| 1 | #pragma once | 
|---|
| 2 |  | 
|---|
| 3 | #include <assert.h> | 
|---|
| 4 |  | 
|---|
| 5 |  | 
|---|
| 6 | forall( __CFA_tysys_id_only_X & ) struct tag {}; | 
|---|
| 7 | #define ttag(T) ((tag(T)){}) | 
|---|
| 8 | #define ztag(n) ttag(n) | 
|---|
| 9 |  | 
|---|
| 10 |  | 
|---|
| 11 | // | 
|---|
| 12 | // The `array` macro is the public interface. | 
|---|
| 13 | // It computes the type of a dense (trivially strided) array. | 
|---|
| 14 | // All user-declared objects are dense arrays. | 
|---|
| 15 | // | 
|---|
| 16 | // The `arpk` (ARray with PacKing info explicit) type is, generally, a slice with _any_ striding. | 
|---|
| 17 | // This type is meant for internal use. | 
|---|
| 18 | // CFA programmers should not instantiate it directly, nor access its field. | 
|---|
| 19 | // CFA programmers should call ?[?] on it. | 
|---|
| 20 | // Yet user-given `array(stuff)` expands to `arpk(stuff')`. | 
|---|
| 21 | // The comments here explain the resulting internals. | 
|---|
| 22 | // | 
|---|
| 23 | // Just as a plain-C "multidimesional" array is really array-of-array-of-..., | 
|---|
| 24 | // so does arpk generally show up as arpk-of-arpk-of... | 
|---|
| 25 | // | 
|---|
| 26 | // In the example of `array(float, 3, 4, 5) a;`, | 
|---|
| 27 | // `typeof(a)` is an `arpk` instantiation. | 
|---|
| 28 | // These comments explain _its_ arguments, i.e. those of the topmost `arpk` level. | 
|---|
| 29 | // | 
|---|
| 30 | // [N]    : the number of elements in `a`; 3 in the example | 
|---|
| 31 | // S      : carries the stride size (distance in bytes between &myA[0] and &myA[1]), in sizeof(S); | 
|---|
| 32 | //          same as Timmed when striding is trivial, same as Timmed in the example | 
|---|
| 33 | // Timmed : (T-immediate) the inner type; conceptually, `typeof(a)` is "arpk of Timmed"; | 
|---|
| 34 | //          array(float, 4, 5) in the example | 
|---|
| 35 | // Tbase  : (T-base) the deepest element type that is not arpk; float in the example | 
|---|
| 36 | // | 
|---|
| 37 | forall( [N], S & | sized(S), Timmed &, Tbase & ) { | 
|---|
| 38 |  | 
|---|
| 39 | // | 
|---|
| 40 | // Single-dim array sruct (with explicit packing and atom) | 
|---|
| 41 | // | 
|---|
| 42 | struct arpk { | 
|---|
| 43 | S strides[N]; | 
|---|
| 44 | }; | 
|---|
| 45 |  | 
|---|
| 46 | // About the choice of integral types offered as subscript overloads: | 
|---|
| 47 | // Intent is to cover these use cases: | 
|---|
| 48 | //    a[0]                                                // i : zero_t | 
|---|
| 49 | //    a[1]                                                // i : one_t | 
|---|
| 50 | //    a[2]                                                // i : int | 
|---|
| 51 | //    float foo( ptrdiff_t i ) { return a[i]; }           // i : ptrdiff_t | 
|---|
| 52 | //    float foo( size_t i ) { return a[i]; }              // i : size_t | 
|---|
| 53 | //    forall( [N] ) ... for( i; N ) { total += a[i]; }    // i : typeof( sizeof(42) ) | 
|---|
| 54 | //    for( i; 5 ) { total += a[i]; }                      // i : int | 
|---|
| 55 | // | 
|---|
| 56 | // It gets complicated by: | 
|---|
| 57 | // -  CFA does overloading on concrete types, like int and unsigned int, not on typedefed | 
|---|
| 58 | //    types like size_t.  So trying to overload on ptrdiff_t vs int works in 64-bit mode | 
|---|
| 59 | //    but not in 32-bit mode. | 
|---|
