673 typeof(p) temp = ( p )`next->top; // FIX ME: direct assignent fails, initialization works
[9c438546]674 p = temp;
675 #endif // BUCKETLOCK
[d46ed6e]676 total += size;
677 #ifdef __STATISTICS__
678 N += 1;
679 #endif // __STATISTICS__
[b6830d74]680 } // for
681
[d46ed6e]682 #ifdef __STATISTICS__
[95eb7cf]683 __cfaabi_bits_print_nolock( STDERR_FILENO, "%7zu, %-7u ", size, N );
684 if ( (i + 1) % 8 == 0 ) __cfaabi_bits_print_nolock( STDERR_FILENO, "\n" );
[d46ed6e]685 #endif // __STATISTICS__
686 } // for
687 #ifdef __STATISTICS__
[95eb7cf]688 __cfaabi_bits_print_nolock( STDERR_FILENO, "\ntotal free blocks:%zu\n", total );
689 __cfaabi_bits_release();
[d46ed6e]690 #endif // __STATISTICS__
691 return (char *)heapEnd - (char *)heapBegin - total;
[95eb7cf]692} // prtFree
693
694
[9c438546]695static void ?{}( HeapManager & manager ) with( manager ) {
[95eb7cf]696 pageSize = sysconf( _SC_PAGESIZE );
697
698 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists
699 freeLists[i].blockSize = bucketSizes[i];
700 } // for
701
702 #ifdef FASTLOOKUP
703 unsigned int idx = 0;
704 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) {
705 if ( i > bucketSizes[idx] ) idx += 1;
706 lookup[i] = idx;
707 } // for
708 #endif // FASTLOOKUP
709
[1076d05]710 if ( ! setMmapStart( default_mmap_start() ) ) {
[95eb7cf]711 abort( "HeapManager : internal error, mmap start initialization failure." );
712 } // if
713 heapExpand = default_heap_expansion();
714
[1e034d9]715 char * end = (char *)sbrk( 0 );
[1076d05]716 heapBegin = heapEnd = sbrk( (char *)libCeiling( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment
[95eb7cf]717} // HeapManager
718
719
720static void ^?{}( HeapManager & ) {
721 #ifdef __STATISTICS__
[baf608a]722 if ( traceHeapTerm() ) {
723 printStats();
724 // if ( prtfree() ) prtFree( heapManager, true );
725 } // if
[95eb7cf]726 #endif // __STATISTICS__
727} // ~HeapManager
728
729
730static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) ));
731void memory_startup( void ) {
732 #ifdef __CFA_DEBUG__
733 if ( unlikely( heapBoot ) ) { // check for recursion during system boot
734 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT.
735 abort( "boot() : internal error, recursively invoked during system boot." );
736 } // if
737 heapBoot = true;
738 #endif // __CFA_DEBUG__
739
740 //assert( heapManager.heapBegin != 0 );
741 //heapManager{};
[1076d05]742 if ( heapManager.heapBegin == 0p ) heapManager{}; // sanity check
[95eb7cf]743} // memory_startup
744
745static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) ));
746void memory_shutdown( void ) {
747 ^heapManager{};
748} // memory_shutdown
[c4f68dc]749
[bcb14b5]750
751static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics
[d5d3a90]752 verify( heapManager.heapBegin != 0 ); // called before memory_startup ?
