1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // ready_queue.cfa -- |
---|
8 | // |
---|
9 | // Author : Thierry Delisle |
---|
10 | // Created On : Mon Nov dd 16:29:18 2019 |
---|
11 | // Last Modified By : |
---|
12 | // Last Modified On : |
---|
13 | // Update Count : |
---|
14 | // |
---|
15 | |
---|
16 | #define __cforall_thread__ |
---|
17 | #define _GNU_SOURCE |
---|
18 | |
---|
19 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__ |
---|
20 | |
---|
21 | |
---|
22 | #define USE_AWARE_STEALING |
---|
23 | |
---|
24 | #include "bits/defs.hfa" |
---|
25 | #include "device/cpu.hfa" |
---|
26 | #include "kernel/cluster.hfa" |
---|
27 | #include "kernel/private.hfa" |
---|
28 | |
---|
29 | // #include <errno.h> |
---|
30 | // #include <unistd.h> |
---|
31 | |
---|
32 | #include "ready_subqueue.hfa" |
---|
33 | |
---|
34 | static const size_t cache_line_size = 64; |
---|
35 | |
---|
36 | #if !defined(__CFA_NO_STATISTICS__) |
---|
37 | #define __STATS(...) __VA_ARGS__ |
---|
38 | #else |
---|
39 | #define __STATS(...) |
---|
40 | #endif |
---|
41 | |
---|
42 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)); |
---|
43 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)); |
---|
44 | static inline struct thread$ * search(struct cluster * cltr); |
---|
45 | |
---|
46 | //======================================================================= |
---|
47 | // Cforall Ready Queue used for scheduling |
---|
48 | //======================================================================= |
---|
49 | // void ?{}(__ready_queue_t & this) with (this) { |
---|
50 | // lanes.data = 0p; |
---|
51 | // lanes.tscs = 0p; |
---|
52 | // lanes.caches = 0p; |
---|
53 | // lanes.count = 0; |
---|
54 | // } |
---|
55 | |
---|
56 | // void ^?{}(__ready_queue_t & this) with (this) { |
---|
57 | // free(lanes.data); |
---|
58 | // free(lanes.tscs); |
---|
59 | // free(lanes.caches); |
---|
60 | // } |
---|
61 | |
---|
62 | //----------------------------------------------------------------------- |
---|
63 | __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, unpark_hint hint) with (cltr->sched) { |
---|
64 | struct processor * const proc = kernelTLS().this_processor; |
---|
65 | const bool external = (!proc) || (cltr != proc->cltr); |
---|
66 | const bool remote = hint == UNPARK_REMOTE; |
---|
67 | const size_t lanes_count = readyQ.count; |
---|
68 | |
---|
69 | /* paranoid */ verify( __shard_factor.readyq > 0 ); |
---|
70 | /* paranoid */ verify( lanes_count > 0 ); |
---|
71 | |
---|
72 | unsigned i; |
---|
73 | if( external || remote ) { |
---|
74 | // Figure out where thread was last time and make sure it's valid |
---|
75 | /* paranoid */ verify(thrd->preferred >= 0); |
---|
76 | unsigned start = thrd->preferred * __shard_factor.readyq; |
---|
77 | if(start < lanes_count) { |
---|
78 | do { |
---|
79 | unsigned r = __tls_rand(); |
---|
80 | i = start + (r % __shard_factor.readyq); |
---|
81 | /* paranoid */ verify( i < lanes_count ); |
---|
82 | // If we can't lock it retry |
---|
83 | } while( !__atomic_try_acquire( &readyQ.data[i].l.lock ) ); |
---|
84 | } else { |
---|
85 | do { |
---|
86 | i = __tls_rand() % lanes_count; |
---|
87 | } while( !__atomic_try_acquire( &readyQ.data[i].l.lock ) ); |
---|
88 | } |
---|
89 | } else { |
---|
90 | do { |
---|
91 | unsigned r = proc->rdq.its++; |
---|
92 | i = proc->rdq.id + (r % __shard_factor.readyq); |
---|
93 | /* paranoid */ verify( i < lanes_count ); |
---|
94 | // If we can't lock it retry |
---|
95 | } while( !__atomic_try_acquire( &readyQ.data[i].l.lock ) ); |
---|
96 | } |
---|
97 | |
---|
98 | // Actually push it |
---|
99 | push(readyQ.data[i], thrd); |
---|
