source: libcfa/src/concurrency/ready_queue.cfa@ d080549

ADT ast-experimental enum pthread-emulation qualifiedEnum
Last change on this file since d080549 was 4479890, checked in by Thierry Delisle <tdelisle@…>, 3 years ago

Implemented helping for io drain based on timestamps.

  • Property mode set to 100644
File size: 8.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// ready_queue.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Mon Nov dd 16:29:18 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17#define _GNU_SOURCE
18
19// #define __CFA_DEBUG_PRINT_READY_QUEUE__
20
21
22#define USE_AWARE_STEALING
23
24#include "bits/defs.hfa"
25#include "device/cpu.hfa"
26#include "kernel/cluster.hfa"
27#include "kernel/private.hfa"
28
29// #include <errno.h>
30// #include <unistd.h>
31
32#include "ready_subqueue.hfa"
33
34static const size_t cache_line_size = 64;
35
36#if !defined(__CFA_NO_STATISTICS__)
37 #define __STATS(...) __VA_ARGS__
38#else
39 #define __STATS(...)
40#endif
41
42static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats));
43static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats));
44static inline struct thread$ * search(struct cluster * cltr);
45
46//=======================================================================
47// Cforall Ready Queue used for scheduling
48//=======================================================================
49// void ?{}(__ready_queue_t & this) with (this) {
50// lanes.data = 0p;
51// lanes.tscs = 0p;
52// lanes.caches = 0p;
53// lanes.count = 0;
54// }
55
56// void ^?{}(__ready_queue_t & this) with (this) {
57// free(lanes.data);
58// free(lanes.tscs);
59// free(lanes.caches);
60// }
61
62//-----------------------------------------------------------------------
63__attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, unpark_hint hint) with (cltr->sched) {
64 processor * const proc = kernelTLS().this_processor;
65 const bool external = (!proc) || (cltr != proc->cltr);
66 const bool remote = hint == UNPARK_REMOTE;
67 const size_t lanes_count = readyQ.count;
68
69 /* paranoid */ verify( __shard_factor.readyq > 0 );
70 /* paranoid */ verify( lanes_count > 0 );
71
72 unsigned i;
73 if( external || remote ) {
74 // Figure out where thread was last time and make sure it's valid
75 /* paranoid */ verify(thrd->preferred >= 0);
76 unsigned start = thrd->preferred * __shard_factor.readyq;
77 if(start < lanes_count) {
78 do {
79 unsigned r = __tls_rand();
80 i = start + (r % __shard_factor.readyq);
81 /* paranoid */ verify( i < lanes_count );
82 // If we can't lock it retry
83 } while( !__atomic_try_acquire( &readyQ.data[i].lock ) );
84 } else {
85 do {
86 i = __tls_rand() % lanes_count;
87 } while( !__atomic_try_acquire( &readyQ.data[i].lock ) );
88 }
89 } else {
90 do {
91 unsigned r = proc->rdq.its++;
92 i = proc->rdq.id + (r % __shard_factor.readyq);
93 /* paranoid */ verify( i < lanes_count );
94 // If we can't lock it retry
95 } while( !__atomic_try_acquire( &readyQ.data[i].lock ) );
96 }
97
98 // Actually push it
99 push(readyQ.data[i], thrd);
100
101 // Unlock and return
102 __atomic_unlock( &readyQ.data[i].lock );
103
104 #if !defined(__CFA_NO_STATISTICS__)
105 if(unlikely(external || remote)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
106 else __tls_stats()->ready.push.local.success++;
107 #endif
108}
109
110__attribute__((hot)) struct thread$ * pop_fast(struct cluster * cltr) with (cltr->sched) {
111 const size_t lanes_count = readyQ.count;
112
113 /* paranoid */ verify( __shard_factor.readyq > 0 );
114 /* paranoid */ verify( lanes_count > 0 );
115 /* paranoid */ verify( kernelTLS().this_processor );
116 /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes_count );
117
118 processor * const proc = kernelTLS().this_processor;
119 unsigned this = proc->rdq.id;
120 /* paranoid */ verify( this < lanes_count );
121 __cfadbg_print_safe(ready_queue, "Kernel : pop from %u\n", this);
122
123 // Figure out the current cache is
124 const unsigned this_cache = cache_id(cltr, this / __shard_factor.readyq);
125 const unsigned long long ctsc = rdtscl();
126
127 if(proc->rdq.target == MAX) {
128 uint64_t chaos = __tls_rand();
129 unsigned ext = chaos & 0xff;
130 unsigned other = (chaos >> 8) % (lanes_count);
131
132 if(ext < 3 || __atomic_load_n(&caches[other / __shard_factor.readyq].id, __ATOMIC_RELAXED) == this_cache) {
133 proc->rdq.target = other;
134 }
135 }
136 else {
137 const unsigned target = proc->rdq.target;