753 if ( size == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
754
[76e2113]755#if __SIZEOF_POINTER__ == 8
756 verify( size < ((typeof(size_t))1 << 48) );
757#endif // __SIZEOF_POINTER__ == 8
[d5d3a90]758 return doMalloc( size );
[bcb14b5]759} // mallocNoStats
[c4f68dc]760
761
[76e2113]762static inline void * callocNoStats( size_t dim, size_t elemSize ) {
763 size_t size = dim * elemSize;
[d5d3a90]764 if ( size == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[95eb7cf]765 char * addr = (char *)mallocNoStats( size );
766
767 HeapManager.Storage.Header * header;
768 HeapManager.FreeHeader * freeElem;
769 size_t bsize, alignment;
[d5d3a90]770 #ifndef __CFA_DEBUG__
771 bool mapped =
772 #endif // __CFA_DEBUG__
773 headers( "calloc", addr, header, freeElem, bsize, alignment );
[95eb7cf]774 #ifndef __CFA_DEBUG__
775 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
776 if ( ! mapped )
777 #endif // __CFA_DEBUG__
[d5d3a90]778 // <-------0000000000000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUU> bsize (bucket size) U => undefined
[1e034d9]779 // `-header`-addr `-size
[d5d3a90]780 memset( addr, '\0', size ); // set to zeros
[95eb7cf]781
782 header->kind.real.blockSize |= 2; // mark as zero filled
783 return addr;
784} // callocNoStats
785
786
[bcb14b5]787static inline void * memalignNoStats( size_t alignment, size_t size ) { // necessary for malloc statistics
[d5d3a90]788 if ( size == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
789
[bcb14b5]790 #ifdef __CFA_DEBUG__
[b6830d74]791 checkAlign( alignment ); // check alignment
[bcb14b5]792 #endif // __CFA_DEBUG__
[c4f68dc]793
[b6830d74]794 // if alignment <= default alignment, do normal malloc as two headers are unnecessary
[bcb14b5]795 if ( unlikely( alignment <= libAlign() ) ) return mallocNoStats( size );
[b6830d74]796
797 // Allocate enough storage to guarantee an address on the alignment boundary, and sufficient space before it for
798 // administrative storage. NOTE, WHILE THERE ARE 2 HEADERS, THE FIRST ONE IS IMPLICITLY CREATED BY DOMALLOC.
799 // .-------------v-----------------v----------------v----------,
800 // | Real Header | ... padding ... | Fake Header | data ... |
801 // `-------------^-----------------^-+--------------^----------'
802 // |<--------------------------------' offset/align |<-- alignment boundary
803
804 // subtract libAlign() because it is already the minimum alignment
805 // add sizeof(Storage) for fake header
[95eb7cf]806 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) );
[b6830d74]807
808 // address in the block of the "next" alignment address
[95eb7cf]809 char * user = (char *)libCeiling( (uintptr_t)(addr + sizeof(HeapManager.Storage)), alignment );
[b6830d74]810
811 // address of header from malloc
[95eb7cf]812 HeapManager.Storage.Header * realHeader = headerAddr( addr );
[4cf617e]813 realHeader->kind.real.size = size; // correct size to eliminate above alignment offset
[b6830d74]814 // address of fake header * before* the alignment location
815 HeapManager.Storage.Header * fakeHeader = headerAddr( user );
816 // SKULLDUGGERY: insert the offset to the start of the actual storage block and remember alignment
817 fakeHeader->kind.fake.offset = (char *)fakeHeader - (char *)realHeader;
818 // SKULLDUGGERY: odd alignment imples fake header
819 fakeHeader->kind.fake.alignment = alignment | 1;
820
821 return user;
[bcb14b5]822} // memalignNoStats
[c4f68dc]823
824
[76e2113]825static inline void * cmemalignNoStats( size_t alignment, size_t dim, size_t elemSize ) {
826 size_t size = dim * elemSize;
[d5d3a90]827 if ( size == 0 ) return 0p; // 0 BYTE ALLOCATION RETURNS NULL POINTER
[95eb7cf]828 char * addr = (char *)memalignNoStats( alignment, size );
[d5d3a90]829
[95eb7cf]830 HeapManager.Storage.Header * header;
831 HeapManager.FreeHeader * freeElem;
832 size_t bsize;
833 bool mapped __attribute__(( unused )) = headers( "cmemalign", addr, header, freeElem, bsize, alignment );
834 #ifndef __CFA_DEBUG__
835 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.
