1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // ready_queue.cfa --
|
---|
8 | //
|
---|
9 | // Author : Thierry Delisle
|
---|
10 | // Created On : Mon Nov dd 16:29:18 2019
|
---|
11 | // Last Modified By :
|
---|
12 | // Last Modified On :
|
---|
13 | // Update Count :
|
---|
14 | //
|
---|
15 |
|
---|
16 | #define __cforall_thread__
|
---|
17 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__
|
---|
18 |
|
---|
19 | #include "bits/defs.hfa"
|
---|
20 | #include "kernel_private.hfa"
|
---|
21 |
|
---|
22 | #define _GNU_SOURCE
|
---|
23 | #include "stdlib.hfa"
|
---|
24 | #include "math.hfa"
|
---|
25 |
|
---|
26 | #include <unistd.h>
|
---|
27 |
|
---|
28 | #include "snzi.hfa"
|
---|
29 | #include "ready_subqueue.hfa"
|
---|
30 |
|
---|
31 | static const size_t cache_line_size = 64;
|
---|
32 |
|
---|
33 | // No overriden function, no environment variable, no define
|
---|
34 | // fall back to a magic number
|
---|
35 | #ifndef __CFA_MAX_PROCESSORS__
|
---|
36 | #define __CFA_MAX_PROCESSORS__ 1024
|
---|
37 | #endif
|
---|
38 |
|
---|
39 | #define BIAS 16
|
---|
40 |
|
---|
41 | // returns the maximum number of processors the RWLock support
|
---|
42 | __attribute__((weak)) unsigned __max_processors() {
|
---|
43 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
|
---|
44 | if(!max_cores_s) {
|
---|
45 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
|
---|
46 | return __CFA_MAX_PROCESSORS__;
|
---|
47 | }
|
---|
48 |
|
---|
49 | char * endptr = 0p;
|
---|
50 | long int max_cores_l = strtol(max_cores_s, &endptr, 10);
|
---|
51 | if(max_cores_l < 1 || max_cores_l > 65535) {
|
---|
52 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
|
---|
53 | return __CFA_MAX_PROCESSORS__;
|
---|
54 | }
|
---|
55 | if('\0' != *endptr) {
|
---|
56 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
|
---|
57 | return __CFA_MAX_PROCESSORS__;
|
---|
58 | }
|
---|
59 |
|
---|
60 | return max_cores_l;
|
---|
61 | }
|
---|
62 |
|
---|
63 | //=======================================================================
|
---|
64 | // Cluster wide reader-writer lock
|
---|
65 | //=======================================================================
|
---|
66 | void ?{}(__scheduler_RWLock_t & this) {
|
---|
67 | this.max = __max_processors();
|
---|
68 | this.alloc = 0;
|
---|
69 | this.ready = 0;
|
---|
70 | this.lock = false;
|
---|
71 | this.data = alloc(this.max);
|
---|
72 |
|
---|
73 | /*paranoid*/ verify( 0 == (((uintptr_t)(this.data )) % 64) );
|
---|
74 | /*paranoid*/ verify( 0 == (((uintptr_t)(this.data + 1)) % 64) );
|
---|
75 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
|
---|
76 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
|
---|
77 |
|
---|
78 | }
|
---|
79 | void ^?{}(__scheduler_RWLock_t & this) {
|
---|
80 | free(this.data);
|
---|
81 | }
|
---|
82 |
|
---|
83 | void ?{}( __scheduler_lock_id_t & this, __processor_id_t * proc ) {
|
---|
84 | this.handle = proc;
|
---|
85 | this.lock = false;
|
---|
86 | #ifdef __CFA_WITH_VERIFY__
|
---|
87 | this.owned = false;
|
---|
88 | #endif
|
---|
89 | }
|
---|
90 |
|
---|
91 | //=======================================================================
|
---|
92 | // Lock-Free registering/unregistering of threads
|
---|
93 | unsigned doregister( struct __processor_id_t * proc ) with(*__scheduler_lock) {
|
---|
94 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc);
|
---|
95 |
|
---|
96 | // Step - 1 : check if there is already space in the data
|
---|
97 | uint_fast32_t s = ready;
|
---|
98 |
|
---|
99 | // Check among all the ready
|
---|
100 | for(uint_fast32_t i = 0; i < s; i++) {
|
---|
101 | __processor_id_t * null = 0p; // Re-write every loop since compare thrashes it
|
---|
102 | if( __atomic_load_n(&data[i].handle, (int)__ATOMIC_RELAXED) == null
|
---|
103 | && __atomic_compare_exchange_n( &data[i].handle, &null, proc, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
---|
104 | /*paranoid*/ verify(i < ready);
|
---|
105 | /*paranoid*/ verify(0 == (__alignof__(data[i]) % cache_line_size));
|
---|
106 | /*paranoid*/ verify((((uintptr_t)&data[i]) % cache_line_size) == 0);
|
---|
107 | return i;
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
---|
112 |
|
---|
113 | // Step - 2 : F&A to get a new spot in the array.