100 | |
---|
101 | // Unlock and return |
---|
102 | __atomic_unlock( &readyQ.data[i].l.lock ); |
---|
103 | |
---|
104 | #if !defined(__CFA_NO_STATISTICS__) |
---|
105 | if(unlikely(external || remote)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED); |
---|
106 | else __tls_stats()->ready.push.local.success++; |
---|
107 | #endif |
---|
108 | } |
---|
109 | |
---|
110 | __attribute__((hot)) struct thread$ * pop_fast(struct cluster * cltr) with (cltr->sched) { |
---|
111 | const size_t lanes_count = readyQ.count; |
---|
112 | |
---|
113 | /* paranoid */ verify( __shard_factor.readyq > 0 ); |
---|
114 | /* paranoid */ verify( lanes_count > 0 ); |
---|
115 | /* paranoid */ verify( kernelTLS().this_processor ); |
---|
116 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes_count ); |
---|
117 | |
---|
118 | struct processor * const proc = kernelTLS().this_processor; |
---|
119 | unsigned this = proc->rdq.id; |
---|
120 | /* paranoid */ verify( this < lanes_count ); |
---|
121 | __cfadbg_print_safe(ready_queue, "Kernel : pop from %u\n", this); |
---|
122 | |
---|
123 | // Figure out the current cache is |
---|
124 | const unsigned this_cache = cache_id(cltr, this / __shard_factor.readyq); |
---|
125 | const unsigned long long ctsc = rdtscl(); |
---|
126 | |
---|
127 | if(proc->rdq.target == UINT_MAX) { |
---|
128 | uint64_t chaos = __tls_rand(); |
---|
129 | unsigned ext = chaos & 0xff; |
---|
130 | unsigned other = (chaos >> 8) % (lanes_count); |
---|
131 | |
---|
132 | if(ext < 3 || __atomic_load_n(&caches[other / __shard_factor.readyq].id, __ATOMIC_RELAXED) == this_cache) { |
---|
133 | proc->rdq.target = other; |
---|
134 | } |
---|
135 | } |
---|
136 | else { |
---|
137 | const unsigned target = proc->rdq.target; |
---|
138 | __cfadbg_print_safe(ready_queue, "Kernel : %u considering helping %u, tcsc %llu\n", this, target, readyQ.tscs[target].t.tv); |
---|
139 | /* paranoid */ verify( readyQ.tscs[target].t.tv != ULLONG_MAX ); |
---|
140 | if(target < lanes_count) { |
---|
141 | const __readyQ_avg_t cutoff = calc_cutoff(ctsc, proc->rdq.id, lanes_count, cltr->sched.readyQ.data, cltr->sched.readyQ.tscs, __shard_factor.readyq, true); |
---|
142 | const __readyQ_avg_t age = moving_average(ctsc, readyQ.tscs[target].t.tv, readyQ.tscs[target].t.ma, false); |
---|
143 | __cfadbg_print_safe(ready_queue, "Kernel : Help attempt on %u from %u, age %'llu vs cutoff %'llu, %s\n", target, this, age, cutoff, age > cutoff ? "yes" : "no"); |
---|
144 | if(age > cutoff) { |
---|
145 | thread$ * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help)); |
---|
146 | if(t) return t; |
---|
147 | } |
---|
148 | } |
---|
149 | proc->rdq.target = UINT_MAX; |
---|
150 | } |
---|
151 | |
---|
152 | for(__shard_factor.readyq) { |
---|
153 | unsigned i = this + (proc->rdq.itr++ % __shard_factor.readyq); |
---|
154 | if(thread$ * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t; |
---|
155 | } |
---|
156 | |
---|
157 | // All lanes where empty return 0p |
---|
158 | return 0p; |
---|
159 | |
---|
160 | } |
---|
161 | __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) { |
---|
162 | unsigned i = __tls_rand() % (cltr->sched.readyQ.count); |
---|
163 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal)); |
---|
164 | } |
---|
165 | __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) { |
---|
166 | return search(cltr); |
---|
167 | } |
---|
168 | |
---|
169 | //======================================================================= |
---|
170 | // Various Ready Queue utilities |
---|
171 | //======================================================================= |
---|
172 | // these function work the same or almost the same |
