[88ac843e] | 1 | #pragma once
|
---|
| 2 |
|
---|
| 3 | #include <assert.h>
|
---|
| 4 |
|
---|
| 5 | #include <stdint.h>
|
---|
| 6 | #include <bits/defs.hfa>
|
---|
| 7 |
|
---|
| 8 | forall( T &) {
|
---|
| 9 | //------------------------------------------------------------
|
---|
| 10 | // Queue based on the MCS lock
|
---|
| 11 | // It is a Multi-Producer/Single-Consumer queue threads pushing
|
---|
| 12 | // elements must hold on to the elements they push
|
---|
| 13 | // Not appropriate for an async message queue for example,
|
---|
| 14 | struct mcs_queue {
|
---|
| 15 | T * volatile tail;
|
---|
| 16 | };
|
---|
| 17 |
|
---|
| 18 | static inline void ?{}(mcs_queue(T) & this) { this.tail = 0p; }
|
---|
| 19 | static inline bool empty(const mcs_queue(T) & this) { return !this.tail; }
|
---|
| 20 |
|
---|
| 21 | static inline forall(| { T * volatile & ?`next ( T * ); })
|
---|
| 22 | {
|
---|
| 23 | // Adds an element to the list
|
---|
| 24 | // Multi-Thread Safe, Lock-Free
|
---|
| 25 | T * push(mcs_queue(T) & this, T * elem) __attribute__((artificial));
|
---|
| 26 | T * push(mcs_queue(T) & this, T * elem) {
|
---|
| 27 | /* paranoid */ verify(!(elem`next));
|
---|
| 28 | // Race to add to the tail
|
---|
| 29 | T * prev = __atomic_exchange_n(&this.tail, elem, __ATOMIC_SEQ_CST);
|
---|
| 30 | // If we aren't the first, we need to tell the person before us
|
---|
| 31 | // No need to
|
---|
| 32 | if (prev) prev`next = elem;
|
---|
| 33 | return prev;
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | // Advances the head of the list, dropping the element given.
|
---|
| 37 | // Passing an element that is not the head is undefined behavior
|
---|
| 38 | // NOT Multi-Thread Safe, concurrent pushes are safe
|
---|
| 39 | T * advance(mcs_queue(T) & this, T * elem) __attribute__((artificial));
|
---|
| 40 | T * advance(mcs_queue(T) & this, T * elem) {
|
---|
| 41 | T * expected = elem;
|
---|
| 42 | // Check if this is already the last item
|
---|
| 43 | if (__atomic_compare_exchange_n(&this.tail, &expected, 0p, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) return 0p;
|
---|
| 44 |
|
---|
| 45 | // If not wait for next item to show-up, filled by push
|
---|
| 46 | while (!(elem`next)) Pause();
|
---|
| 47 |
|
---|
| 48 | // we need to return if the next link was empty
|
---|
| 49 | T * ret = elem`next;
|
---|
| 50 |
|
---|
| 51 | // invalidate link to reset to initial state
|
---|
| 52 | elem`next = 0p;
|
---|
| 53 | return ret;
|
---|
| 54 | }
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | //------------------------------------------------------------
|
---|
| 58 | // Queue based on the MCS lock
|
---|
| 59 | // Extension of the above lock which supports 'blind' pops.
|
---|
| 60 | // i.e., popping a value from the head without knowing what the head is
|
---|
| 61 | // has no extra guarantees beyond the mcs_queue
|
---|
| 62 | struct mpsc_queue {
|
---|
| 63 | inline mcs_queue(T);
|
---|
| 64 | T * volatile head;
|
---|
| 65 | };
|
---|
| 66 |
|
---|
| 67 | static inline void ?{}(mpsc_queue(T) & this) {
|
---|
| 68 | ((mcs_queue(T)&)this){};
|
---|
| 69 | this.head = 0p;
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | static inline forall(| { T * volatile & ?`next ( T * ); })
|
---|
| 73 | {
|
---|
| 74 | // Added a new element to the queue
|
---|
| 75 | // Multi-Thread Safe, Lock-Free
|
---|
| 76 | T * push(mpsc_queue(T) & this, T * elem) __attribute__((artificial));
|
---|
| 77 | T * push(mpsc_queue(T) & this, T * elem) {
|
---|
| 78 | T * prev = push((mcs_queue(T)&)this, elem);
|
---|
| 79 | if (!prev) this.head = elem;
|
---|
| 80 | return prev;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | // Pop an element from the queue
|
---|
| 84 | // return the element that was removed
|
---|
| 85 | // next is set to the new head of the queue
|
---|
| 86 | // NOT Multi-Thread Safe
|
---|
| 87 | T * pop(mpsc_queue(T) & this, T *& next) __attribute__((artificial));
|
---|
| 88 | T * pop(mpsc_queue(T) & this, T *& next) {