|
---|
114 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
|
---|
115 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
---|
116 |
|
---|
117 | // Step - 3 : Mark space as used and then publish it.
|
---|
118 | __scheduler_lock_id_t * storage = (__scheduler_lock_id_t *)&data[n];
|
---|
119 | (*storage){ proc };
|
---|
120 | while(true) {
|
---|
121 | unsigned copy = n;
|
---|
122 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
|
---|
123 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
|
---|
124 | break;
|
---|
125 | asm volatile("pause");
|
---|
126 | }
|
---|
127 |
|
---|
128 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n);
|
---|
129 |
|
---|
130 | // Return new spot.
|
---|
131 | /*paranoid*/ verify(n < ready);
|
---|
132 | /*paranoid*/ verify(__alignof__(data[n]) == (2 * cache_line_size));
|
---|
133 | /*paranoid*/ verify((((uintptr_t)&data[n]) % cache_line_size) == 0);
|
---|
134 | return n;
|
---|
135 | }
|
---|
136 |
|
---|
137 | void unregister( struct __processor_id_t * proc ) with(*__scheduler_lock) {
|
---|
138 | unsigned id = proc->id;
|
---|
139 | /*paranoid*/ verify(id < ready);
|
---|
140 | /*paranoid*/ verify(proc == __atomic_load_n(&data[id].handle, __ATOMIC_RELAXED));
|
---|
141 | __atomic_store_n(&data[id].handle, 0p, __ATOMIC_RELEASE);
|
---|
142 |
|
---|
143 | __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc);
|
---|
144 | }
|
---|
145 |
|
---|
146 | //-----------------------------------------------------------------------
|
---|
147 | // Writer side : acquire when changing the ready queue, e.g. adding more
|
---|
148 | // queues or removing them.
|
---|
149 | uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) {
|
---|
150 | // Step 1 : lock global lock
|
---|
151 | // It is needed to avoid processors that register mid Critical-Section
|
---|
152 | // to simply lock their own lock and enter.
|
---|
153 | __atomic_acquire( &lock );
|
---|
154 |
|
---|
155 | // Step 2 : lock per-proc lock
|
---|
156 | // Processors that are currently being registered aren't counted
|
---|
157 | // but can't be in read_lock or in the critical section.