---|
173 | // whether they are using work-stealing or relaxed fifo scheduling |
---|
174 | |
---|
175 | //----------------------------------------------------------------------- |
---|
176 | // try to pop from a lane given by index w |
---|
177 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->sched) { |
---|
178 | /* paranoid */ verify( w < readyQ.count ); |
---|
179 | __STATS( stats.attempt++; ) |
---|
180 | |
---|
181 | // Get relevant elements locally |
---|
182 | __intrusive_lane_t & lane = readyQ.data[w]; |
---|
183 | |
---|
184 | // If list looks empty retry |
---|
185 | if( is_empty(lane) ) { |
---|
186 | return 0p; |
---|
187 | } |
---|
188 | |
---|
189 | // If we can't get the lock retry |
---|
190 | if( !__atomic_try_acquire(&lane.l.lock) ) { |
---|
191 | return 0p; |
---|
192 | } |
---|
193 | |
---|
194 | // If list is empty, unlock and retry |
---|
195 | if( is_empty(lane) ) { |
---|
196 | __atomic_unlock(&lane.l.lock); |
---|
197 | return 0p; |
---|
198 | } |
---|
199 | |
---|
200 | // Actually pop the list |
---|
201 | struct thread$ * thrd; |
---|
202 | unsigned long long ts_prev = ts(lane); |
---|
203 | unsigned long long ts_next; |
---|
204 | [thrd, ts_next] = pop(lane); |
---|
205 | |
---|
206 | /* paranoid */ verify(thrd); |
---|
207 | /* paranoid */ verify(ts_next); |
---|
208 | /* paranoid */ verify(lane.l.lock); |
---|
209 | |
---|
210 | // Unlock and return |
---|
211 | __atomic_unlock(&lane.l.lock); |
---|
212 | |
---|
213 | // Update statistics |
---|
214 | __STATS( stats.success++; ) |
---|
215 | |
---|
216 | touch_tsc(readyQ.tscs, w, ts_prev, ts_next, true); |
---|
217 | |
---|
218 | thrd->preferred = w / __shard_factor.readyq; |
---|
219 | |
---|
220 | // return the popped thread |
---|
221 | return thrd; |
---|
222 | } |
---|
223 | |
---|
224 | //----------------------------------------------------------------------- |
---|
225 | // try to pop from any lanes making sure you don't miss any threads push |
---|
226 | // before the start of the function |
---|
227 | static inline struct thread$ * search(struct cluster * cltr) { |
---|
228 | const size_t lanes_count = cltr->sched.readyQ.count; |
---|
229 | /* paranoid */ verify( lanes_count > 0 ); |
---|
230 | unsigned count = __atomic_load_n( &lanes_count, __ATOMIC_RELAXED ); |
---|
231 | unsigned offset = __tls_rand(); |
---|
232 | for(i; count) { |
---|
233 | unsigned idx = (offset + i) % count; |
---|
234 | struct thread$ * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search)); |
---|
235 | if(thrd) { |
---|
236 | return thrd; |
---|
237 | } |
---|
238 | } |
---|
239 | |
---|
240 | // All lanes where empty return 0p |
---|
241 | return 0p; |
---|
242 | } |
---|
243 | |
---|
244 | //----------------------------------------------------------------------- |
---|
245 | // get preferred ready for new thread |
---|
246 | unsigned ready_queue_new_preferred() { |
---|
247 | unsigned pref = UINT_MAX; |
---|
248 | if(struct thread$ * thrd = publicTLS_get( this_thread )) { |
---|
249 | pref = thrd->preferred; |
---|
250 | } |
---|
251 | |
---|
252 | return pref; |
---|
253 | } |
---|
254 | |
---|
255 | //----------------------------------------------------------------------- |
---|
256 | // Given 2 indexes, pick the list with the oldest push an try to pop from it |
---|
257 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->sched) { |
---|
258 | // Pick the bet list |
---|
259 | int w = i; |
---|
260 | if( __builtin_expect(!is_empty(readyQ.data[j]), true) ) { |
---|
261 | w = (ts(readyQ.data[i]) < ts(readyQ.data[j])) ? i : j; |
---|
262 | } |
---|
263 | |
---|
264 | return try_pop(cltr, w __STATS(, stats)); |
---|
265 | } |
---|