| 1 | //
|
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
|
|---|
| 3 | //
|
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
|
|---|
| 5 | // file "LICENCE" distributed with Cforall.
|
|---|
| 6 | //
|
|---|
| 7 | // ready_queue.cfa --
|
|---|
| 8 | //
|
|---|
| 9 | // Author : Thierry Delisle
|
|---|
| 10 | // Created On : Mon Nov dd 16:29:18 2019
|
|---|
| 11 | // Last Modified By :
|
|---|
| 12 | // Last Modified On :
|
|---|
| 13 | // Update Count :
|
|---|
| 14 | //
|
|---|
| 15 |
|
|---|
| 16 | #define __cforall_thread__
|
|---|
| 17 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__
|
|---|
| 18 |
|
|---|
| 19 |
|
|---|
| 20 | #define USE_RELAXED_FIFO
|
|---|
| 21 | // #define USE_WORK_STEALING
|
|---|
| 22 |
|
|---|
| 23 | #include "bits/defs.hfa"
|
|---|
| 24 | #include "kernel_private.hfa"
|
|---|
| 25 |
|
|---|
| 26 | #define _GNU_SOURCE
|
|---|
| 27 | #include "stdlib.hfa"
|
|---|
| 28 | #include "math.hfa"
|
|---|
| 29 |
|
|---|
| 30 | #include <unistd.h>
|
|---|
| 31 |
|
|---|
| 32 | #include "ready_subqueue.hfa"
|
|---|
| 33 |
|
|---|
| 34 | static const size_t cache_line_size = 64;
|
|---|
| 35 |
|
|---|
| 36 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 37 | #define __STATS(...) __VA_ARGS__
|
|---|
| 38 | #else
|
|---|
| 39 | #define __STATS(...)
|
|---|
| 40 | #endif
|
|---|
| 41 |
|
|---|
| 42 | // No overriden function, no environment variable, no define
|
|---|
| 43 | // fall back to a magic number
|
|---|
| 44 | #ifndef __CFA_MAX_PROCESSORS__
|
|---|
| 45 | #define __CFA_MAX_PROCESSORS__ 1024
|
|---|
| 46 | #endif
|
|---|
| 47 |
|
|---|
| 48 | #if defined(USE_RELAXED_FIFO)
|
|---|
| 49 | #define BIAS 4
|
|---|
| 50 | #define READYQ_SHARD_FACTOR 4
|
|---|
| 51 | #define SEQUENTIAL_SHARD 1
|
|---|
| 52 | #elif defined(USE_WORK_STEALING)
|
|---|
| 53 | #define READYQ_SHARD_FACTOR 2
|
|---|
| 54 | #define SEQUENTIAL_SHARD 2
|
|---|
| 55 | #else
|
|---|
| 56 | #error no scheduling strategy selected
|
|---|
| 57 | #endif
|
|---|
| 58 |
|
|---|
| 59 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats));
|
|---|
| 60 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats));
|
|---|
| 61 | static inline struct $thread * search(struct cluster * cltr);
|
|---|
| 62 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred);
|
|---|
| 63 |
|
|---|
| 64 |
|
|---|
| 65 | // returns the maximum number of processors the RWLock support
|
|---|
| 66 | __attribute__((weak)) unsigned __max_processors() {
|
|---|
| 67 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
|
|---|
| 68 | if(!max_cores_s) {
|
|---|
| 69 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
|
|---|
| 70 | return __CFA_MAX_PROCESSORS__;
|
|---|
| 71 | }
|
|---|
| 72 |
|
|---|
| 73 | char * endptr = 0p;
|
|---|
| 74 | long int max_cores_l = strtol(max_cores_s, &endptr, 10);
|
|---|
| 75 | if(max_cores_l < 1 || max_cores_l > 65535) {
|
|---|
| 76 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
|
|---|
| 77 | return __CFA_MAX_PROCESSORS__;
|
|---|
| 78 | }
|
|---|
| 79 | if('\0' != *endptr) {
|
|---|
| 80 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
|
|---|
| 81 | return __CFA_MAX_PROCESSORS__;
|
|---|
| 82 | }
|
|---|
| 83 |
|
|---|
| 84 | return max_cores_l;
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 | //=======================================================================
|
|---|
| 88 | // Cluster wide reader-writer lock
|
|---|
| 89 | //=======================================================================
|
|---|
| 90 | void ?{}(__scheduler_RWLock_t & this) {
|
|---|
| 91 | this.max = __max_processors();
|
|---|
| 92 | this.alloc = 0;
|
|---|
| 93 | this.ready = 0;
|
|---|
| 94 | this.data = alloc(this.max);
|
|---|
| 95 | this.write_lock = false;
|
|---|
| 96 |
|
|---|
| 97 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