|
---|
158 | // All other processors are counted
|
---|
159 | uint_fast32_t s = ready;
|
---|
160 | for(uint_fast32_t i = 0; i < s; i++) {
|
---|
161 | __atomic_acquire( &data[i].lock );
|
---|
162 | }
|
---|
163 |
|
---|
164 | return s;
|
---|
165 | }
|
---|
166 |
|
---|
167 | void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) {
|
---|
168 | // Step 1 : release local locks
|
---|
169 | // This must be done while the global lock is held to avoid
|
---|
170 | // threads that where created mid critical section
|
---|
171 | // to race to lock their local locks and have the writer
|
---|
172 | // immidiately unlock them
|
---|
173 | // Alternative solution : return s in write_lock and pass it to write_unlock
|
---|
174 | for(uint_fast32_t i = 0; i < last_s; i++) {
|
---|
175 | verify(data[i].lock);
|
---|
176 | __atomic_store_n(&data[i].lock, (bool)false, __ATOMIC_RELEASE);
|
---|
177 | }
|
---|
178 |
|
---|
179 | // Step 2 : release global lock
|
---|
180 | /*paranoid*/ assert(true == lock);
|
---|
181 | __atomic_store_n(&lock, (bool)false, __ATOMIC_RELEASE);
|
---|
182 | }
|
---|
183 |
|
---|
184 | //=======================================================================
|
---|
185 | // Cforall Reqdy Queue used for scheduling
|
---|
186 | //=======================================================================
|
---|
187 | void ?{}(__ready_queue_t & this) with (this) {
|
---|
188 | lanes.data = 0p;
|
---|
189 | lanes.count = 0;
|
---|
190 | }
|
---|
191 |
|
---|
192 | void ^?{}(__ready_queue_t & this) with (this) {
|
---|
193 | verify( 1 == lanes.count );
|
---|
194 | verify( !query( snzi ) );
|
---|
195 | free(lanes.data);
|
---|
196 | }
|
---|
197 |
|
---|
198 | //-----------------------------------------------------------------------
|
---|
199 | __attribute__((hot)) bool query(struct cluster * cltr) {
|
---|
200 | return query(cltr->ready_queue.snzi);
|
---|
201 | }
|
---|
202 |
|
---|
203 | //-----------------------------------------------------------------------
|
---|
204 | __attribute__((hot)) bool push(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) {
|
---|
205 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
---|
206 |
|
---|
207 | // write timestamp
|
---|
208 | thrd->link.ts = rdtscl();
|
---|
209 |
|
---|
210 | #if defined(BIAS) && !defined(__CFA_NO_STATISTICS__)
|
---|
211 | bool local = false;
|
---|
212 | int preferred =
|
---|
213 | //*
|
---|
214 | kernelTLS.this_processor ? kernelTLS.this_processor->id * 4 : -1;
|
---|
215 | /*/
|
---|
216 | thrd->link.preferred * 4;
|
---|
217 | //*/
|
---|
218 |
|
---|
219 |
|
---|
220 | #endif
|
---|
221 |
|
---|
222 | // Try to pick a lane and lock it
|
---|
223 | unsigned i;
|
---|
224 | do {
|
---|
225 | // Pick the index of a lane
|
---|
226 | #if defined(BIAS)
|
---|
227 | unsigned r = __tls_rand();
|
---|
228 | unsigned rlow = r % BIAS;
|
---|
229 | unsigned rhigh = r / BIAS;
|
---|
230 | if((0 != rlow) && preferred >= 0) {
|
---|
231 | // (BIAS - 1) out of BIAS chances
|
---|
232 | // Use perferred queues
|
---|
233 | i = preferred + (rhigh % 4);
|
---|
234 |
|
---|
235 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
236 | local = true;
|
---|
237 | __tls_stats()->ready.pick.push.local++;
|
---|
238 | #endif
|
---|
239 | }
|
---|
240 | else {
|
---|
241 | // 1 out of BIAS chances
|
---|
242 | // Use all queues
|
---|
243 | i = rhigh;
|
---|
244 | local = false;
|
---|
245 | }
|
---|
246 | #else
|
---|
247 | i = __tls_rand();
|
---|
248 | #endif
|
---|
249 |
|
---|
250 | i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
251 |
|
---|
252 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
253 | __tls_stats()->ready.pick.push.attempt++;