836 if ( ! mapped )
837 #endif // __CFA_DEBUG__
838 memset( addr, '\0', dataStorage( bsize, addr, header ) ); // set to zeros
839
[cfbc703d]840 header->kind.real.blockSize |= 2; // mark as zero filled
[95eb7cf]841 return addr;
842} // cmemalignNoStats
843
844
[e723100]845// supported mallopt options
846#ifndef M_MMAP_THRESHOLD
847#define M_MMAP_THRESHOLD (-1)
848#endif // M_TOP_PAD
849#ifndef M_TOP_PAD
850#define M_TOP_PAD (-2)
851#endif // M_TOP_PAD
852
853
[c4f68dc]854extern "C" {
[61248a4]855 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0,
856 // then malloc() returns a unique pointer value that can later be successfully passed to free().
[b6830d74]857 void * malloc( size_t size ) {
[c4f68dc]858 #ifdef __STATISTICS__
[bcb14b5]859 __atomic_add_fetch( &malloc_calls, 1, __ATOMIC_SEQ_CST );
860 __atomic_add_fetch( &malloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]861 #endif // __STATISTICS__
862
[bcb14b5]863 return mallocNoStats( size );
864 } // malloc
[c4f68dc]865
[76e2113]866
[61248a4]867 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes.
[76e2113]868 void * aalloc( size_t dim, size_t elemSize ) {
869 #ifdef __STATISTICS__
870 __atomic_add_fetch( &aalloc_calls, 1, __ATOMIC_SEQ_CST );
871 __atomic_add_fetch( &aalloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
872 #endif // __STATISTICS__
873
[1076d05]874 return mallocNoStats( dim * elemSize );
[76e2113]875 } // aalloc
876
877
[61248a4]878 // Same as aalloc() with memory set to zero.
[76e2113]879 void * calloc( size_t dim, size_t elemSize ) {
[c4f68dc]880 #ifdef __STATISTICS__
[bcb14b5]881 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]882 __atomic_add_fetch( &calloc_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[c4f68dc]883 #endif // __STATISTICS__
884
[76e2113]885 return callocNoStats( dim, elemSize );
[bcb14b5]886 } // calloc
[c4f68dc]887
[61248a4]888 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is
889 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is
890 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier
891 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done.
[cfbc703d]892 void * resize( void * oaddr, size_t size ) {
893 #ifdef __STATISTICS__
894 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
895 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
896 #endif // __STATISTICS__
897
898 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]899 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[cfbc703d]900 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size );
901
902 HeapManager.Storage.Header * header;
903 HeapManager.FreeHeader * freeElem;
904 size_t bsize, oalign = 0;
905 headers( "resize", oaddr, header, freeElem, bsize, oalign );
906
[76e2113]907 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[cfbc703d]908 // same size, DO NOT preserve STICKY PROPERTIES.
[76e2113]909 if ( oalign == 0 && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
[cfbc703d]910 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill
[d5d3a90]911 header->kind.real.size = size; // reset allocation size
[cfbc703d]912 return oaddr;
913 } // if
[0f89d4f]914
[cfbc703d]915 // change size, DO NOT preserve STICKY PROPERTIES.
916 free( oaddr );
[d5d3a90]917 return mallocNoStats( size ); // create new area
[cfbc703d]918 } // resize
919
920
[61248a4]921 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of
[cfbc703d]922 // the old and new sizes.
[95eb7cf]923 void * realloc( void * oaddr, size_t size ) {
[c4f68dc]924 #ifdef __STATISTICS__
[bcb14b5]925 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[cfbc703d]926 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[c4f68dc]927 #endif // __STATISTICS__
928
[1f6de372]929 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]930 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[95eb7cf]931 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size );
[c4f68dc]932
933 HeapManager.Storage.Header * header;
934 HeapManager.FreeHeader * freeElem;
[95eb7cf]935 size_t bsize, oalign = 0;
936 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
937
938 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
[d5d3a90]939 size_t osize = header->kind.real.size; // old allocation size
940 bool ozfill = (header->kind.real.blockSize & 2) != 0; // old allocation zero filled
941 if ( unlikely( size <= odsize ) && size > odsize / 2 ) { // allow up to 50% wasted storage
942 header->kind.real.size = size; // reset allocation size
943 if ( unlikely( ozfill ) && size > osize ) { // previous request zero fill and larger ?