|
|---|
| 98 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
|
|---|
| 99 |
|
|---|
| 100 | }
|
|---|
| 101 | void ^?{}(__scheduler_RWLock_t & this) {
|
|---|
| 102 | free(this.data);
|
|---|
| 103 | }
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|
| 106 | //=======================================================================
|
|---|
| 107 | // Lock-Free registering/unregistering of threads
|
|---|
| 108 | unsigned register_proc_id( void ) with(*__scheduler_lock) {
|
|---|
| 109 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc);
|
|---|
| 110 | bool * handle = (bool *)&kernelTLS().sched_lock;
|
|---|
| 111 |
|
|---|
| 112 | // Step - 1 : check if there is already space in the data
|
|---|
| 113 | uint_fast32_t s = ready;
|
|---|
| 114 |
|
|---|
| 115 | // Check among all the ready
|
|---|
| 116 | for(uint_fast32_t i = 0; i < s; i++) {
|
|---|
| 117 | bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems
|
|---|
| 118 | /* paranoid */ verify( handle != *cell );
|
|---|
| 119 |
|
|---|
| 120 | bool * null = 0p; // Re-write every loop since compare thrashes it
|
|---|
| 121 | if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null
|
|---|
| 122 | && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
|---|
| 123 | /* paranoid */ verify(i < ready);
|
|---|
| 124 | /* paranoid */ verify( (kernelTLS().sched_id = i, true) );
|
|---|
| 125 | return i;
|
|---|
| 126 | }
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
|---|
| 130 |
|
|---|
| 131 | // Step - 2 : F&A to get a new spot in the array.
|
|---|
| 132 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
|
|---|
| 133 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
|---|
| 134 |
|
|---|
| 135 | // Step - 3 : Mark space as used and then publish it.
|
|---|
| 136 | data[n] = handle;
|
|---|
| 137 | while() {
|
|---|
| 138 | unsigned copy = n;
|
|---|
| 139 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
|
|---|
| 140 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
|
|---|
| 141 | break;
|
|---|
| 142 | Pause();
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n);
|
|---|
| 146 |
|
|---|
| 147 | // Return new spot.
|
|---|
| 148 | /* paranoid */ verify(n < ready);
|
|---|
| 149 | /* paranoid */ verify( (kernelTLS().sched_id = n, true) );
|
|---|
| 150 | return n;
|
|---|
| 151 | }
|
|---|
| 152 |
|
|---|
| 153 | void unregister_proc_id( unsigned id ) with(*__scheduler_lock) {
|
|---|
| 154 | /* paranoid */ verify(id < ready);
|
|---|
| 155 | /* paranoid */ verify(id == kernelTLS().sched_id);
|
|---|
| 156 | /* paranoid */ verify(data[id] == &kernelTLS().sched_lock);
|
|---|
| 157 |
|
|---|
| 158 | bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems
|
|---|
| 159 |
|
|---|
| 160 | __atomic_store_n(cell, 0p, __ATOMIC_RELEASE);
|
|---|
| 161 |
|
|---|
| 162 | __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc);
|
|---|
| 163 | }
|
|---|
| 164 |
|
|---|
| 165 | //-----------------------------------------------------------------------
|
|---|
| 166 | // Writer side : acquire when changing the ready queue, e.g. adding more
|
|---|
| 167 | // queues or removing them.
|
|---|
| 168 | uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) {
|
|---|
| 169 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 170 | /* paranoid */ verify( ! kernelTLS().sched_lock );
|
|---|
| 171 |
|
|---|
| 172 | // Step 1 : lock global lock
|
|---|
| 173 | // It is needed to avoid processors that register mid Critical-Section
|
|---|
| 174 | // to simply lock their own lock and enter.
|
|---|
| 175 | __atomic_acquire( &write_lock );
|
|---|
| 176 |
|
|---|
| 177 | // Step 2 : lock per-proc lock
|
|---|
| 178 | // Processors that are currently being registered aren't counted
|
|---|
| 179 | // but can't be in read_lock or in the critical section.