|
---|
254 | #endif
|
---|
255 |
|
---|
256 | // If we can't lock it retry
|
---|
257 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
---|
258 |
|
---|
259 | bool first = false;
|
---|
260 |
|
---|
261 | // Actually push it
|
---|
262 | bool lane_first = push(lanes.data[i], thrd);
|
---|
263 |
|
---|
264 | // If this lane used to be empty we need to do more
|
---|
265 | if(lane_first) {
|
---|
266 | // Check if the entire queue used to be empty
|
---|
267 | first = !query(snzi);
|
---|
268 |
|
---|
269 | // Update the snzi
|
---|
270 | arrive( snzi, i );
|
---|
271 | }
|
---|
272 |
|
---|
273 | // Unlock and return
|
---|
274 | __atomic_unlock( &lanes.data[i].lock );
|
---|
275 |
|
---|
276 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
---|
277 |
|
---|
278 | // Update statistics
|
---|
279 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
280 | #if defined(BIAS)
|
---|
281 | if( local ) __tls_stats()->ready.pick.push.lsuccess++;
|
---|
282 | #endif
|
---|
283 | __tls_stats()->ready.pick.push.success++;
|
---|
284 | #endif
|
---|
285 |
|
---|
286 | // return whether or not the list was empty before this push
|
---|
287 | return first;
|
---|
288 | }
|
---|
289 |
|
---|
290 | static struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j);
|
---|
291 | static struct $thread * try_pop(struct cluster * cltr, unsigned i);
|
---|
292 |
|
---|
293 | // Pop from the ready queue from a given cluster
|
---|
294 | __attribute__((hot)) $thread * pop(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
295 | /* paranoid */ verify( lanes.count > 0 );
|
---|
296 | #if defined(BIAS)
|
---|
297 | // Don't bother trying locally too much
|
---|
298 | int local_tries = 8;
|
---|
299 | #endif
|
---|
300 |
|
---|
301 | // As long as the list is not empty, try finding a lane that isn't empty and pop from it
|
---|
302 | while( query(snzi) ) {
|
---|
303 | // Pick two lists at random
|
---|
304 | unsigned i,j;
|
---|
305 | #if defined(BIAS)
|
---|
306 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
307 | bool local = false;
|
---|
308 | #endif
|
---|
309 | uint64_t r = __tls_rand();
|
---|
310 | unsigned rlow = r % BIAS;
|
---|
311 | uint64_t rhigh = r / BIAS;
|
---|
312 | if(local_tries && 0 != rlow) {
|
---|
313 | // (BIAS - 1) out of BIAS chances
|
---|
314 | // Use perferred queues
|
---|
315 | unsigned pid = kernelTLS.this_processor->id * 4;
|
---|
316 | i = pid + (rhigh % 4);
|
---|
317 | j = pid + ((rhigh >> 32ull) % 4);
|
---|
318 |
|
---|
319 | // count the tries
|
---|
320 | local_tries--;
|
---|
321 |
|
---|
322 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
323 | local = true;
|
---|
324 | __tls_stats()->ready.pick.pop.local++;
|
---|
325 | #endif
|
---|
326 | }
|
---|
327 | else {
|
---|
328 | // 1 out of BIAS chances
|
---|
329 | // Use all queues
|
---|
330 | i = rhigh;
|
---|
331 | j = rhigh >> 32ull;
|
---|
332 | }
|
---|
333 | #else
|
---|
334 | i = __tls_rand();
|
---|
335 | j = __tls_rand();
|
---|
336 | #endif
|
---|
337 |
|
---|
338 | i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
339 | j %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
340 |
|
---|
341 | // try popping from the 2 picked lists
|
---|
342 | struct $thread * thrd = try_pop(cltr, i, j);
|
---|
343 | if(thrd) {
|
---|
344 | #if defined(BIAS) && !defined(__CFA_NO_STATISTICS__)
|
---|
345 | if( local ) __tls_stats()->ready.pick.pop.lsuccess++;
|
---|
346 | #endif
|
---|
347 | return thrd;
|
---|
348 | }
|
---|
349 | }
|
---|
350 |
|
---|
351 | // All lanes where empty return 0p
|
---|
352 | return 0p;
|
---|
353 | }
|
---|
354 |
|
---|
355 | //-----------------------------------------------------------------------