944 memset( (char *)oaddr + osize, (int)'\0', size - osize ); // initialize added storage
945 } // if
[95eb7cf]946 return oaddr;
[c4f68dc]947 } // if
948
[95eb7cf]949 // change size and copy old content to new storage
950
951 void * naddr;
[d5d3a90]952 if ( likely( oalign == 0 ) ) { // previous request memalign?
953 naddr = mallocNoStats( size ); // create new area
[c4f68dc]954 } else {
[d5d3a90]955 naddr = memalignNoStats( oalign, size ); // create new aligned area
[c4f68dc]956 } // if
[1e034d9]957
[95eb7cf]958 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[d5d3a90]959 memcpy( naddr, oaddr, MIN( osize, size ) ); // copy bytes
[95eb7cf]960 free( oaddr );
[d5d3a90]961
962 if ( unlikely( ozfill ) ) { // previous request zero fill ?
963 header->kind.real.blockSize |= 2; // mark new request as zero filled
964 if ( size > osize ) { // previous request larger ?
965 memset( (char *)naddr + osize, (int)'\0', size - osize ); // initialize added storage
966 } // if
967 } // if
[95eb7cf]968 return naddr;
[b6830d74]969 } // realloc
[c4f68dc]970
[61248a4]971 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete)
[bcb14b5]972 void * memalign( size_t alignment, size_t size ) {
[c4f68dc]973 #ifdef __STATISTICS__
974 __atomic_add_fetch( &memalign_calls, 1, __ATOMIC_SEQ_CST );
975 __atomic_add_fetch( &memalign_storage, size, __ATOMIC_SEQ_CST );
976 #endif // __STATISTICS__
977
[95eb7cf]978 return memalignNoStats( alignment, size );
[bcb14b5]979 } // memalign
[c4f68dc]980
[95eb7cf]981
[76e2113]982 // Same as aalloc() with memory alignment.
983 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) {
984 #ifdef __STATISTICS__
985 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
986 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
987 #endif // __STATISTICS__
988
[1076d05]989 return memalignNoStats( alignment, dim * elemSize );
[76e2113]990 } // amemalign
991
992
[ca7949b]993 // Same as calloc() with memory alignment.
[76e2113]994 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) {
[95eb7cf]995 #ifdef __STATISTICS__
996 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST );
[76e2113]997 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST );
[95eb7cf]998 #endif // __STATISTICS__
999
[76e2113]1000 return cmemalignNoStats( alignment, dim, elemSize );
[95eb7cf]1001 } // cmemalign
1002
[ca7949b]1003 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple
1004 // of alignment. This requirement is universally ignored.
[b6830d74]1005 void * aligned_alloc( size_t alignment, size_t size ) {
[c4f68dc]1006 return memalign( alignment, size );
[b6830d74]1007 } // aligned_alloc
[c4f68dc]1008
1009
[ca7949b]1010 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated
1011 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size
1012 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to
1013 // free(3).
[b6830d74]1014 int posix_memalign( void ** memptr, size_t alignment, size_t size ) {
[bcb14b5]1015 if ( alignment < sizeof(void *) || ! libPow2( alignment ) ) return EINVAL; // check alignment
[c4f68dc]1016 * memptr = memalign( alignment, size );
1017 return 0;
[b6830d74]1018 } // posix_memalign
[c4f68dc]1019
[ca7949b]1020 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the
1021 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).
[b6830d74]1022 void * valloc( size_t size ) {
[c4f68dc]1023 return memalign( pageSize, size );
[b6830d74]1024 } // valloc
[c4f68dc]1025
1026
[ca7949b]1027 // Same as valloc but rounds size to multiple of page size.
1028 void * pvalloc( size_t size ) {
1029 return memalign( pageSize, libCeiling( size, pageSize ) );
1030 } // pvalloc
1031
1032
1033 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc()
[1076d05]1034 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is
[ca7949b]1035 // 0p, no operation is performed.