|
|---|
| 180 | // All other processors are counted
|
|---|
| 181 | uint_fast32_t s = ready;
|
|---|
| 182 | for(uint_fast32_t i = 0; i < s; i++) {
|
|---|
| 183 | volatile bool * llock = data[i];
|
|---|
| 184 | if(llock) __atomic_acquire( llock );
|
|---|
| 185 | }
|
|---|
| 186 |
|
|---|
| 187 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 188 | return s;
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 | void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) {
|
|---|
| 192 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 193 |
|
|---|
| 194 | // Step 1 : release local locks
|
|---|
| 195 | // This must be done while the global lock is held to avoid
|
|---|
| 196 | // threads that where created mid critical section
|
|---|
| 197 | // to race to lock their local locks and have the writer
|
|---|
| 198 | // immidiately unlock them
|
|---|
| 199 | // Alternative solution : return s in write_lock and pass it to write_unlock
|
|---|
| 200 | for(uint_fast32_t i = 0; i < last_s; i++) {
|
|---|
| 201 | volatile bool * llock = data[i];
|
|---|
| 202 | if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE);
|
|---|
| 203 | }
|
|---|
| 204 |
|
|---|
| 205 | // Step 2 : release global lock
|
|---|
| 206 | /*paranoid*/ assert(true == write_lock);
|
|---|
| 207 | __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE);
|
|---|
| 208 |
|
|---|
| 209 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 210 | }
|
|---|
| 211 |
|
|---|
| 212 | //=======================================================================
|
|---|
| 213 | // Cforall Ready Queue used for scheduling
|
|---|
| 214 | //=======================================================================
|
|---|
| 215 | void ?{}(__ready_queue_t & this) with (this) {
|
|---|
| 216 | lanes.data = 0p;
|
|---|
| 217 | lanes.tscs = 0p;
|
|---|
| 218 | lanes.count = 0;
|
|---|
| 219 | }
|
|---|
| 220 |
|
|---|
| 221 | void ^?{}(__ready_queue_t & this) with (this) {
|
|---|
| 222 | verify( SEQUENTIAL_SHARD == lanes.count );
|
|---|
| 223 | free(lanes.data);
|
|---|
| 224 | free(lanes.tscs);
|
|---|
| 225 | }
|
|---|
| 226 |
|
|---|
| 227 | //-----------------------------------------------------------------------
|
|---|
| 228 | #if defined(USE_RELAXED_FIFO)
|
|---|
| 229 | //-----------------------------------------------------------------------
|
|---|
| 230 | // get index from random number with or without bias towards queues
|
|---|
| 231 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred) {
|
|---|
| 232 | unsigned i;
|
|---|
| 233 | bool local;
|
|---|
| 234 | unsigned rlow = r % BIAS;
|
|---|
| 235 | unsigned rhigh = r / BIAS;
|
|---|
| 236 | if((0 != rlow) && preferred >= 0) {
|
|---|
| 237 | // (BIAS - 1) out of BIAS chances
|
|---|
| 238 | // Use perferred queues
|
|---|
| 239 | i = preferred + (rhigh % READYQ_SHARD_FACTOR);
|
|---|
| 240 | local = true;
|
|---|
| 241 | }
|
|---|
| 242 | else {
|
|---|
| 243 | // 1 out of BIAS chances
|
|---|
| 244 | // Use all queues
|
|---|
| 245 | i = rhigh;
|
|---|
| 246 | local = false;
|
|---|
| 247 | }
|
|---|
| 248 | return [i, local];
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) {
|
|---|
| 252 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
|---|
| 253 |
|
|---|
| 254 | const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
|
|---|
| 255 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 256 |
|
|---|
| 257 | bool local;
|
|---|
| 258 | int preferred = external ? -1 : kernelTLS().this_processor->rdq.id;
|
|---|
| 259 |
|
|---|
| 260 | // Try to pick a lane and lock it
|
|---|
| 261 | unsigned i;
|
|---|
| 262 | do {
|
|---|
| 263 | // Pick the index of a lane
|
|---|
| 264 | unsigned r = __tls_rand_fwd();
|
|---|
| 265 | [i, local] = idx_from_r(r, preferred);
|
|---|
| 266 |
