1 | #pragma once |
---|
2 | |
---|
3 | #include <assert.h> |
---|
4 | |
---|
5 | |
---|
6 | forall( __CFA_tysys_id_only_X & ) struct tag {}; |
---|
7 | #define ttag(T) ((tag(T)){}) |
---|
8 | #define ztag(n) ttag(n) |
---|
9 | |
---|
10 | |
---|
11 | // |
---|
12 | // The `array` macro is the public interface. |
---|
13 | // It computes the type of a dense (trivially strided) array. |
---|
14 | // All user-declared objects are dense arrays. |
---|
15 | // |
---|
16 | // The `arpk` (ARray with PacKing info explicit) type is, generally, a slice with _any_ striding. |
---|
17 | // This type is meant for internal use. |
---|
18 | // CFA programmers should not instantiate it directly, nor access its field. |
---|
19 | // CFA programmers should call ?[?] on it. |
---|
20 | // Yet user-given `array(stuff)` expands to `arpk(stuff')`. |
---|
21 | // The comments here explain the resulting internals. |
---|
22 | // |
---|
23 | // Just as a plain-C "multidimesional" array is really array-of-array-of-..., |
---|
24 | // so does arpk generally show up as arpk-of-arpk-of... |
---|
25 | // |
---|
26 | // In the example of `array(float, 3, 4, 5) a;`, |
---|
27 | // `typeof(a)` is an `arpk` instantiation. |
---|
28 | // These comments explain _its_ arguments, i.e. those of the topmost `arpk` level. |
---|
29 | // |
---|
30 | // [N] : the number of elements in `a`; 3 in the example |
---|
31 | // S : carries the stride size (distance in bytes between &myA[0] and &myA[1]), in sizeof(S); |
---|
32 | // same as Timmed when striding is trivial, same as Timmed in the example |
---|
33 | // Timmed : (T-immediate) the inner type; conceptually, `typeof(a)` is "arpk of Timmed"; |
---|
34 | // array(float, 4, 5) in the example |
---|
35 | // Tbase : (T-base) the deepest element type that is not arpk; float in the example |
---|
36 | // |
---|
37 | forall( [N], S & | sized(S), Timmed &, Tbase & ) { |
---|
38 | |
---|
39 | // |
---|
40 | // Single-dim array sruct (with explicit packing and atom) |
---|
41 | // |
---|
42 | struct arpk { |
---|
43 | S strides[N]; |
---|
44 | }; |
---|
45 | |
---|
46 | // About the choice of integral types offered as subscript overloads: |
---|
47 | // Intent is to cover these use cases: |
---|
48 | // a[0] // i : zero_t |
---|
49 | // a[1] // i : one_t |
---|
50 | // a[2] // i : int |
---|
51 | // float foo( ptrdiff_t i ) { return a[i]; } // i : ptrdiff_t |
---|
52 | // float foo( size_t i ) { return a[i]; } // i : size_t |
---|
53 | // forall( [N] ) ... for( i; N ) { total += a[i]; } // i : typeof( sizeof(42) ) |
---|
54 | // for( i; 5 ) { total += a[i]; } // i : int |
---|
55 | // |
---|
56 | // It gets complicated by: |
---|
57 | // - CFA does overloading on concrete types, like int and unsigned int, not on typedefed |
---|
58 | // types like size_t. So trying to overload on ptrdiff_t vs int works in 64-bit mode |
---|
59 | // but not in 32-bit mode. |
---|
60 | // - Given bug of Trac #247, CFA gives sizeof expressions type unsigned long int, when it |
---|
61 | // should give them type size_t. |
---|
62 | // |
---|
63 | // gcc -m32 cfa -m32 given bug gcc -m64 (and cfa) |
---|
64 | // ptrdiff_t int int long int |
---|
65 | // size_t unsigned int unsigned int unsigned long int |
---|
66 | // typeof( sizeof(42) ) unsigned int unsigned long int unsigned long int |
---|
67 | // int int int int |
---|
68 | // |
---|
69 | // So the solution must support types {zero_t, one_t, int, unsigned int, long int, unsigned long int} |
---|
70 | // |
---|
71 | // The solution cannot rely on implicit conversions (e.g. just have one overload for ptrdiff_t) |
---|
72 | // because assertion satisfaction requires types to match exacly. Both higher-dimensional |
---|
73 | // subscripting and operations on slices use asserted subscript operators. The test case |
---|
74 | // array-container/array-sbscr-cases covers the combinations. Mike beleives that commenting out |
---|
75 | // any of the current overloads leads to one of those cases failing, either on 64- or 32-bit. |