|
---|
| 89 | T * elem = this.head;
|
---|
| 90 | // If head is empty just return
|
---|
| 91 | if (!elem) return 0p;
|
---|
| 92 |
|
---|
| 93 | // If there is already someone in the list, then it's easy
|
---|
| 94 | if (elem`next) {
|
---|
| 95 | this.head = next = elem`next;
|
---|
| 96 | // force memory sync
|
---|
| 97 | __atomic_thread_fence(__ATOMIC_SEQ_CST);
|
---|
| 98 |
|
---|
| 99 | // invalidate link to reset to initial state
|
---|
| 100 | elem`next = 0p;
|
---|
| 101 | }
|
---|
| 102 | // Otherwise, there might be a race where it only looks but someone is enqueuing
|
---|
| 103 | else {
|
---|
| 104 | // null out head here, because we linearize with push
|
---|
| 105 | // at the CAS in advance and therefore can write to head
|
---|
| 106 | // after that point, it could overwrite the write in push
|
---|
| 107 | this.head = 0p;
|
---|
| 108 | next = advance((mcs_queue(T)&)this, elem);
|
---|
| 109 |
|
---|
| 110 | // Only write to the head if there is a next element
|
---|
| 111 | // it is the only way we can guarantee we are not overwriting
|
---|
| 112 | // a write made in push
|
---|
| 113 | if (next) this.head = next;
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | // return removed element
|
---|
| 117 | return elem;
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | // Same as previous function
|
---|
| 121 | T * pop(mpsc_queue(T) & this) {
|
---|
| 122 | T * _ = 0p;
|
---|
| 123 | return pop(this, _);
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | //------------------------------------------------------------
|
---|
| 128 | // Queue based on the MCS lock with poisoning
|
---|
| 129 | // It is a Multi-Producer/Single-Consumer queue threads pushing
|
---|
| 130 | // elements must hold on to the elements they push
|
---|
| 131 | // Not appropriate for an async message queue for example
|
---|
| 132 | // poisoning the queue prevents any new elements from being push
|
---|
| 133 | // enum(void*) poison_state {
|
---|
| 134 | // EMPTY = 0p,
|
---|
| 135 | // POISON = 1p,
|
---|
| 136 | // IN_PROGRESS = 1p
|
---|
| 137 | // };
|
---|
| 138 |
|
---|
| 139 | struct poison_list {
|
---|
| 140 | T * volatile head;
|
---|
| 141 | };
|
---|
| 142 |
|
---|
| 143 | static inline void ?{}(poison_list(T) & this) { this.head = 0p; }
|
---|
[e8b8e65] | 144 | static inline bool is_poisoned( const poison_list(T) & this ) { return 1p == this.head; }
|
---|
[88ac843e] | 145 |
|
---|
| 146 | static inline forall(| { T * volatile & ?`next ( T * ); })
|
---|
| 147 | {
|
---|
| 148 | // Adds an element to the list
|
---|
| 149 | // Multi-Thread Safe, Lock-Free
|
---|
[e8b8e65] | 150 | bool push(poison_list(T) & this, T * elem) __attribute__((artificial));
|
---|
| 151 | bool push(poison_list(T) & this, T * elem) {
|
---|
[88ac843e] | 152 | /* paranoid */ verify(0p == (elem`next));
|
---|
| 153 | __atomic_store_n( &elem`next, (T*)1p, __ATOMIC_RELAXED );
|
---|
| 154 |
|
---|
| 155 | // read the head up-front
|
---|
| 156 | T * expected = this.head;
|
---|
| 157 | for() {
|
---|
| 158 | // check if it's poisoned
|
---|
[e8b8e65] | 159 | if(expected == 1p) return false;
|
---|
[88ac843e] | 160 |
|
---|
| 161 | // try to CAS the elem in
|
---|
| 162 | if(__atomic_compare_exchange_n(&this.head, &expected, elem, true, __ATOMIC_SEQ_CST, __ATOMIC_RELAXED)) {
|
---|
| 163 | // We managed to exchange in, we are done
|
---|
| 164 |
|
---|
[e8b8e65] | 165 | // We should never succeed the CAS if it's poisonned and the elem should be 1p.
|
---|
| 166 | /* paranoid */ verify( expected != 1p );
|
---|
| 167 | /* paranoid */ verify( elem`next == 1p );
|
---|
[88ac843e] | 168 |
|
---|
| 169 | // If we aren't the first, we need to tell the person before us
|
---|
| 170 | // No need to
|
---|
| 171 | elem`next = expected;
|
---|
[e8b8e65] | 172 | return true;
|
---|
[88ac843e] | 173 | }
|
---|
| 174 | }
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 | // Advances the head of the list, dropping the element given.