|
|---|
| 267 | i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
|---|
| 268 |
|
|---|
| 269 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 270 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
|
|---|
| 271 | else if(local) __tls_stats()->ready.push.local.attempt++;
|
|---|
| 272 | else __tls_stats()->ready.push.share.attempt++;
|
|---|
| 273 | #endif
|
|---|
| 274 |
|
|---|
| 275 | // If we can't lock it retry
|
|---|
| 276 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 277 |
|
|---|
| 278 | // Actually push it
|
|---|
| 279 | push(lanes.data[i], thrd);
|
|---|
| 280 |
|
|---|
| 281 | // Unlock and return
|
|---|
| 282 | __atomic_unlock( &lanes.data[i].lock );
|
|---|
| 283 |
|
|---|
| 284 | // Mark the current index in the tls rng instance as having an item
|
|---|
| 285 | __tls_rand_advance_bck();
|
|---|
| 286 |
|
|---|
| 287 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
|---|
| 288 |
|
|---|
| 289 | // Update statistics
|
|---|
| 290 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 291 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
|---|
| 292 | else if(local) __tls_stats()->ready.push.local.success++;
|
|---|
| 293 | else __tls_stats()->ready.push.share.success++;
|
|---|
| 294 | #endif
|
|---|
| 295 | }
|
|---|
| 296 |
|
|---|
| 297 | // Pop from the ready queue from a given cluster
|
|---|
| 298 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 299 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 300 | /* paranoid */ verify( kernelTLS().this_processor );
|
|---|
| 301 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 302 |
|
|---|
| 303 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
|---|
| 304 | int preferred = kernelTLS().this_processor->rdq.id;
|
|---|
| 305 |
|
|---|
| 306 |
|
|---|
| 307 | // As long as the list is not empty, try finding a lane that isn't empty and pop from it
|
|---|
| 308 | for(25) {
|
|---|
| 309 | // Pick two lists at random
|
|---|
| 310 | unsigned ri = __tls_rand_bck();
|
|---|
| 311 | unsigned rj = __tls_rand_bck();
|
|---|
| 312 |
|
|---|
| 313 | unsigned i, j;
|
|---|
| 314 | __attribute__((unused)) bool locali, localj;
|
|---|
| 315 | [i, locali] = idx_from_r(ri, preferred);
|
|---|
| 316 | [j, localj] = idx_from_r(rj, preferred);
|
|---|
| 317 |
|
|---|
| 318 | i %= count;
|
|---|
| 319 | j %= count;
|
|---|
| 320 |
|
|---|
| 321 | // try popping from the 2 picked lists
|
|---|
| 322 | struct $thread * thrd = try_pop(cltr, i, j __STATS(, *(locali || localj ? &__tls_stats()->ready.pop.local : &__tls_stats()->ready.pop.help)));
|
|---|
| 323 | if(thrd) {
|
|---|
| 324 | return thrd;
|
|---|
| 325 | }
|
|---|
| 326 | }
|
|---|
| 327 |
|
|---|
| 328 | // All lanes where empty return 0p
|
|---|
| 329 | return 0p;
|
|---|
| 330 | }
|
|---|
| 331 |
|
|---|
| 332 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) { return pop_fast(cltr); }
|
|---|
| 333 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) {
|
|---|
| 334 | return search(cltr);
|
|---|
| 335 | }
|
|---|
| 336 | #endif
|
|---|
| 337 | #if defined(USE_WORK_STEALING)
|
|---|
| 338 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) {
|
|---|
| 339 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
|---|
| 340 |
|
|---|
| 341 | // #define USE_PREFERRED
|
|---|
| 342 | #if !defined(USE_PREFERRED)
|
|---|
| 343 | const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
|
|---|
| 344 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 345 | #else
|
|---|
| 346 | unsigned preferred = thrd->preferred;
|
|---|
| 347 | const bool external = push_local || (!kernelTLS().this_processor) || preferred == -1u || thrd->curr_cluster != cltr;
|
|---|
| 348 | /* paranoid */ verifyf(external || preferred < lanes.count, "Invalid preferred queue %u for %u lanes", preferred, lanes.count );