| 60 | // -  Given bug of Trac #247, CFA gives sizeof expressions type unsigned long int, when it | 
|---|
| 61 | //    should give them type size_t. | 
|---|
| 62 | // | 
|---|
| 63 | //                          gcc -m32         cfa -m32 given bug         gcc -m64 (and cfa) | 
|---|
| 64 | // ptrdiff_t                int              int                        long int | 
|---|
| 65 | // size_t                   unsigned int     unsigned int               unsigned long int | 
|---|
| 66 | // typeof( sizeof(42) )     unsigned int     unsigned long int          unsigned long int | 
|---|
| 67 | // int                      int              int                        int | 
|---|
| 68 | // | 
|---|
| 69 | // So the solution must support types {zero_t, one_t, int, unsigned int, long int, unsigned long int} | 
|---|
| 70 | // | 
|---|
| 71 | // The solution cannot rely on implicit conversions (e.g. just have one overload for ptrdiff_t) | 
|---|
| 72 | // because assertion satisfaction requires types to match exacly.  Both higher-dimensional | 
|---|
| 73 | // subscripting and operations on slices use asserted subscript operators.  The test case | 
|---|
| 74 | // array-container/array-sbscr-cases covers the combinations.  Mike beleives that commenting out | 
|---|
| 75 | // any of the current overloads leads to one of those cases failing, either on 64- or 32-bit. | 
|---|
| 76 | // Mike is open to being shown a smaller set of overloads that still passes the test. | 
|---|
| 77 |  | 
|---|
| 78 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, zero_t ) { | 
|---|
| 79 | assert( 0 < N ); | 
|---|
| 80 | return (Timmed &) a.strides[0]; | 
|---|
| 81 | } | 
|---|
| 82 |  | 
|---|
| 83 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, one_t ) { | 
|---|
| 84 | assert( 1 < N ); | 
|---|
| 85 | return (Timmed &) a.strides[1]; | 
|---|
| 86 | } | 
|---|
| 87 |  | 
|---|
| 88 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, int i ) { | 
|---|
| 89 | assert( i < N ); | 
|---|
| 90 | return (Timmed &) a.strides[i]; | 
|---|
| 91 | } | 
|---|
| 92 |  | 
|---|
| 93 | static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, int i ) { | 
|---|
| 94 | assert( i < N ); | 
|---|
| 95 | return (Timmed &) a.strides[i]; | 
|---|
| 96 | } | 
|---|
| 97 |  | 
|---|
| 98 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, unsigned int i ) { | 
|---|
| 99 | assert( i < N ); | 
|---|
| 100 | return (Timmed &) a.strides[i]; | 
|---|
| 101 | } | 
|---|
| 102 |  | 
|---|
| 103 | static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, unsigned int i ) { | 
|---|
| 104 | assert( i < N ); | 
|---|
| 105 | return (Timmed &) a.strides[i]; | 
|---|
| 106 | } | 
|---|
| 107 |  | 
|---|
| 108 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, long int i ) { | 
|---|
| 109 | assert( i < N ); | 
|---|
| 110 | return (Timmed &) a.strides[i]; | 
|---|
| 111 | } | 
|---|
| 112 |  | 
|---|
| 113 | static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, long int i ) { | 
|---|
| 114 | assert( i < N ); | 
|---|
| 115 | return (Timmed &) a.strides[i]; | 
|---|
| 116 | } | 
|---|
| 117 |  | 
|---|
| 118 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, unsigned long int i ) { | 
|---|
| 119 | assert( i < N ); | 
|---|
| 120 | return (Timmed &) a.strides[i]; | 
|---|
| 121 | } | 
|---|
| 122 |  | 
|---|
| 123 | static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, unsigned long int i ) { | 
|---|