[b6830d74]1036 void free( void * addr ) {
[c4f68dc]1037 #ifdef __STATISTICS__
[bcb14b5]1038 __atomic_add_fetch( &free_calls, 1, __ATOMIC_SEQ_CST );
[c4f68dc]1039 #endif // __STATISTICS__
1040
[95eb7cf]1041 if ( unlikely( addr == 0p ) ) { // special case
1042 // #ifdef __CFA_DEBUG__
1043 // if ( traceHeap() ) {
1044 // #define nullmsg "Free( 0x0 ) size:0\n"
[1e034d9]1045 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf.
[95eb7cf]1046 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 );
1047 // } // if
1048 // #endif // __CFA_DEBUG__
[c4f68dc]1049 return;
1050 } // exit
1051
1052 doFree( addr );
[b6830d74]1053 } // free
[93c2e0a]1054
[c4f68dc]1055
[76e2113]1056 // Returns the alignment of an allocation.
[b6830d74]1057 size_t malloc_alignment( void * addr ) {
[95eb7cf]1058 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
[1aa6ecb]1059 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1060 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1061 return header->kind.fake.alignment & -2; // remove flag from value
1062 } else {
[cfbc703d]1063 return libAlign(); // minimum alignment
[c4f68dc]1064 } // if
[bcb14b5]1065 } // malloc_alignment
[c4f68dc]1066
[76e2113]1067 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment.
1068 size_t $malloc_alignment_set( void * addr, size_t alignment ) {
1069 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment
1070 size_t ret;
1071 HeapManager.Storage.Header * header = headerAddr( addr );
1072 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1073 ret = header->kind.fake.alignment & -2; // remove flag from old value
1074 header->kind.fake.alignment = alignment | 1; // add flag to new value
1075 } else {
1076 ret = 0; // => no alignment to change
1077 } // if
1078 return ret;
1079 } // $malloc_alignment_set
1080
[c4f68dc]1081
[76e2113]1082 // Returns true if the allocation is zero filled, e.g., allocated by calloc().
[b6830d74]1083 bool malloc_zero_fill( void * addr ) {
[95eb7cf]1084 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
[1aa6ecb]1085 HeapManager.Storage.Header * header = headerAddr( addr );
[c4f68dc]1086 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
[cfbc703d]1087 header = realHeader( header ); // backup from fake to real header
[c4f68dc]1088 } // if
[76e2113]1089 return (header->kind.real.blockSize & 2) != 0; // zero filled ?
[bcb14b5]1090 } // malloc_zero_fill
[c4f68dc]1091
[76e2113]1092 // Set allocation is zero filled and return previous zero filled.
1093 bool $malloc_zero_fill_set( void * addr ) {
1094 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill
1095 HeapManager.Storage.Header * header = headerAddr( addr );
1096 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1097 header = realHeader( header ); // backup from fake to real header
1098 } // if
1099 bool ret = (header->kind.real.blockSize & 2) != 0; // zero filled ?
1100 header->kind.real.blockSize |= 2; // mark as zero filled
1101 return ret;
1102 } // $malloc_zero_fill_set
1103
[c4f68dc]1104
[76e2113]1105 // Returns original total allocation size (not bucket size) => array size is dimension * sizeif(T).
1106 size_t malloc_size( void * addr ) {
[849fb370]1107 if ( unlikely( addr == 0p ) ) return 0; // null allocation has zero size
[cfbc703d]1108 HeapManager.Storage.Header * header = headerAddr( addr );
1109 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1110 header = realHeader( header ); // backup from fake to real header
1111 } // if
[9c438546]1112 return header->kind.real.size;
[76e2113]1113 } // malloc_size
1114
1115 // Set allocation size and return previous size.
1116 size_t $malloc_size_set( void * addr, size_t size ) {
[849fb370]1117 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
[76e2113]1118 HeapManager.Storage.Header * header = headerAddr( addr );
1119 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ?