|
|---|
| 349 |
|
|---|
| 350 | unsigned r = preferred % READYQ_SHARD_FACTOR;
|
|---|
| 351 | const unsigned start = preferred - r;
|
|---|
| 352 | #endif
|
|---|
| 353 |
|
|---|
| 354 | // Try to pick a lane and lock it
|
|---|
| 355 | unsigned i;
|
|---|
| 356 | do {
|
|---|
| 357 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 358 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
|
|---|
| 359 | else __tls_stats()->ready.push.local.attempt++;
|
|---|
| 360 | #endif
|
|---|
| 361 |
|
|---|
| 362 | if(unlikely(external)) {
|
|---|
| 363 | i = __tls_rand() % lanes.count;
|
|---|
| 364 | }
|
|---|
| 365 | else {
|
|---|
| 366 | #if !defined(USE_PREFERRED)
|
|---|
| 367 | processor * proc = kernelTLS().this_processor;
|
|---|
| 368 | unsigned r = proc->rdq.its++;
|
|---|
| 369 | i = proc->rdq.id + (r % READYQ_SHARD_FACTOR);
|
|---|
| 370 | #else
|
|---|
| 371 | i = start + (r++ % READYQ_SHARD_FACTOR);
|
|---|
| 372 | #endif
|
|---|
| 373 | }
|
|---|
| 374 | // If we can't lock it retry
|
|---|
| 375 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 376 |
|
|---|
| 377 | // Actually push it
|
|---|
| 378 | push(lanes.data[i], thrd);
|
|---|
| 379 |
|
|---|
| 380 | // Unlock and return
|
|---|
| 381 | __atomic_unlock( &lanes.data[i].lock );
|
|---|
| 382 |
|
|---|
| 383 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 384 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
|---|
| 385 | else __tls_stats()->ready.push.local.success++;
|
|---|
| 386 | #endif
|
|---|
| 387 |
|
|---|
| 388 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
|---|
| 389 | }
|
|---|
| 390 |
|
|---|
| 391 | // Pop from the ready queue from a given cluster
|
|---|
| 392 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 393 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 394 | /* paranoid */ verify( kernelTLS().this_processor );
|
|---|
| 395 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 396 |
|
|---|
| 397 | processor * proc = kernelTLS().this_processor;
|
|---|
| 398 |
|
|---|
| 399 | if(proc->rdq.target == -1u) {
|
|---|
| 400 | unsigned long long min = ts(lanes.data[proc->rdq.id]);
|
|---|
| 401 | for(int i = 0; i < READYQ_SHARD_FACTOR; i++) {
|
|---|
| 402 | unsigned long long tsc = ts(lanes.data[proc->rdq.id + i]);
|
|---|
| 403 | if(tsc < min) min = tsc;
|
|---|
| 404 | }
|
|---|
| 405 | proc->rdq.cutoff = min;
|
|---|
| 406 | proc->rdq.target = __tls_rand() % lanes.count;
|
|---|
| 407 | }
|
|---|
| 408 | else {
|
|---|
| 409 | unsigned target = proc->rdq.target;
|
|---|
| 410 | proc->rdq.target = -1u;
|
|---|
| 411 | const unsigned long long bias = 0; //2_500_000_000;
|
|---|
| 412 | const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff;
|
|---|
| 413 | if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) {
|
|---|
| 414 | $thread * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
|
|---|
| 415 | if(t) return t;
|
|---|
| 416 | }
|
|---|
| 417 | }
|
|---|
| 418 |
|
|---|
| 419 | for(READYQ_SHARD_FACTOR) {
|
|---|
| 420 | unsigned i = proc->rdq.id + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
|
|---|
| 421 | if($thread * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
|
|---|
| 422 | }
|
|---|
| 423 | return 0p;
|
|---|
| 424 | }
|
|---|
| 425 |
|
|---|
| 426 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 427 | unsigned i = __tls_rand() % lanes.count;
|
|---|
| 428 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
|
|---|
| 429 | }
|
|---|
| 430 |
|
|---|
| 431 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 432 | return search(cltr);
|
|---|
| 433 | }
|
|---|
| 434 | #endif
|
|---|
| 435 |
|
|---|
| 436 | //=======================================================================
|
|---|
| 437 | // Various Ready Queue utilities
|
