| 1 |  | 
|---|
| 2 |  | 
|---|
| 3 | // a type whose size is n | 
|---|
| 4 | #define Z(n) char[n] | 
|---|
| 5 |  | 
|---|
| 6 | // the inverse of Z(-) | 
|---|
| 7 | #define z(N) sizeof(N) | 
|---|
| 8 |  | 
|---|
| 9 | forall( T & ) struct tag {}; | 
|---|
| 10 | #define ttag(T) ((tag(T)){}) | 
|---|
| 11 | #define ztag(n) ttag(Z(n)) | 
|---|
| 12 |  | 
|---|
| 13 |  | 
|---|
| 14 | // | 
|---|
| 15 | // Single-dim array sruct (with explicit packing and atom) | 
|---|
| 16 | // | 
|---|
| 17 |  | 
|---|
| 18 | forall( [N], S & | sized(S), Timmed &, Tbase & ) { | 
|---|
| 19 | struct arpk { | 
|---|
| 20 | S strides[z(N)]; | 
|---|
| 21 | }; | 
|---|
| 22 |  | 
|---|
| 23 | // About the choice of integral types offered as subscript overloads: | 
|---|
| 24 | // Intent is to cover these use cases: | 
|---|
| 25 | //    float foo( ptrdiff_t i ) { return a[i]; }           // i : ptrdiff_t | 
|---|
| 26 | //    forall( [N] ) ... for( i; N ) { total += a[i]; }    // i : typeof( sizeof(42) ) | 
|---|
| 27 | //    for( i; 5 ) { total += a[i]; }                      // i : int | 
|---|
| 28 | // It gets complicated by: | 
|---|
| 29 | // -  CFA does overloading on concrete types, like int and unsigned int, not on typedefed | 
|---|
| 30 | //    types like size_t.  So trying to overload on ptrdiff_t vs int works in 64-bit mode | 
|---|
| 31 | //    but not in 32-bit mode. | 
|---|
| 32 | // -  Given bug of Trac #247, CFA gives sizeof expressions type unsigned long int, when it | 
|---|
| 33 | //    should give them type size_t. | 
|---|
| 34 | // | 
|---|
| 35 | //                          gcc -m32         cfa -m32 given bug         gcc -m64 | 
|---|
| 36 | // ptrdiff_t                int              int                        long int | 
|---|
| 37 | // size_t                   unsigned int     unsigned int               unsigned long int | 
|---|
| 38 | // typeof( sizeof(42) )     unsigned int     unsigned long int          unsigned long int | 
|---|
| 39 | // int                      int              int                        int | 
|---|
| 40 |  | 
|---|
| 41 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, int i ) { | 
|---|
| 42 | return (Timmed &) a.strides[i]; | 
|---|
| 43 | } | 
|---|
| 44 |  | 
|---|
| 45 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, unsigned int i ) { | 
|---|
| 46 | return (Timmed &) a.strides[i]; | 
|---|
| 47 | } | 
|---|
| 48 |  | 
|---|
| 49 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, long int i ) { | 
|---|
| 50 | return (Timmed &) a.strides[i]; | 
|---|
| 51 | } | 
|---|
| 52 |  | 
|---|
| 53 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, unsigned long int i ) { | 
|---|
| 54 | return (Timmed &) a.strides[i]; | 
|---|
| 55 | } | 
|---|
| 56 |  | 
|---|
| 57 | static inline size_t ?`len( arpk(N, S, Timmed, Tbase) & a ) { | 
|---|
| 58 | return z(N); | 
|---|
| 59 | } | 
|---|
| 60 |  | 
|---|
| 61 | // workaround #226 (and array relevance thereof demonstrated in mike102/otype-slow-ndims.cfa) | 
|---|
| 62 | static inline void ?{}( arpk(N, S, Timmed, Tbase) & this ) { | 
|---|
| 63 | void ?{}( S (&inner)[z(N)] ) {} | 
|---|
| 64 | ?{}(this.strides); | 
|---|
| 65 | } | 
|---|
| 66 | static inline void ^?{}( arpk(N, S, Timmed, Tbase) & this ) { | 
|---|
| 67 | void ^?{}( S (&inner)[z(N)] ) {} | 
|---|
| 68 | ^?{}(this.strides); | 
|---|
| 69 | } | 
|---|
| 70 | } | 
|---|
| 71 |  | 
|---|
| 72 | // | 
|---|
| 73 | // Sugar for declaring array structure instances | 
|---|
| 74 | // | 
|---|
| 75 |  | 
|---|
| 76 | forall( Te ) | 
|---|
| 77 | static inline Te mkar_( tag(Te) ) {} | 
|---|
| 78 |  | 
|---|
| 79 | forall( [N], ZTags ... , Trslt &, Tatom & | { Trslt mkar_( tag(Tatom), ZTags ); } ) | 
|---|
| 80 | static inline arpk(N, Trslt, Trslt, Tatom) mkar_( tag(Tatom), tag(N), ZTags ) {} | 
|---|
| 81 |  | 
|---|
| 82 | // based on https://stackoverflow.com/questions/1872220/is-it-possible-to-iterate-over-arguments-in-variadic-macros | 
|---|
| 83 |  | 
|---|
| 84 | // Make a FOREACH macro | 