| 124 | assert( i < N ); | 
|---|
| 125 | return (Timmed &) a.strides[i]; | 
|---|
| 126 | } | 
|---|
| 127 |  | 
|---|
| 128 | static inline size_t ?`len( arpk(N, S, Timmed, Tbase) & a ) { | 
|---|
| 129 | return N; | 
|---|
| 130 | } | 
|---|
| 131 |  | 
|---|
| 132 | static inline void __taglen( tag(arpk(N, S, Timmed, Tbase)), tag(N) ) {} | 
|---|
| 133 |  | 
|---|
| 134 | // workaround #226 (and array relevance thereof demonstrated in mike102/otype-slow-ndims.cfa) | 
|---|
| 135 | static inline void ?{}( arpk(N, S, Timmed, Tbase) & this ) { | 
|---|
| 136 | void ?{}( S (&inner)[N] ) {} | 
|---|
| 137 | ?{}(this.strides); | 
|---|
| 138 | } | 
|---|
| 139 | static inline void ^?{}( arpk(N, S, Timmed, Tbase) & this ) { | 
|---|
| 140 | void ^?{}( S (&inner)[N] ) {} | 
|---|
| 141 | ^?{}(this.strides); | 
|---|
| 142 | } | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 | // | 
|---|
| 146 | // Sugar for declaring array structure instances | 
|---|
| 147 | // | 
|---|
| 148 |  | 
|---|
| 149 | forall( Te ) | 
|---|
| 150 | static inline Te mkar_( tag(Te) ) {} | 
|---|
| 151 |  | 
|---|
| 152 | forall( [N], ZTags ... , Trslt &, Tatom & | { Trslt mkar_( tag(Tatom), ZTags ); } ) | 
|---|
| 153 | static inline arpk(N, Trslt, Trslt, Tatom) mkar_( tag(Tatom), tag(N), ZTags ) {} | 
|---|
| 154 |  | 
|---|
| 155 | // based on https://stackoverflow.com/questions/1872220/is-it-possible-to-iterate-over-arguments-in-variadic-macros | 
|---|
| 156 |  | 
|---|
| 157 | // Make a FOREACH macro | 
|---|
| 158 | #define FE_0(WHAT) | 
|---|
| 159 | #define FE_1(WHAT, X) WHAT(X) | 
|---|
| 160 | #define FE_2(WHAT, X, ...) WHAT(X)FE_1(WHAT, __VA_ARGS__) | 
|---|
| 161 | #define FE_3(WHAT, X, ...) WHAT(X)FE_2(WHAT, __VA_ARGS__) | 
|---|
| 162 | #define FE_4(WHAT, X, ...) WHAT(X)FE_3(WHAT, __VA_ARGS__) | 
|---|
| 163 | #define FE_5(WHAT, X, ...) WHAT(X)FE_4(WHAT, __VA_ARGS__) | 
|---|
| 164 | //... repeat as needed | 
|---|
| 165 |  | 
|---|
| 166 | #define GET_MACRO(_0,_1,_2,_3,_4,_5,NAME,...) NAME | 
|---|
| 167 | #define FOR_EACH(action,...) \ | 
|---|
| 168 | GET_MACRO(_0,__VA_ARGS__,FE_5,FE_4,FE_3,FE_2,FE_1,FE_0)(action,__VA_ARGS__) | 
|---|
| 169 |  | 
|---|
| 170 | #define COMMA_ttag(X) , ttag(X) | 
|---|
| 171 | #define array( TE, ...) typeof( mkar_( ttag(TE)  FOR_EACH( COMMA_ttag, __VA_ARGS__ ) ) ) | 
|---|
| 172 |  | 
|---|
| 173 | #define COMMA_ztag(X) , ztag(X) | 
|---|
| 174 | #define zarray( TE, ...) typeof( mkar_( ttag(TE)  FOR_EACH( COMMA_ztag, __VA_ARGS__ ) ) ) | 
|---|
| 175 |  | 
|---|
| 176 | // | 
|---|
| 177 | // Sugar for multidimensional indexing | 
|---|
| 178 | // | 
|---|
| 179 |  | 
|---|
| 180 | // Core -[[-,-,-]] operator | 
|---|
| 181 |  | 
|---|
| 182 | #ifdef TRY_BROKEN_DESIRED_MD_SUBSCRIPT | 
|---|
| 183 |  | 
|---|
| 184 | // Desired form.  One definition with recursion on IxBC (worked until Jan 2021, see trac #__TODO__) | 
|---|
| 185 |  | 
|---|
| 186 | forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 187 | static inline TC & ?[?]( TA & this, IxAB ab, IxBC bc ) { | 
|---|
| 188 | return this[ab][bc]; | 
|---|
| 189 | } | 
|---|
| 190 |  | 
|---|
| 191 | #else | 
|---|
| 192 |  | 
|---|
| 193 | // Workaround form.  Listing all possibilities up to 4 dims. | 
|---|
| 194 |  | 
|---|
| 195 | forall( TA &, TB &, TC &, IxAB_0, IxBC | { TB & ?[?]( TA &, IxAB_0 ); TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 196 | static inline TC & ?[?]( TA & this, IxAB_0 ab, IxBC bc ) { | 