1120 header = realHeader( header ); // backup from fake to real header
1121 } // if
[9c438546]1122 size_t ret = header->kind.real.size;
1123 header->kind.real.size = size;
[76e2113]1124 return ret;
1125 } // $malloc_size_set
[cfbc703d]1126
1127
[ca7949b]1128 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by
1129 // malloc or a related function.
[95eb7cf]1130 size_t malloc_usable_size( void * addr ) {
1131 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size
1132 HeapManager.Storage.Header * header;
1133 HeapManager.FreeHeader * freeElem;
1134 size_t bsize, alignment;
1135
1136 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment );
1137 return dataStorage( bsize, addr, header ); // data storage in bucket
1138 } // malloc_usable_size
1139
1140
[ca7949b]1141 // Prints (on default standard error) statistics about memory allocated by malloc and related functions.
[b6830d74]1142 void malloc_stats( void ) {
[c4f68dc]1143 #ifdef __STATISTICS__
[bcb14b5]1144 printStats();
[95eb7cf]1145 if ( prtFree() ) prtFree( heapManager );
[c4f68dc]1146 #endif // __STATISTICS__
[bcb14b5]1147 } // malloc_stats
[c4f68dc]1148
[ca7949b]1149 // Changes the file descripter where malloc_stats() writes statistics.
[95eb7cf]1150 int malloc_stats_fd( int fd __attribute__(( unused )) ) {
[c4f68dc]1151 #ifdef __STATISTICS__
[bcb14b5]1152 int temp = statfd;
1153 statfd = fd;
1154 return temp;
[c4f68dc]1155 #else
[bcb14b5]1156 return -1;
[c4f68dc]1157 #endif // __STATISTICS__
[bcb14b5]1158 } // malloc_stats_fd
[c4f68dc]1159
[95eb7cf]1160
[1076d05]1161 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument
[ca7949b]1162 // specifies the parameter to be modified, and value specifies the new value for that parameter.
[95eb7cf]1163 int mallopt( int option, int value ) {
1164 choose( option ) {
1165 case M_TOP_PAD:
[1076d05]1166 heapExpand = ceiling( value, pageSize ); return 1;
[95eb7cf]1167 case M_MMAP_THRESHOLD:
1168 if ( setMmapStart( value ) ) return 1;
[1076d05]1169 break;
[95eb7cf]1170 } // switch
1171 return 0; // error, unsupported
1172 } // mallopt
1173
[ca7949b]1174 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument).
[95eb7cf]1175 int malloc_trim( size_t ) {
1176 return 0; // => impossible to release memory
1177 } // malloc_trim
1178
1179
[ca7949b]1180 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller.
1181 // The string is printed on the file stream stream. The exported string includes information about all arenas (see
1182 // malloc).
[c4f68dc]1183 int malloc_info( int options, FILE * stream ) {
[95eb7cf]1184 if ( options != 0 ) { errno = EINVAL; return -1; }
[d46ed6e]1185 return printStatsXML( stream );
[c4f68dc]1186 } // malloc_info
1187
1188
[ca7949b]1189 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap
1190 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data
1191 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function
1192 // result. (The caller must free this memory.)
[c4f68dc]1193 void * malloc_get_state( void ) {
[95eb7cf]1194 return 0p; // unsupported
[c4f68dc]1195 } // malloc_get_state
1196
[bcb14b5]1197
[ca7949b]1198 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data
1199 // structure pointed to by state.
[c4f68dc]1200 int malloc_set_state( void * ptr ) {
[bcb14b5]1201 return 0; // unsupported
[c4f68dc]1202 } // malloc_set_state
1203} // extern "C"
1204
1205
[95eb7cf]1206// Must have CFA linkage to overload with C linkage realloc.