|---|
| 438 | //=======================================================================
|
|---|
| 439 | // these function work the same or almost the same
|
|---|
| 440 | // whether they are using work-stealing or relaxed fifo scheduling
|
|---|
| 441 |
|
|---|
| 442 | //-----------------------------------------------------------------------
|
|---|
| 443 | // try to pop from a lane given by index w
|
|---|
| 444 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
|
|---|
| 445 | __STATS( stats.attempt++; )
|
|---|
| 446 |
|
|---|
| 447 | // Get relevant elements locally
|
|---|
| 448 | __intrusive_lane_t & lane = lanes.data[w];
|
|---|
| 449 |
|
|---|
| 450 | // If list looks empty retry
|
|---|
| 451 | if( is_empty(lane) ) {
|
|---|
| 452 | return 0p;
|
|---|
| 453 | }
|
|---|
| 454 |
|
|---|
| 455 | // If we can't get the lock retry
|
|---|
| 456 | if( !__atomic_try_acquire(&lane.lock) ) {
|
|---|
| 457 | return 0p;
|
|---|
| 458 | }
|
|---|
| 459 |
|
|---|
| 460 | // If list is empty, unlock and retry
|
|---|
| 461 | if( is_empty(lane) ) {
|
|---|
| 462 | __atomic_unlock(&lane.lock);
|
|---|
| 463 | return 0p;
|
|---|
| 464 | }
|
|---|
| 465 |
|
|---|
| 466 | // Actually pop the list
|
|---|
| 467 | struct $thread * thrd;
|
|---|
| 468 | unsigned long long tsv;
|
|---|
| 469 | [thrd, tsv] = pop(lane);
|
|---|
| 470 |
|
|---|
| 471 | /* paranoid */ verify(thrd);
|
|---|
| 472 | /* paranoid */ verify(tsv);
|
|---|
| 473 | /* paranoid */ verify(lane.lock);
|
|---|
| 474 |
|
|---|
| 475 | // Unlock and return
|
|---|
| 476 | __atomic_unlock(&lane.lock);
|
|---|
| 477 |
|
|---|
| 478 | // Update statistics
|
|---|
| 479 | __STATS( stats.success++; )
|
|---|
| 480 |
|
|---|
| 481 | #if defined(USE_WORK_STEALING)
|
|---|
| 482 | lanes.tscs[w].tv = tsv;
|
|---|
| 483 | #endif
|
|---|
| 484 |
|
|---|
| 485 | thrd->preferred = w;
|
|---|
| 486 |
|
|---|
| 487 | // return the popped thread
|
|---|
| 488 | return thrd;
|
|---|
| 489 | }
|
|---|
| 490 |
|
|---|
| 491 | //-----------------------------------------------------------------------
|
|---|
| 492 | // try to pop from any lanes making sure you don't miss any threads push
|
|---|
| 493 | // before the start of the function
|
|---|
| 494 | static inline struct $thread * search(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 495 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 496 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
|---|
| 497 | unsigned offset = __tls_rand();
|
|---|
| 498 | for(i; count) {
|
|---|
| 499 | unsigned idx = (offset + i) % count;
|
|---|
| 500 | struct $thread * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search));
|
|---|
| 501 | if(thrd) {
|
|---|
| 502 | return thrd;
|
|---|
| 503 | }
|
|---|
| 504 | }
|
|---|
| 505 |
|
|---|
| 506 | // All lanes where empty return 0p
|
|---|
| 507 | return 0p;
|
|---|
| 508 | }
|
|---|
| 509 |
|
|---|
| 510 | //-----------------------------------------------------------------------
|
|---|
| 511 | // Check that all the intrusive queues in the data structure are still consistent
|
|---|
| 512 | static void check( __ready_queue_t & q ) with (q) {
|
|---|
| 513 | #if defined(__CFA_WITH_VERIFY__)
|
|---|
| 514 | {
|
|---|
| 515 | for( idx ; lanes.count ) {
|
|---|
| 516 | __intrusive_lane_t & sl = lanes.data[idx];
|
|---|
| 517 | assert(!lanes.data[idx].lock);
|
|---|
| 518 |
|
|---|
| 519 | if(is_empty(sl)) {
|
|---|
| 520 | assert( sl.anchor.next == 0p );
|
|---|
| 521 | assert( sl.anchor.ts == 0 );
|
|---|
| 522 | assert( mock_head(sl) == sl.prev );
|
|---|
| 523 | } else {
|
|---|
| 524 | assert( sl.anchor.next != 0p );
|
|---|
| 525 | assert( sl.anchor.ts != 0 );
|
|---|
| 526 | assert( mock_head(sl) != sl.prev );
|
|---|
| 527 | }
|
|---|
| 528 | }
|
|---|
| 529 | }
|
|---|
| 530 | #endif