|---|
| 197 | return this[ab][bc]; | 
|---|
| 198 | } | 
|---|
| 199 |  | 
|---|
| 200 | forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1 ); TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 201 | static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxBC bc ) { | 
|---|
| 202 | return this[[ab0,ab1]][bc]; | 
|---|
| 203 | } | 
|---|
| 204 |  | 
|---|
| 205 | forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxAB_2, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1, IxAB_2 ); TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 206 | static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxAB_2 ab2, IxBC bc ) { | 
|---|
| 207 | return this[[ab0,ab1,ab2]][bc]; | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | #endif | 
|---|
| 211 |  | 
|---|
| 212 | // Available for users to work around Trac #265 | 
|---|
| 213 | // If `a[...0...]` isn't working, try `a[...ix0...]` instead. | 
|---|
| 214 |  | 
|---|
| 215 | #define ix0 ((ptrdiff_t)0) | 
|---|
| 216 |  | 
|---|
| 217 |  | 
|---|
| 218 |  | 
|---|
| 219 | // | 
|---|
| 220 | // Rotation | 
|---|
| 221 | // | 
|---|
| 222 |  | 
|---|
| 223 | // Base | 
|---|
| 224 | forall( [Nq], Sq & | sized(Sq), Tbase & ) | 
|---|
| 225 | static inline tag(arpk(Nq, Sq, Tbase, Tbase)) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(Tbase) ) { | 
|---|
| 226 | tag(arpk(Nq, Sq, Tbase, Tbase)) ret; | 
|---|
| 227 | return ret; | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | // Rec | 
|---|
| 231 | forall( [Nq], Sq & | sized(Sq), [N], S & | sized(S), recq &, recr &, Tbase & | { tag(recr) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(recq) ); } ) | 
|---|
| 232 | static inline tag(arpk(N, S, recr, Tbase)) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(arpk(N, S, recq, Tbase)) ) { | 
|---|
| 233 | tag(arpk(N, S, recr, Tbase)) ret; | 
|---|
| 234 | return ret; | 
|---|
| 235 | } | 
|---|
| 236 |  | 
|---|
| 237 | // Wrapper | 
|---|
| 238 | extern struct all_t {} all; | 
|---|
| 239 | forall( [N], S & | sized(S), Te &, result &, Tbase & | { tag(result) enq_( tag(Tbase), tag(N), tag(S), tag(Te) ); } ) | 
|---|
| 240 | static inline result & ?[?]( arpk(N, S, Te, Tbase) & this, all_t ) { | 
|---|
| 241 | return (result&) this; | 
|---|
| 242 | } | 
|---|
| 243 |  | 
|---|
| 244 | // | 
|---|
| 245 | // Trait of array or slice | 
|---|
| 246 | // | 
|---|
| 247 |  | 
|---|
| 248 | // desired: | 
|---|
| 249 | // trait ar(A &, Tv &, [N]) { | 
|---|
| 250 | //     Tv& ?[?]( A&, zero_t ); | 
|---|
| 251 | //     Tv& ?[?]( A&, one_t  ); | 
|---|
| 252 | //     Tv& ?[?]( A&, int    ); | 
|---|
| 253 | //                   ... | 
|---|
| 254 | //     size_t ?`len( A& ); | 
|---|
| 255 | //     void __taglen( tag(C), tag(N) ); | 
|---|
| 256 | // }; | 
|---|
| 257 |  | 
|---|
| 258 | // working around N's not being accepted as arguments to traits | 
|---|
| 259 |  | 
|---|
| 260 | #define ar(A, Tv, N) {                 \ | 
|---|
| 261 | Tv& ?[?]( A&, zero_t );            \ | 
|---|
| 262 | Tv& ?[?]( A&, one_t );             \ | 
|---|
| 263 | Tv& ?[?]( A&, int );               \ | 
|---|
| 264 | Tv& ?[?]( A&, unsigned int );      \ | 
|---|
| 265 | Tv& ?[?]( A&, long int );          \ | 
|---|
| 266 | Tv& ?[?]( A&, unsigned long int ); \ | 
|---|
| 267 | size_t ?`len( A& );                \ | 
|---|
| 268 | void __taglen( tag(A), tag(N) );   \ | 
|---|
| 269 | } | 
|---|