138 __cfadbg_print_safe(ready_queue, "Kernel : %u considering helping %u, tcsc %llu\n", this, target, readyQ.tscs[target].tv);
139 /* paranoid */ verify( readyQ.tscs[target].tv != MAX );
140 if(target < lanes_count) {
141 const unsigned long long cutoff = calc_cutoff(ctsc, proc->rdq.id, lanes_count, cltr->sched.readyQ.data, cltr->sched.readyQ.tscs, __shard_factor.readyq);
142 const unsigned long long age = moving_average(ctsc, readyQ.tscs[target].tv, readyQ.tscs[target].ma);
143 __cfadbg_print_safe(ready_queue, "Kernel : Help attempt on %u from %u, age %'llu vs cutoff %'llu, %s\n", target, this, age, cutoff, age > cutoff ? "yes" : "no");
144 if(age > cutoff) {
145 thread$ * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
146 if(t) return t;
147 }
148 }
149 proc->rdq.target = MAX;
150 }
151
152 for(__shard_factor.readyq) {
153 unsigned i = this + (proc->rdq.itr++ % __shard_factor.readyq);
154 if(thread$ * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
155 }
156
157 // All lanes where empty return 0p
158 return 0p;
159
160}
161__attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) {
162 unsigned i = __tls_rand() % (cltr->sched.readyQ.count);
163 return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
164}
165__attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) {
166 return search(cltr);
167}
168
169//=======================================================================
170// Various Ready Queue utilities
171//=======================================================================
172// these function work the same or almost the same
173// whether they are using work-stealing or relaxed fifo scheduling
174
175//-----------------------------------------------------------------------
176// try to pop from a lane given by index w
177static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->sched) {
178 /* paranoid */ verify( w < readyQ.count );
179 __STATS( stats.attempt++; )
180
181 // Get relevant elements locally
182 __intrusive_lane_t & lane = readyQ.data[w];
183
184 // If list looks empty retry
185 if( is_empty(lane) ) {
186 return 0p;
187 }
188
189 // If we can't get the lock retry
190 if( !__atomic_try_acquire(&lane.lock) ) {
191 return 0p;
192 }
193
194 // If list is empty, unlock and retry
195 if( is_empty(lane) ) {
196 __atomic_unlock(&lane.lock);
197 return 0p;
198 }
199
200 // Actually pop the list
201 struct thread$ * thrd;
202 unsigned long long ts_prev = ts(lane);
203 unsigned long long ts_next;
204 [thrd, ts_next] = pop(lane);
205
206 /* paranoid */ verify(thrd);
207 /* paranoid */ verify(ts_next);
208 /* paranoid */ verify(lane.lock);
209
210 // Unlock and return
211 __atomic_unlock(&lane.lock);
212
213 // Update statistics
214 __STATS( stats.success++; )
215
216 touch_tsc(readyQ.tscs, w, ts_prev, ts_next);
217
218 thrd->preferred = w / __shard_factor.readyq;
219
220 // return the popped thread
221 return thrd;
222}
223
224//-----------------------------------------------------------------------
225// try to pop from any lanes making sure you don't miss any threads push
226// before the start of the function
227static inline struct thread$ * search(struct cluster * cltr) {
228 const size_t lanes_count = cltr->sched.readyQ.count;
229 /* paranoid */ verify( lanes_count > 0 );
230 unsigned count = __atomic_load_n( &lanes_count, __ATOMIC_RELAXED );
231 unsigned offset = __tls_rand();
232 for(i; count) {
233 unsigned idx = (offset + i) % count;
234 struct thread$ * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search));
235 if(thrd) {
236 return thrd;
237 }
238 }
239
240 // All lanes where empty return 0p
241 return 0p;
242}
243
244//-----------------------------------------------------------------------
245// get preferred ready for new thread
246unsigned ready_queue_new_preferred() {
247 unsigned pref = MAX;
248 if(struct thread$ * thrd = publicTLS_get( this_thread )) {
249 pref = thrd->preferred;
250 }
251
252 return pref;
253}
254
255//-----------------------------------------------------------------------
256// Given 2 indexes, pick the list with the oldest push an try to pop from it
257static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->sched) {
258 // Pick the bet list
259 int w = i;
260 if( __builtin_expect(!is_empty(readyQ.data[j]), true) ) {
261 w = (ts(readyQ.data[i]) < ts(readyQ.data[j])) ? i : j;
262 }
263
264 return try_pop(cltr, w __STATS(, stats));
265}
Note: See TracBrowser for help on using the repository browser.