source: libcfa/src/concurrency/ready_queue.cfa@ 85eafc5

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 85eafc5 was 39fc03e, checked in by Thierry Delisle <tdelisle@…>, 5 years ago

Fixed ready_queue working with 0/1 processors on cluster

  • Property mode set to 100644
File size: 17.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// ready_queue.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Mon Nov dd 16:29:18 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17// #define __CFA_DEBUG_PRINT_READY_QUEUE__
18
19#include "bits/defs.hfa"
20#include "kernel_private.hfa"
21
22#define _GNU_SOURCE
23#include "stdlib.hfa"
24#include "math.hfa"
25
26#include <unistd.h>
27
28#include "snzi.hfa"
29#include "ready_subqueue.hfa"
30
31static const size_t cache_line_size = 64;
32
33// No overriden function, no environment variable, no define
34// fall back to a magic number
35#ifndef __CFA_MAX_PROCESSORS__
36 #define __CFA_MAX_PROCESSORS__ 1024
37#endif
38
39#define BIAS 16
40
41// returns the maximum number of processors the RWLock support
42__attribute__((weak)) unsigned __max_processors() {
43 const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
44 if(!max_cores_s) {
45 __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
46 return __CFA_MAX_PROCESSORS__;
47 }
48
49 char * endptr = 0p;
50 long int max_cores_l = strtol(max_cores_s, &endptr, 10);
51 if(max_cores_l < 1 || max_cores_l > 65535) {
52 __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
53 return __CFA_MAX_PROCESSORS__;
54 }
55 if('\0' != *endptr) {
56 __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
57 return __CFA_MAX_PROCESSORS__;
58 }
59
60 return max_cores_l;
61}
62
63//=======================================================================
64// Cluster wide reader-writer lock
65//=======================================================================
66void ?{}(__scheduler_RWLock_t & this) {
67 this.max = __max_processors();
68 this.alloc = 0;
69 this.ready = 0;
70 this.lock = false;
71 this.data = alloc(this.max);
72
73 /*paranoid*/ verify( 0 == (((uintptr_t)(this.data )) % 64) );
74 /*paranoid*/ verify( 0 == (((uintptr_t)(this.data + 1)) % 64) );
75 /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
76 /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
77
78}
79void ^?{}(__scheduler_RWLock_t & this) {
80 free(this.data);
81}
82
83void ?{}( __scheduler_lock_id_t & this, __processor_id_t * proc ) {
84 this.handle = proc;
85 this.lock = false;
86 #ifdef __CFA_WITH_VERIFY__
87 this.owned = false;
88 #endif
89}
90
91//=======================================================================
92// Lock-Free registering/unregistering of threads
93unsigned doregister( struct __processor_id_t * proc ) with(*__scheduler_lock) {
94 __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc);
95
96 // Step - 1 : check if there is already space in the data
97 uint_fast32_t s = ready;
98
99 // Check among all the ready
100 for(uint_fast32_t i = 0; i < s; i++) {
101 __processor_id_t * null = 0p; // Re-write every loop since compare thrashes it
102 if( __atomic_load_n(&data[i].handle, (int)__ATOMIC_RELAXED) == null
103 && __atomic_compare_exchange_n( &data[i].handle, &null, proc, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
104 /*paranoid*/ verify(i < ready);
105 /*paranoid*/ verify(0 == (__alignof__(data[i]) % cache_line_size));
106 /*paranoid*/ verify((((uintptr_t)&data[i]) % cache_line_size) == 0);
107 return i;
108 }
109 }
110
111 if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max);
112
113 // Step - 2 : F&A to get a new spot in the array.
114 uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
115 if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max);
116
117 // Step - 3 : Mark space as used and then publish it.
118 __scheduler_lock_id_t * storage = (__scheduler_lock_id_t *)&data[n];
119 (*storage){ proc };
120 while(true) {
121 unsigned copy = n;
122 if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
123 && __atomic_compare_exchange_n(&ready, &copy, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
124 break;
125 asm volatile("pause");
126 }
127
128 __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n);
129
130 // Return new spot.
131 /*paranoid*/ verify(n < ready);
132 /*paranoid*/ verify(__alignof__(data[n]) == (2 * cache_line_size));
133 /*paranoid*/ verify((((uintptr_t)&data[n]) % cache_line_size) == 0);
134 return n;
135}
136
137void unregister( struct __processor_id_t * proc ) with(*__scheduler_lock) {
138 unsigned id = proc->id;
139 /*paranoid*/ verify(id < ready);
140 /*paranoid*/ verify(proc == __atomic_load_n(&data[id].handle, __ATOMIC_RELAXED));
141 __atomic_store_n(&data[id].handle, 0p, __ATOMIC_RELEASE);
142
143 __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc);
144}
145
146//-----------------------------------------------------------------------
147// Writer side : acquire when changing the ready queue, e.g. adding more
148// queues or removing them.
149uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) {
150 // Step 1 : lock global lock
151 // It is needed to avoid processors that register mid Critical-Section
152 // to simply lock their own lock and enter.
153 __atomic_acquire( &lock );
154
155 // Step 2 : lock per-proc lock
156 // Processors that are currently being registered aren't counted
157 // but can't be in read_lock or in the critical section.
158 // All other processors are counted
159 uint_fast32_t s = ready;
160 for(uint_fast32_t i = 0; i < s; i++) {
161 __atomic_acquire( &data[i].lock );
162 }
163
164 return s;
165}
166
167void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) {
168 // Step 1 : release local locks
169 // This must be done while the global lock is held to avoid
170 // threads that where created mid critical section
171 // to race to lock their local locks and have the writer
172 // immidiately unlock them
173 // Alternative solution : return s in write_lock and pass it to write_unlock
174 for(uint_fast32_t i = 0; i < last_s; i++) {
175 verify(data[i].lock);
176 __atomic_store_n(&data[i].lock, (bool)false, __ATOMIC_RELEASE);
177 }
178
179 // Step 2 : release global lock
180 /*paranoid*/ assert(true == lock);
181 __atomic_store_n(&lock, (bool)false, __ATOMIC_RELEASE);
182}
183
184//=======================================================================
185// Cforall Reqdy Queue used for scheduling
186//=======================================================================
187void ?{}(__ready_queue_t & this) with (this) {
188 lanes.data = 0p;
189 lanes.count = 0;
190}
191
192void ^?{}(__ready_queue_t & this) with (this) {
193 verify( 1 == lanes.count );
194 verify( !query( snzi ) );
195 free(lanes.data);
196}
197
198//-----------------------------------------------------------------------
199__attribute__((hot)) bool query(struct cluster * cltr) {
200 return query(cltr->ready_queue.snzi);
201}
202
203//-----------------------------------------------------------------------
204__attribute__((hot)) bool push(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) {
205 __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
206
207 // write timestamp
208 thrd->link.ts = rdtscl();
209
210 #if defined(BIAS) && !defined(__CFA_NO_STATISTICS__)
211 bool local = false;
212 int preferred =
213 //*
214 kernelTLS.this_processor ? kernelTLS.this_processor->id * 4 : -1;
215 /*/
216 thrd->link.preferred * 4;
217 //*/
218
219
220 #endif
221
222 // Try to pick a lane and lock it
223 unsigned i;
224 do {
225 // Pick the index of a lane
226 #if defined(BIAS)
227 unsigned r = __tls_rand();
228 unsigned rlow = r % BIAS;
229 unsigned rhigh = r / BIAS;
230 if((0 != rlow) && preferred >= 0) {
231 // (BIAS - 1) out of BIAS chances
232 // Use perferred queues
233 i = preferred + (rhigh % 4);
234
235 #if !defined(__CFA_NO_STATISTICS__)
236 local = true;
237 __tls_stats()->ready.pick.push.local++;
238 #endif
239 }
240 else {
241 // 1 out of BIAS chances
242 // Use all queues
243 i = rhigh;
244 local = false;
245 }
246 #else
247 i = __tls_rand();
248 #endif
249
250 i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
251
252 #if !defined(__CFA_NO_STATISTICS__)
253 __tls_stats()->ready.pick.push.attempt++;
254 #endif
255
256 // If we can't lock it retry
257 } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
258
259 bool first = false;
260
261 // Actually push it
262 bool lane_first = push(lanes.data[i], thrd);
263
264 // If this lane used to be empty we need to do more
265 if(lane_first) {
266 // Check if the entire queue used to be empty
267 first = !query(snzi);
268
269 // Update the snzi
270 arrive( snzi, i );
271 }
272
273 // Unlock and return
274 __atomic_unlock( &lanes.data[i].lock );
275
276 __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
277
278 // Update statistics
279 #if !defined(__CFA_NO_STATISTICS__)
280 #if defined(BIAS)
281 if( local ) __tls_stats()->ready.pick.push.lsuccess++;
282 #endif
283 __tls_stats()->ready.pick.push.success++;
284 #endif
285
286 // return whether or not the list was empty before this push
287 return first;
288}
289
290static struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j);
291static struct $thread * try_pop(struct cluster * cltr, unsigned i);
292
293// Pop from the ready queue from a given cluster
294__attribute__((hot)) $thread * pop(struct cluster * cltr) with (cltr->ready_queue) {
295 /* paranoid */ verify( lanes.count > 0 );