|
---|
356 | // Given 2 indexes, pick the list with the oldest push an try to pop from it
|
---|
357 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j) with (cltr->ready_queue) {
|
---|
358 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
359 | __tls_stats()->ready.pick.pop.attempt++;
|
---|
360 | #endif
|
---|
361 |
|
---|
362 | // Pick the bet list
|
---|
363 | int w = i;
|
---|
364 | if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
|
---|
365 | w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
|
---|
366 | }
|
---|
367 |
|
---|
368 | return try_pop(cltr, w);
|
---|
369 | }
|
---|
370 |
|
---|
371 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w) with (cltr->ready_queue) {
|
---|
372 | // Get relevant elements locally
|
---|
373 | __intrusive_lane_t & lane = lanes.data[w];
|
---|
374 |
|
---|
375 | // If list looks empty retry
|
---|
376 | if( is_empty(lane) ) return 0p;
|
---|
377 |
|
---|
378 | // If we can't get the lock retry
|
---|
379 | if( !__atomic_try_acquire(&lane.lock) ) return 0p;
|
---|
380 |
|
---|
381 |
|
---|
382 | // If list is empty, unlock and retry
|
---|
383 | if( is_empty(lane) ) {
|
---|
384 | __atomic_unlock(&lane.lock);
|
---|
385 | return 0p;
|
---|
386 | }
|
---|
387 |
|
---|
388 | // Actually pop the list
|
---|
389 | struct $thread * thrd;
|
---|
390 | bool emptied;
|
---|
391 | [thrd, emptied] = pop(lane);
|
---|
392 |
|
---|
393 | /* paranoid */ verify(thrd);
|
---|
394 | /* paranoid */ verify(lane.lock);
|
---|
395 |
|
---|
396 | // If this was the last element in the lane
|
---|
397 | if(emptied) {
|
---|
398 | depart( snzi, w );
|
---|
399 | }
|
---|
400 |
|
---|
401 | // Unlock and return
|
---|
402 | __atomic_unlock(&lane.lock);
|
---|
403 |
|
---|
404 | // Update statistics
|
---|
405 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
406 | __tls_stats()->ready.pick.pop.success++;
|
---|
407 | #endif
|
---|
408 |
|
---|
409 | // Update the thread bias
|
---|
410 | thrd->link.preferred = w / 4;
|
---|
411 |
|
---|
412 | // return the popped thread
|
---|
413 | return thrd;
|
---|
414 | }
|
---|
415 | //-----------------------------------------------------------------------
|
---|
416 |
|
---|
417 | bool remove_head(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) {
|
---|
418 | for(i; lanes.count) {
|
---|
419 | __intrusive_lane_t & lane = lanes.data[i];
|
---|
420 |
|
---|
421 | bool removed = false;
|
---|
422 |
|
---|
423 | __atomic_acquire(&lane.lock);
|
---|
424 | if(head(lane)->link.next == thrd) {
|
---|
425 | $thread * pthrd;
|
---|
426 | bool emptied;
|
---|
427 | [pthrd, emptied] = pop(lane);
|
---|
428 |
|
---|
429 | /* paranoid */ verify( pthrd == thrd );
|
---|
430 |
|
---|
431 | removed = true;
|
---|
432 | if(emptied) {
|
---|
433 | depart( snzi, i );
|
---|
434 | }
|
---|
435 | }
|
---|
436 | __atomic_unlock(&lane.lock);
|
---|
437 |
|
---|
438 | if( removed ) return true;
|
---|
439 | }
|
---|
440 | return false;
|
---|
441 | }
|
---|
442 |
|
---|
443 | //-----------------------------------------------------------------------
|
---|
444 |
|
---|
445 | static void check( __ready_queue_t & q ) with (q) {
|
---|
446 | #if defined(__CFA_WITH_VERIFY__)
|
---|
447 | {
|
---|
448 | for( idx ; lanes.count ) {
|
---|
449 | __intrusive_lane_t & sl = lanes.data[idx];
|
---|
450 | assert(!lanes.data[idx].lock);
|
---|
451 |
|
---|
452 | assert(head(sl)->link.prev == 0p );
|
---|
453 | assert(head(sl)->link.next->link.prev == head(sl) );
|
---|
454 | assert(tail(sl)->link.next == 0p );
|
---|
455 | assert(tail(sl)->link.prev->link.next == tail(sl) );
|
---|
456 |
|
---|
457 | if(sl.before.link.ts == 0l) {
|
---|
458 | assert(tail(sl)->link.prev == head(sl));