|
|---|
| 531 | }
|
|---|
| 532 |
|
|---|
| 533 | //-----------------------------------------------------------------------
|
|---|
| 534 | // Given 2 indexes, pick the list with the oldest push an try to pop from it
|
|---|
| 535 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
|
|---|
| 536 | // Pick the bet list
|
|---|
| 537 | int w = i;
|
|---|
| 538 | if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
|
|---|
| 539 | w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
|
|---|
| 540 | }
|
|---|
| 541 |
|
|---|
| 542 | return try_pop(cltr, w __STATS(, stats));
|
|---|
| 543 | }
|
|---|
| 544 |
|
|---|
| 545 | // Call this function of the intrusive list was moved using memcpy
|
|---|
| 546 | // fixes the list so that the pointers back to anchors aren't left dangling
|
|---|
| 547 | static inline void fix(__intrusive_lane_t & ll) {
|
|---|
| 548 | if(is_empty(ll)) {
|
|---|
| 549 | verify(ll.anchor.next == 0p);
|
|---|
| 550 | ll.prev = mock_head(ll);
|
|---|
| 551 | }
|
|---|
| 552 | }
|
|---|
| 553 |
|
|---|
| 554 | static void assign_list(unsigned & value, dlist(processor) & list, unsigned count) {
|
|---|
| 555 | processor * it = &list`first;
|
|---|
| 556 | for(unsigned i = 0; i < count; i++) {
|
|---|
| 557 | /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count);
|
|---|
| 558 | it->rdq.id = value;
|
|---|
| 559 | it->rdq.target = -1u;
|
|---|
| 560 | value += READYQ_SHARD_FACTOR;
|
|---|
| 561 | it = &(*it)`next;
|
|---|
| 562 | }
|
|---|
| 563 | }
|
|---|
| 564 |
|
|---|
| 565 | static void reassign_cltr_id(struct cluster * cltr) {
|
|---|
| 566 | unsigned preferred = 0;
|
|---|
| 567 | assign_list(preferred, cltr->procs.actives, cltr->procs.total - cltr->procs.idle);
|
|---|
| 568 | assign_list(preferred, cltr->procs.idles , cltr->procs.idle );
|
|---|
| 569 | }
|
|---|
| 570 |
|
|---|
| 571 | static void fix_times( struct cluster * cltr ) with( cltr->ready_queue ) {
|
|---|
| 572 | #if defined(USE_WORK_STEALING)
|
|---|
| 573 | lanes.tscs = alloc(lanes.count, lanes.tscs`realloc);
|
|---|
| 574 | for(i; lanes.count) {
|
|---|
| 575 | unsigned long long tsc = ts(lanes.data[i]);
|
|---|
| 576 | lanes.tscs[i].tv = tsc != 0 ? tsc : rdtscl();
|
|---|
| 577 | }
|
|---|
| 578 | #endif
|
|---|
| 579 | }
|
|---|
| 580 |
|
|---|
| 581 | // Grow the ready queue
|
|---|
| 582 | void ready_queue_grow(struct cluster * cltr) {
|
|---|
| 583 | size_t ncount;
|
|---|
| 584 | int target = cltr->procs.total;
|
|---|
| 585 |
|
|---|
| 586 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 587 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
|
|---|
| 588 |
|
|---|
| 589 | // Make sure that everything is consistent
|
|---|
| 590 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 591 |
|
|---|
| 592 | // grow the ready queue
|
|---|
| 593 | with( cltr->ready_queue ) {
|
|---|
| 594 | // Find new count
|
|---|
| 595 | // Make sure we always have atleast 1 list
|
|---|
| 596 | if(target >= 2) {
|
|---|
| 597 | ncount = target * READYQ_SHARD_FACTOR;
|
|---|
| 598 | } else {
|
|---|
| 599 | ncount = SEQUENTIAL_SHARD;
|
|---|
| 600 | }
|
|---|
| 601 |
|
|---|
| 602 | // Allocate new array (uses realloc and memcpies the data)
|
|---|
| 603 | lanes.data = alloc( ncount, lanes.data`realloc );
|
|---|
| 604 |
|
|---|
| 605 | // Fix the moved data
|
|---|
| 606 | for( idx; (size_t)lanes.count ) {
|
|---|
| 607 | fix(lanes.data[idx]);
|
|---|
| 608 | }
|
|---|
| 609 |
|
|---|
| 610 | // Construct new data
|
|---|
| 611 | for( idx; (size_t)lanes.count ~ ncount) {
|
|---|
| 612 | (lanes.data[idx]){};
|
|---|
| 613 | }
|
|---|
| 614 |
|
|---|
| 615 | // Update original
|
|---|
| 616 | lanes.count = ncount;
|
|---|
| 617 | }
|
|---|
| 618 |
|
|---|
| 619 | fix_times(cltr);
|
|---|
| 620 |
|
|---|