|
---|
| 178 | // Passing an element that is not the head is undefined behavior
|
---|
| 179 | // NOT Multi-Thread Safe, concurrent pushes are safe
|
---|
| 180 | T * advance(T * elem) __attribute__((artificial));
|
---|
| 181 | T * advance(T * elem) {
|
---|
| 182 | T * ret;
|
---|
| 183 |
|
---|
| 184 | // Wait for next item to show-up, filled by push
|
---|
| 185 | while (1p == (ret = __atomic_load_n(&elem`next, __ATOMIC_RELAXED))) Pause();
|
---|
| 186 |
|
---|
| 187 | return ret;
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | // Poison the queue, preveting new pushes and returning the head
|
---|
| 191 | T * poison(poison_list(T) & this) __attribute__((artificial));
|
---|
| 192 | T * poison(poison_list(T) & this) {
|
---|
| 193 | T * ret = __atomic_exchange_n( &this.head, (T*)1p, __ATOMIC_SEQ_CST );
|
---|
[e8b8e65] | 194 | /* paranoid */ verifyf( ret != (T*)1p, "Poison list %p poisoned more than once!", &this );
|
---|
[88ac843e] | 195 | return ret;
|
---|
| 196 | }
|
---|
| 197 | }
|
---|
| 198 | }
|
---|
| 199 |
|
---|
[0658672] | 200 | forall( T & )
|
---|
| 201 | struct LinkData {
|
---|
| 202 | T * volatile top; // pointer to stack top
|
---|
| 203 | uintptr_t count; // count each push
|
---|
| 204 | };
|
---|
| 205 |
|
---|
[88ac843e] | 206 | forall( T & )
|
---|
| 207 | union Link {
|
---|
[0658672] | 208 | LinkData(T) data;
|
---|
[88ac843e] | 209 | #if __SIZEOF_INT128__ == 16
|
---|
| 210 | __int128 // gcc, 128-bit integer
|
---|
| 211 | #else
|
---|
| 212 | uint64_t // 64-bit integer
|
---|
| 213 | #endif // __SIZEOF_INT128__ == 16
|
---|
| 214 | atom;
|
---|
| 215 | }; // Link
|
---|
| 216 |
|
---|
| 217 | forall( T | sized(T) | { Link(T) * ?`next( T * ); } ) {
|
---|
| 218 | struct StackLF {
|
---|
| 219 | Link(T) stack;
|
---|
| 220 | }; // StackLF
|
---|
| 221 |
|
---|
| 222 | static inline {
|
---|
| 223 | void ?{}( StackLF(T) & this ) with(this) { stack.atom = 0; }
|
---|
| 224 |
|
---|
[0658672] | 225 | T * top( StackLF(T) & this ) with(this) { return stack.data.top; }
|
---|
[88ac843e] | 226 |
|
---|
| 227 | void push( StackLF(T) & this, T & n ) with(this) {
|
---|
| 228 | *( &n )`next = stack; // atomic assignment unnecessary, or use CAA
|
---|
| 229 | for () { // busy wait
|
---|
[0658672] | 230 | if ( __atomic_compare_exchange_n( &stack.atom, &( &n )`next->atom, (Link(T))@{ (LinkData(T))@{ &n, ( &n )`next->data.count + 1} }.atom, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) ) break; // attempt to update top node
|
---|
[88ac843e] | 231 | } // for
|
---|
| 232 | } // push
|
---|
| 233 |
|
---|
| 234 | T * pop( StackLF(T) & this ) with(this) {
|
---|
| 235 | Link(T) t @= stack; // atomic assignment unnecessary, or use CAA
|
---|
| 236 | for () { // busy wait
|
---|
[0658672] | 237 | if ( t.data.top == 0p ) return 0p; // empty stack ?
|
---|
| 238 | Link(T) * next = ( t.data.top )`next;
|
---|
| 239 | if ( __atomic_compare_exchange_n( &stack.atom, &t.atom, (Link(T))@{ (LinkData(T))@{ next->data.top, t.data.count } }.atom, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) ) return t.data.top; // attempt to update top node
|
---|
[88ac843e] | 240 | } // for
|
---|
| 241 | } // pop
|
---|
| 242 |
|
---|
| 243 | bool unsafe_remove( StackLF(T) & this, T * node ) with(this) {
|
---|
| 244 | Link(T) * link = &stack;
|
---|
[0658672] | 245 | for () {
|
---|
| 246 | // TODO: Avoiding some problems with double fields access.
|
---|
| 247 | LinkData(T) * data = &link->data;
|
---|
| 248 | T * next = (T *)&(*data).top;
|
---|
| 249 | if ( next == node ) {
|
---|
| 250 | data->top = ( node )`next->data.top;
|
---|
[88ac843e] | 251 | return true;
|
---|
| 252 | }
|
---|
[0658672] | 253 | if ( next == 0p ) return false;
|
---|
[88ac843e] | 254 | link = ( next )`next;
|
---|
| 255 | }
|
---|
| 256 | }
|
---|
| 257 | } // distribution
|
---|
[b2f3880] | 258 | } // distribution
|
---|