---|
76 | // Mike is open to being shown a smaller set of overloads that still passes the test. |
---|
77 | |
---|
78 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, zero_t ) { |
---|
79 | assert( 0 < N ); |
---|
80 | return (Timmed &) a.strides[0]; |
---|
81 | } |
---|
82 | |
---|
83 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, one_t ) { |
---|
84 | assert( 1 < N ); |
---|
85 | return (Timmed &) a.strides[1]; |
---|
86 | } |
---|
87 | |
---|
88 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, int i ) { |
---|
89 | assert( i < N ); |
---|
90 | return (Timmed &) a.strides[i]; |
---|
91 | } |
---|
92 | |
---|
93 | static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, int i ) { |
---|
94 | assert( i < N ); |
---|
95 | return (Timmed &) a.strides[i]; |
---|
96 | } |
---|
97 | |
---|
98 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, unsigned int i ) { |
---|
99 | assert( i < N ); |
---|
100 | return (Timmed &) a.strides[i]; |
---|
101 | } |
---|
102 | |
---|
103 | static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, unsigned int i ) { |
---|
104 | assert( i < N ); |
---|
105 | return (Timmed &) a.strides[i]; |
---|
106 | } |
---|
107 | |
---|
108 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, long int i ) { |
---|
109 | assert( i < N ); |
---|
110 | return (Timmed &) a.strides[i]; |
---|
111 | } |
---|
112 | |
---|
113 | static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, long int i ) { |
---|
114 | assert( i < N ); |
---|
115 | return (Timmed &) a.strides[i]; |
---|
116 | } |
---|
117 | |
---|
118 | static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, unsigned long int i ) { |
---|
119 | assert( i < N ); |
---|
120 | return (Timmed &) a.strides[i]; |
---|
121 | } |
---|
122 | |
---|
123 | static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, unsigned long int i ) { |
---|
124 | assert( i < N ); |
---|
125 | return (Timmed &) a.strides[i]; |
---|
126 | } |
---|
127 | |
---|
128 | static inline size_t ?`len( arpk(N, S, Timmed, Tbase) & a ) { |
---|
129 | return N; |
---|
130 | } |
---|
131 | |
---|
132 | static inline void __taglen( tag(arpk(N, S, Timmed, Tbase)), tag(N) ) {} |
---|
133 | |
---|
134 | // workaround #226 (and array relevance thereof demonstrated in mike102/otype-slow-ndims.cfa) |
---|
135 | static inline void ?{}( arpk(N, S, Timmed, Tbase) & this ) { |
---|
136 | void ?{}( S (&inner)[N] ) {} |
---|
137 | ?{}(this.strides); |
---|
138 | } |
---|
139 | static inline void ^?{}( arpk(N, S, Timmed, Tbase) & this ) { |
---|
140 | void ^?{}( S (&inner)[N] ) {} |
---|
141 | ^?{}(this.strides); |
---|
142 | } |
---|
143 | } |
---|
144 | |
---|
145 | // |
---|
146 | // Sugar for declaring array structure instances |
---|
147 | // |
---|
148 | |
---|
149 | forall( Te ) |
---|
150 | static inline Te mkar_( tag(Te) ) {} |
---|
151 | |
---|
152 | forall( [N], ZTags ... , Trslt &, Tatom & | { Trslt mkar_( tag(Tatom), ZTags ); } ) |
---|
153 | static inline arpk(N, Trslt, Trslt, Tatom) mkar_( tag(Tatom), tag(N), ZTags ) {} |
---|
154 | |
---|
155 | // based on https://stackoverflow.com/questions/1872220/is-it-possible-to-iterate-over-arguments-in-variadic-macros |
---|
156 | |
---|
157 | // Make a FOREACH macro |
---|
158 | #define FE_0(WHAT) |
---|
159 | #define FE_1(WHAT, X) WHAT(X) |
---|
160 | #define FE_2(WHAT, X, ...) WHAT(X)FE_1(WHAT, __VA_ARGS__) |
---|
161 | #define FE_3(WHAT, X, ...) WHAT(X)FE_2(WHAT, __VA_ARGS__) |
---|
162 | #define FE_4(WHAT, X, ...) WHAT(X)FE_3(WHAT, __VA_ARGS__) |
---|
163 | #define FE_5(WHAT, X, ...) WHAT(X)FE_4(WHAT, __VA_ARGS__) |
---|
164 | //... repeat as needed |
---|
165 | |
---|
166 | #define GET_MACRO(_0,_1,_2,_3,_4,_5,NAME,...) NAME |
---|
167 | #define FOR_EACH(action,...) \ |
---|
168 | GET_MACRO(_0,__VA_ARGS__,FE_5,FE_4,FE_3,FE_2,FE_1,FE_0)(action,__VA_ARGS__) |
---|
169 | |
---|
170 | #define COMMA_ttag(X) , ttag(X) |
---|
171 | #define array( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ttag, __VA_ARGS__ ) ) ) |