296 #if defined(BIAS)
297 // Don't bother trying locally too much
298 int local_tries = 8;
299 #endif
300
301 // As long as the list is not empty, try finding a lane that isn't empty and pop from it
302 while( query(snzi) ) {
303 // Pick two lists at random
304 unsigned i,j;
305 #if defined(BIAS)
306 #if !defined(__CFA_NO_STATISTICS__)
307 bool local = false;
308 #endif
309 uint64_t r = __tls_rand();
310 unsigned rlow = r % BIAS;
311 uint64_t rhigh = r / BIAS;
312 if(local_tries && 0 != rlow) {
313 // (BIAS - 1) out of BIAS chances
314 // Use perferred queues
315 unsigned pid = kernelTLS.this_processor->id * 4;
316 i = pid + (rhigh % 4);
317 j = pid + ((rhigh >> 32ull) % 4);
318
319 // count the tries
320 local_tries--;
321
322 #if !defined(__CFA_NO_STATISTICS__)
323 local = true;
324 __tls_stats()->ready.pick.pop.local++;
325 #endif
326 }
327 else {
328 // 1 out of BIAS chances
329 // Use all queues
330 i = rhigh;
331 j = rhigh >> 32ull;
332 }
333 #else
334 i = __tls_rand();
335 j = __tls_rand();
336 #endif
337
338 i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
339 j %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
340
341 // try popping from the 2 picked lists
342 struct $thread * thrd = try_pop(cltr, i, j);
343 if(thrd) {
344 #if defined(BIAS) && !defined(__CFA_NO_STATISTICS__)
345 if( local ) __tls_stats()->ready.pick.pop.lsuccess++;
346 #endif
347 return thrd;
348 }
349 }
350
351 // All lanes where empty return 0p
352 return 0p;
353}
354
355//-----------------------------------------------------------------------
356// Given 2 indexes, pick the list with the oldest push an try to pop from it
357static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j) with (cltr->ready_queue) {
358 #if !defined(__CFA_NO_STATISTICS__)
359 __tls_stats()->ready.pick.pop.attempt++;
360 #endif
361
362 // Pick the bet list
363 int w = i;
364 if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
365 w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
366 }
367
368 return try_pop(cltr, w);
369}
370
371static inline struct $thread * try_pop(struct cluster * cltr, unsigned w) with (cltr->ready_queue) {
372 // Get relevant elements locally
373 __intrusive_lane_t & lane = lanes.data[w];
374
375 // If list looks empty retry
376 if( is_empty(lane) ) return 0p;
377
378 // If we can't get the lock retry
379 if( !__atomic_try_acquire(&lane.lock) ) return 0p;
380
381
382 // If list is empty, unlock and retry
383 if( is_empty(lane) ) {
384 __atomic_unlock(&lane.lock);
385 return 0p;
386 }
387
388 // Actually pop the list
389 struct $thread * thrd;
390 bool emptied;
391 [thrd, emptied] = pop(lane);
392
393 /* paranoid */ verify(thrd);
394 /* paranoid */ verify(lane.lock);
395
396 // If this was the last element in the lane
397 if(emptied) {
398 depart( snzi, w );
399 }
400
401 // Unlock and return
402 __atomic_unlock(&lane.lock);
403
404 // Update statistics
405 #if !defined(__CFA_NO_STATISTICS__)
406 __tls_stats()->ready.pick.pop.success++;
407 #endif
408
409 // Update the thread bias
410 thrd->link.preferred = w / 4;
411
412 // return the popped thread
413 return thrd;
414}
415//-----------------------------------------------------------------------
416
417bool remove_head(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) {
418 for(i; lanes.count) {
419 __intrusive_lane_t & lane = lanes.data[i];
420
421 bool removed = false;
422
423 __atomic_acquire(&lane.lock);
424 if(head(lane)->link.next == thrd) {
425 $thread * pthrd;
426 bool emptied;
427 [pthrd, emptied] = pop(lane);
428
429 /* paranoid */ verify( pthrd == thrd );
430
431 removed = true;
432 if(emptied) {
433 depart( snzi, i );
434 }
435 }
436 __atomic_unlock(&lane.lock);
437
438 if( removed ) return true;
439 }
440 return false;
441}
442
443//-----------------------------------------------------------------------
444
445static void check( __ready_queue_t & q ) with (q) {
446 #if defined(__CFA_WITH_VERIFY__)
447 {
448 for( idx ; lanes.count ) {
449 __intrusive_lane_t & sl = lanes.data[idx];
450 assert(!lanes.data[idx].lock);
451
452 assert(head(sl)->link.prev == 0p );
453 assert(head(sl)->link.next->link.prev == head(sl) );
454 assert(tail(sl)->link.next == 0p );
455 assert(tail(sl)->link.prev->link.next == tail(sl) );
456
457 if(sl.before.link.ts == 0l) {
458 assert(tail(sl)->link.prev == head(sl));
459 assert(head(sl)->link.next == tail(sl));
460 } else {