|---|
| 85 | #define FE_0(WHAT) | 
|---|
| 86 | #define FE_1(WHAT, X) WHAT(X) | 
|---|
| 87 | #define FE_2(WHAT, X, ...) WHAT(X)FE_1(WHAT, __VA_ARGS__) | 
|---|
| 88 | #define FE_3(WHAT, X, ...) WHAT(X)FE_2(WHAT, __VA_ARGS__) | 
|---|
| 89 | #define FE_4(WHAT, X, ...) WHAT(X)FE_3(WHAT, __VA_ARGS__) | 
|---|
| 90 | #define FE_5(WHAT, X, ...) WHAT(X)FE_4(WHAT, __VA_ARGS__) | 
|---|
| 91 | //... repeat as needed | 
|---|
| 92 |  | 
|---|
| 93 | #define GET_MACRO(_0,_1,_2,_3,_4,_5,NAME,...) NAME | 
|---|
| 94 | #define FOR_EACH(action,...) \ | 
|---|
| 95 | GET_MACRO(_0,__VA_ARGS__,FE_5,FE_4,FE_3,FE_2,FE_1,FE_0)(action,__VA_ARGS__) | 
|---|
| 96 |  | 
|---|
| 97 | #define COMMA_ttag(X) , ttag(X) | 
|---|
| 98 | #define array( TE, ...) typeof( mkar_( ttag(TE)  FOR_EACH( COMMA_ttag, __VA_ARGS__ ) ) ) | 
|---|
| 99 |  | 
|---|
| 100 | #define COMMA_ztag(X) , ztag(X) | 
|---|
| 101 | #define zarray( TE, ...) typeof( mkar_( ttag(TE)  FOR_EACH( COMMA_ztag, __VA_ARGS__ ) ) ) | 
|---|
| 102 |  | 
|---|
| 103 | // | 
|---|
| 104 | // Sugar for multidimensional indexing | 
|---|
| 105 | // | 
|---|
| 106 |  | 
|---|
| 107 | // Core -[[-,-,-]] operator | 
|---|
| 108 |  | 
|---|
| 109 | #ifdef TRY_BROKEN_DESIRED_MD_SUBSCRIPT | 
|---|
| 110 |  | 
|---|
| 111 | // Desired form.  One definition with recursion on IxBC (worked until Jan 2021, see trac #__TODO__) | 
|---|
| 112 |  | 
|---|
| 113 | forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 114 | static inline TC & ?[?]( TA & this, IxAB ab, IxBC bc ) { | 
|---|
| 115 | return this[ab][bc]; | 
|---|
| 116 | } | 
|---|
| 117 |  | 
|---|
| 118 | #else | 
|---|
| 119 |  | 
|---|
| 120 | // Workaround form.  Listing all possibilities up to 4 dims. | 
|---|
| 121 |  | 
|---|
| 122 | forall( TA &, TB &, TC &, IxAB_0, IxBC | { TB & ?[?]( TA &, IxAB_0 ); TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 123 | static inline TC & ?[?]( TA & this, IxAB_0 ab, IxBC bc ) { | 
|---|
| 124 | return this[ab][bc]; | 
|---|
| 125 | } | 
|---|
| 126 |  | 
|---|
| 127 | forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1 ); TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 128 | static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxBC bc ) { | 
|---|
| 129 | return this[[ab0,ab1]][bc]; | 
|---|
| 130 | } | 
|---|
| 131 |  | 
|---|
| 132 | forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxAB_2, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1, IxAB_2 ); TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 133 | static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxAB_2 ab2, IxBC bc ) { | 
|---|
| 134 | return this[[ab0,ab1,ab2]][bc]; | 
|---|
| 135 | } | 
|---|
| 136 |  | 
|---|
| 137 | #endif | 
|---|
| 138 |  | 
|---|
| 139 | // | 
|---|
| 140 | // Rotation | 
|---|
| 141 | // | 
|---|
| 142 |  | 
|---|
| 143 | // Base | 
|---|
| 144 | forall( [Nq], Sq & | sized(Sq), Tbase & ) | 
|---|
| 145 | static inline tag(arpk(Nq, Sq, Tbase, Tbase)) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(Tbase) ) {} | 
|---|
| 146 |  | 
|---|
| 147 | // Rec | 
|---|
| 148 | forall( [Nq], Sq & | sized(Sq), [N], S & | sized(S), recq &, recr &, Tbase & | { tag(recr) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(recq) ); } ) | 
|---|
| 149 | static inline tag(arpk(N, S, recr, Tbase)) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(arpk(N, S, recq, Tbase)) ) {} | 
|---|
| 150 |  | 
|---|
| 151 | // Wrapper | 
|---|
| 152 | struct all_t {} all; | 
|---|
| 153 | forall( [N], S & | sized(S), Te &, result &, Tbase & | { tag(result) enq_( tag(Tbase), tag(N), tag(S), tag(Te) ); } ) | 
|---|
| 154 | static inline result & ?[?]( arpk(N, S, Te, Tbase) & this, all_t ) { | 
|---|
| 155 | return (result&) this; | 
|---|
| 156 | } | 
|---|
| 157 |  | 
|---|
| 158 | // | 
|---|
| 159 | // Trait of array or slice | 
|---|
| 160 | // | 
|---|
| 161 |  | 
|---|
| 162 | trait ar(A &, Tv &) { | 
|---|
| 163 | Tv& ?[?]( A&, ptrdiff_t ); | 
|---|
| 164 | size_t ?`len( A& ); | 
|---|
| 165 | }; | 
|---|