---|
172 | |
---|
173 | #define COMMA_ztag(X) , ztag(X) |
---|
174 | #define zarray( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ztag, __VA_ARGS__ ) ) ) |
---|
175 | |
---|
176 | // |
---|
177 | // Sugar for multidimensional indexing |
---|
178 | // |
---|
179 | |
---|
180 | // Core -[[-,-,-]] operator |
---|
181 | |
---|
182 | #ifdef TRY_BROKEN_DESIRED_MD_SUBSCRIPT |
---|
183 | |
---|
184 | // Desired form. One definition with recursion on IxBC (worked until Jan 2021, see trac #__TODO__) |
---|
185 | |
---|
186 | forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } ) |
---|
187 | static inline TC & ?[?]( TA & this, IxAB ab, IxBC bc ) { |
---|
188 | return this[ab][bc]; |
---|
189 | } |
---|
190 | |
---|
191 | #else |
---|
192 | |
---|
193 | // Workaround form. Listing all possibilities up to 4 dims. |
---|
194 | |
---|
195 | forall( TA &, TB &, TC &, IxAB_0, IxBC | { TB & ?[?]( TA &, IxAB_0 ); TC & ?[?]( TB &, IxBC ); } ) |
---|
196 | static inline TC & ?[?]( TA & this, IxAB_0 ab, IxBC bc ) { |
---|
197 | return this[ab][bc]; |
---|
198 | } |
---|
199 | |
---|
200 | forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1 ); TC & ?[?]( TB &, IxBC ); } ) |
---|
201 | static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxBC bc ) { |
---|
202 | return this[[ab0,ab1]][bc]; |
---|
203 | } |
---|
204 | |
---|
205 | forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxAB_2, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1, IxAB_2 ); TC & ?[?]( TB &, IxBC ); } ) |
---|
206 | static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxAB_2 ab2, IxBC bc ) { |
---|
207 | return this[[ab0,ab1,ab2]][bc]; |
---|
208 | } |
---|
209 | |
---|
210 | #endif |
---|
211 | |
---|
212 | // Available for users to work around Trac #265 |
---|
213 | // If `a[...0...]` isn't working, try `a[...ix0...]` instead. |
---|
214 | |
---|
215 | #define ix0 ((ptrdiff_t)0) |
---|
216 | |
---|
217 | |
---|
218 | |
---|
219 | // |
---|
220 | // Rotation |
---|
221 | // |
---|
222 | |
---|
223 | // Base |
---|
224 | forall( [Nq], Sq & | sized(Sq), Tbase & ) |
---|
225 | static inline tag(arpk(Nq, Sq, Tbase, Tbase)) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(Tbase) ) { |
---|
226 | tag(arpk(Nq, Sq, Tbase, Tbase)) ret; |
---|
227 | return ret; |
---|
228 | } |
---|
229 | |
---|
230 | // Rec |
---|
231 | forall( [Nq], Sq & | sized(Sq), [N], S & | sized(S), recq &, recr &, Tbase & | { tag(recr) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(recq) ); } ) |
---|
232 | static inline tag(arpk(N, S, recr, Tbase)) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(arpk(N, S, recq, Tbase)) ) { |
---|
233 | tag(arpk(N, S, recr, Tbase)) ret; |
---|
234 | return ret; |
---|
235 | } |
---|
236 | |
---|
237 | // Wrapper |
---|
238 | extern struct all_t {} all; |
---|
239 | forall( [N], S & | sized(S), Te &, result &, Tbase & | { tag(result) enq_( tag(Tbase), tag(N), tag(S), tag(Te) ); } ) |
---|
240 | static inline result & ?[?]( arpk(N, S, Te, Tbase) & this, all_t ) { |
---|
241 | return (result&) this; |
---|
242 | } |
---|
243 | |
---|
244 | // |
---|
245 | // Trait of array or slice |
---|
246 | // |
---|
247 | |
---|
248 | // desired: |
---|
249 | // trait ar(A &, Tv &, [N]) { |
---|
250 | // Tv& ?[?]( A&, zero_t ); |
---|
251 | // Tv& ?[?]( A&, one_t ); |
---|
252 | // Tv& ?[?]( A&, int ); |
---|
253 | // ... |
---|
254 | // size_t ?`len( A& ); |
---|
255 | // void __taglen( tag(C), tag(N) ); |
---|
256 | // }; |
---|
257 | |
---|
258 | // working around N's not being accepted as arguments to traits |
---|
259 | |
---|
260 | #define ar(A, Tv, N) { \ |
---|
261 | Tv& ?[?]( A&, zero_t ); \ |
---|
262 | Tv& ?[?]( A&, one_t ); \ |
---|
263 | Tv& ?[?]( A&, int ); \ |
---|
264 | Tv& ?[?]( A&, unsigned int ); \ |
---|
265 | Tv& ?[?]( A&, long int ); \ |
---|
266 | Tv& ?[?]( A&, unsigned long int ); \ |
---|
267 | size_t ?`len( A& ); \ |
---|
268 | void __taglen( tag(A), tag(N) ); \ |
---|
269 | } |
---|