461 assert(tail(sl)->link.prev != head(sl));
462 assert(head(sl)->link.next != tail(sl));
463 }
464 }
465 }
466 #endif
467}
468
469// Call this function of the intrusive list was moved using memcpy
470// fixes the list so that the pointers back to anchors aren't left dangling
471static inline void fix(__intrusive_lane_t & ll) {
472 // if the list is not empty then follow he pointer and fix its reverse
473 if(!is_empty(ll)) {
474 head(ll)->link.next->link.prev = head(ll);
475 tail(ll)->link.prev->link.next = tail(ll);
476 }
477 // Otherwise just reset the list
478 else {
479 verify(tail(ll)->link.next == 0p);
480 tail(ll)->link.prev = head(ll);
481 head(ll)->link.next = tail(ll);
482 verify(head(ll)->link.prev == 0p);
483 }
484}
485
486// Grow the ready queue
487void ready_queue_grow (struct cluster * cltr, int target) {
488 /* paranoid */ verify( ready_mutate_islocked() );
489 __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
490
491 // Make sure that everything is consistent
492 /* paranoid */ check( cltr->ready_queue );
493
494 // grow the ready queue
495 with( cltr->ready_queue ) {
496 ^(snzi){};
497
498 // Find new count
499 // Make sure we always have atleast 1 list
500 size_t ncount = target >= 2 ? target * 4: 1;
501
502 // Allocate new array (uses realloc and memcpies the data)
503 lanes.data = alloc(lanes.data, ncount);
504
505 // Fix the moved data
506 for( idx; (size_t)lanes.count ) {
507 fix(lanes.data[idx]);
508 }
509
510 // Construct new data
511 for( idx; (size_t)lanes.count ~ ncount) {
512 (lanes.data[idx]){};
513 }
514
515 // Update original
516 lanes.count = ncount;
517
518 // Re-create the snzi
519 snzi{ log2( lanes.count / 8 ) };
520 for( idx; (size_t)lanes.count ) {
521 if( !is_empty(lanes.data[idx]) ) {
522 arrive(snzi, idx);
523 }
524 }
525 }
526
527 // Make sure that everything is consistent
528 /* paranoid */ check( cltr->ready_queue );
529
530 __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
531
532 /* paranoid */ verify( ready_mutate_islocked() );
533}
534
535// Shrink the ready queue
536void ready_queue_shrink(struct cluster * cltr, int target) {
537 /* paranoid */ verify( ready_mutate_islocked() );
538 __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
539
540 // Make sure that everything is consistent
541 /* paranoid */ check( cltr->ready_queue );
542
543 with( cltr->ready_queue ) {
544 ^(snzi){};
545
546 // Remember old count
547 size_t ocount = lanes.count;
548
549 // Find new count
550 // Make sure we always have atleast 1 list
551 lanes.count = target >= 2 ? target * 4: 1;
552 /* paranoid */ verify( ocount >= lanes.count );
553 /* paranoid */ verify( lanes.count == target * 4 || target < 2 );
554
555 // for printing count the number of displaced threads
556 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
557 __attribute__((unused)) size_t displaced = 0;
558 #endif
559
560 // redistribute old data
561 for( idx; (size_t)lanes.count ~ ocount) {
562 // Lock is not strictly needed but makes checking invariants much easier
563 __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
564 verify(locked);
565
566 // As long as we can pop from this lane to push the threads somewhere else in the queue
567 while(!is_empty(lanes.data[idx])) {
568 struct $thread * thrd;
569 __attribute__((unused)) bool _;
570 [thrd, _] = pop(lanes.data[idx]);
571
572 push(cltr, thrd);
573
574 // for printing count the number of displaced threads
575 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
576 displaced++;
577 #endif
578 }
579
580 // Unlock the lane
581 __atomic_unlock(&lanes.data[idx].lock);
582
583 // TODO print the queue statistics here
584
585 ^(lanes.data[idx]){};
586 }
587
588 __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
589
590 // Allocate new array (uses realloc and memcpies the data)
591 lanes.data = alloc(lanes.data, lanes.count);
592
593 // Fix the moved data
594 for( idx; (size_t)lanes.count ) {
595 fix(lanes.data[idx]);
596 }
597
598 // Re-create the snzi
599 snzi{ log2( lanes.count / 8 ) };
600 for( idx; (size_t)lanes.count ) {
601 if( !is_empty(lanes.data[idx]) ) {
602 arrive(snzi, idx);
603 }
604 }
605 }
606
607 // Make sure that everything is consistent
608 /* paranoid */ check( cltr->ready_queue );
609
610 __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
611 /* paranoid */ verify( ready_mutate_islocked() );
612}
Note: See TracBrowser for help on using the repository browser.