[cfbc703d]1207void * resize( void * oaddr, size_t nalign, size_t size ) {
[1e034d9]1208 #ifdef __STATISTICS__
[cfbc703d]1209 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );
1210 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1211 #endif // __STATISTICS__
[95eb7cf]1212
[1f6de372]1213 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]1214 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[cfbc703d]1215 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size );
1216
[1e034d9]1217 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum
[95eb7cf]1218 #ifdef __CFA_DEBUG__
[1e034d9]1219 else
[95eb7cf]1220 checkAlign( nalign ); // check alignment
1221 #endif // __CFA_DEBUG__
1222
[cfbc703d]1223 HeapManager.Storage.Header * header;
1224 HeapManager.FreeHeader * freeElem;
1225 size_t bsize, oalign = 0;
1226 headers( "resize", oaddr, header, freeElem, bsize, oalign );
1227 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket
1228
1229 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match
1230 if ( oalign >= libAlign() ) { // fake header ?
1231 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1232 } // if
1233 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size
1234 header->kind.real.blockSize &= -2; // turn off 0 fill
[2b23d78]1235 if ( size != odsize ) header->kind.real.size = size; // reset allocation size
[cfbc703d]1236 return oaddr;
1237 } // if
1238 } // if
1239
1240 // change size
1241
[d5d3a90]1242 void * naddr = memalignNoStats( nalign, size ); // create new aligned area
[cfbc703d]1243 free( oaddr );
1244 return naddr;
1245} // resize
1246
1247
1248void * realloc( void * oaddr, size_t nalign, size_t size ) {
1249 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum
1250 #ifdef __CFA_DEBUG__
1251 else
1252 checkAlign( nalign ); // check alignment
1253 #endif // __CFA_DEBUG__
1254
[95eb7cf]1255 HeapManager.Storage.Header * header;
1256 HeapManager.FreeHeader * freeElem;
1257 size_t bsize, oalign = 0;
1258 headers( "realloc", oaddr, header, freeElem, bsize, oalign );
1259
[cfbc703d]1260 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match
1261 if ( oalign >= libAlign() ) { // fake header ?
1262 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)
1263 } // if
[95eb7cf]1264 return realloc( oaddr, size );
[1e034d9]1265 } // if
[95eb7cf]1266
[cfbc703d]1267 // change size and copy old content to new storage
1268
[1e034d9]1269 #ifdef __STATISTICS__
[cfbc703d]1270 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );
[95eb7cf]1271 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );
[1e034d9]1272 #endif // __STATISTICS__
1273
[d5d3a90]1274 size_t osize = header->kind.real.size; // old allocation size
1275 bool ozfill = (header->kind.real.blockSize & 2) != 0; // old allocation zero filled
1276
[cfbc703d]1277 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.
[d5d3a90]1278 if ( unlikely( size == 0 ) ) { free( oaddr ); return 0p; } // special cases
[cfbc703d]1279 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size );
[95eb7cf]1280
[1e034d9]1281 void * naddr;
1282 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill
1283 naddr = cmemalignNoStats( nalign, 1, size ); // create new aligned area
1284 } else {
1285 naddr = memalignNoStats( nalign, size ); // create new aligned area
1286 } // if
[95eb7cf]1287
[1e034d9]1288 headers( "realloc", naddr, header, freeElem, bsize, oalign );
[d5d3a90]1289 memcpy( naddr, oaddr, MIN( osize, size ) ); // copy bytes
[1e034d9]1290 free( oaddr );
[d5d3a90]1291
1292 if ( unlikely( ozfill ) ) { // previous request zero fill ?
1293 header->kind.real.blockSize |= 2; // mark new request as zero filled
1294 if ( size > osize ) { // previous request larger ?
1295 memset( (char *)naddr + osize, (int)'\0', size - osize ); // initialize added storage
1296 } // if
1297 } // if
[1e034d9]1298 return naddr;
[95eb7cf]1299} // realloc
1300
1301
[c4f68dc]1302// Local Variables: //
1303// tab-width: 4 //
[f8cd310]1304// compile-command: "cfa -nodebug -O2 heap.cfa" //
[c4f68dc]1305// End: //
Note: See TracBrowser for help on using the repository browser.