| 621 | reassign_cltr_id(cltr);
|
|---|
| 622 |
|
|---|
| 623 | // Make sure that everything is consistent
|
|---|
| 624 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 625 |
|
|---|
| 626 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
|
|---|
| 627 |
|
|---|
| 628 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 629 | }
|
|---|
| 630 |
|
|---|
| 631 | // Shrink the ready queue
|
|---|
| 632 | void ready_queue_shrink(struct cluster * cltr) {
|
|---|
| 633 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 634 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
|
|---|
| 635 |
|
|---|
| 636 | // Make sure that everything is consistent
|
|---|
| 637 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 638 |
|
|---|
| 639 | int target = cltr->procs.total;
|
|---|
| 640 |
|
|---|
| 641 | with( cltr->ready_queue ) {
|
|---|
| 642 | // Remember old count
|
|---|
| 643 | size_t ocount = lanes.count;
|
|---|
| 644 |
|
|---|
| 645 | // Find new count
|
|---|
| 646 | // Make sure we always have atleast 1 list
|
|---|
| 647 | lanes.count = target >= 2 ? target * READYQ_SHARD_FACTOR: SEQUENTIAL_SHARD;
|
|---|
| 648 | /* paranoid */ verify( ocount >= lanes.count );
|
|---|
| 649 | /* paranoid */ verify( lanes.count == target * READYQ_SHARD_FACTOR || target < 2 );
|
|---|
| 650 |
|
|---|
| 651 | // for printing count the number of displaced threads
|
|---|
| 652 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
|---|
| 653 | __attribute__((unused)) size_t displaced = 0;
|
|---|
| 654 | #endif
|
|---|
| 655 |
|
|---|
| 656 | // redistribute old data
|
|---|
| 657 | for( idx; (size_t)lanes.count ~ ocount) {
|
|---|
| 658 | // Lock is not strictly needed but makes checking invariants much easier
|
|---|
| 659 | __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
|
|---|
| 660 | verify(locked);
|
|---|
| 661 |
|
|---|
| 662 | // As long as we can pop from this lane to push the threads somewhere else in the queue
|
|---|
| 663 | while(!is_empty(lanes.data[idx])) {
|
|---|
| 664 | struct $thread * thrd;
|
|---|
| 665 | unsigned long long _;
|
|---|
| 666 | [thrd, _] = pop(lanes.data[idx]);
|
|---|
| 667 |
|
|---|
| 668 | push(cltr, thrd, true);
|
|---|
| 669 |
|
|---|
| 670 | // for printing count the number of displaced threads
|
|---|
| 671 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
|---|
| 672 | displaced++;
|
|---|
| 673 | #endif
|
|---|
| 674 | }
|
|---|
| 675 |
|
|---|
| 676 | // Unlock the lane
|
|---|
| 677 | __atomic_unlock(&lanes.data[idx].lock);
|
|---|
| 678 |
|
|---|
| 679 | // TODO print the queue statistics here
|
|---|
| 680 |
|
|---|
| 681 | ^(lanes.data[idx]){};
|
|---|
| 682 | }
|
|---|
| 683 |
|
|---|
| 684 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
|
|---|
| 685 |
|
|---|
| 686 | // Allocate new array (uses realloc and memcpies the data)
|
|---|
| 687 | lanes.data = alloc( lanes.count, lanes.data`realloc );
|
|---|
| 688 |
|
|---|
| 689 | // Fix the moved data
|
|---|
| 690 | for( idx; (size_t)lanes.count ) {
|
|---|
| 691 | fix(lanes.data[idx]);
|
|---|
| 692 | }
|
|---|
| 693 | }
|
|---|
| 694 |
|
|---|
| 695 | fix_times(cltr);
|
|---|
| 696 |
|
|---|
| 697 | reassign_cltr_id(cltr);
|
|---|
| 698 |
|
|---|
| 699 | // Make sure that everything is consistent
|
|---|
| 700 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 701 |
|
|---|
| 702 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
|
|---|
| 703 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 704 | }
|
|---|
| 705 |
|
|---|
| 706 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 707 | unsigned cnt(const __ready_queue_t & this, unsigned idx) {
|
|---|
| 708 | /* paranoid */ verify(this.lanes.count > idx);
|
|---|
| 709 | return this.lanes.data[idx].cnt;
|
|---|
| 710 | }
|
|---|
| 711 | #endif
|
|---|