|
---|
459 | assert(head(sl)->link.next == tail(sl));
|
---|
460 | } else {
|
---|
461 | assert(tail(sl)->link.prev != head(sl));
|
---|
462 | assert(head(sl)->link.next != tail(sl));
|
---|
463 | }
|
---|
464 | }
|
---|
465 | }
|
---|
466 | #endif
|
---|
467 | }
|
---|
468 |
|
---|
469 | // Call this function of the intrusive list was moved using memcpy
|
---|
470 | // fixes the list so that the pointers back to anchors aren't left dangling
|
---|
471 | static inline void fix(__intrusive_lane_t & ll) {
|
---|
472 | // if the list is not empty then follow he pointer and fix its reverse
|
---|
473 | if(!is_empty(ll)) {
|
---|
474 | head(ll)->link.next->link.prev = head(ll);
|
---|
475 | tail(ll)->link.prev->link.next = tail(ll);
|
---|
476 | }
|
---|
477 | // Otherwise just reset the list
|
---|
478 | else {
|
---|
479 | verify(tail(ll)->link.next == 0p);
|
---|
480 | tail(ll)->link.prev = head(ll);
|
---|
481 | head(ll)->link.next = tail(ll);
|
---|
482 | verify(head(ll)->link.prev == 0p);
|
---|
483 | }
|
---|
484 | }
|
---|
485 |
|
---|
486 | // Grow the ready queue
|
---|
487 | void ready_queue_grow (struct cluster * cltr, int target) {
|
---|
488 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
489 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
|
---|
490 |
|
---|
491 | // Make sure that everything is consistent
|
---|
492 | /* paranoid */ check( cltr->ready_queue );
|
---|
493 |
|
---|
494 | // grow the ready queue
|
---|
495 | with( cltr->ready_queue ) {
|
---|
496 | ^(snzi){};
|
---|
497 |
|
---|
498 | // Find new count
|
---|
499 | // Make sure we always have atleast 1 list
|
---|
500 | size_t ncount = target >= 2 ? target * 4: 1;
|
---|
501 |
|
---|
502 | // Allocate new array (uses realloc and memcpies the data)
|
---|
503 | lanes.data = alloc(lanes.data, ncount);
|
---|
504 |
|
---|
505 | // Fix the moved data
|
---|
506 | for( idx; (size_t)lanes.count ) {
|
---|
507 | fix(lanes.data[idx]);
|
---|
508 | }
|
---|
509 |
|
---|
510 | // Construct new data
|
---|
511 | for( idx; (size_t)lanes.count ~ ncount) {
|
---|
512 | (lanes.data[idx]){};
|
---|
513 | }
|
---|
514 |
|
---|
515 | // Update original
|
---|
516 | lanes.count = ncount;
|
---|
517 |
|
---|
518 | // Re-create the snzi
|
---|
519 | snzi{ log2( lanes.count / 8 ) };
|
---|
520 | for( idx; (size_t)lanes.count ) {
|
---|
521 | if( !is_empty(lanes.data[idx]) ) {
|
---|
522 | arrive(snzi, idx);
|
---|
523 | }
|
---|
524 | }
|
---|
525 | }
|
---|
526 |
|
---|
527 | // Make sure that everything is consistent
|
---|
528 | /* paranoid */ check( cltr->ready_queue );
|
---|
529 |
|
---|
530 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
|
---|
531 |
|
---|
532 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
533 | }
|
---|
534 |
|
---|
535 | // Shrink the ready queue
|
---|
536 | void ready_queue_shrink(struct cluster * cltr, int target) {
|
---|
537 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
538 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
|
---|
539 |
|
---|
540 | // Make sure that everything is consistent
|
---|
541 | /* paranoid */ check( cltr->ready_queue );
|
---|
542 |
|
---|
543 | with( cltr->ready_queue ) {
|
---|
544 | ^(snzi){};
|
---|
545 |
|
---|
546 | // Remember old count
|
---|
547 | size_t ocount = lanes.count;
|
---|
548 |
|
---|
549 | // Find new count
|
---|
550 | // Make sure we always have atleast 1 list
|
---|
551 | lanes.count = target >= 2 ? target * 4: 1;
|
---|
552 | /* paranoid */ verify( ocount >= lanes.count );
|
---|
553 | /* paranoid */ verify( lanes.count == target * 4 || target < 2 );
|
---|
554 |
|
---|
555 | // for printing count the number of displaced threads
|
---|
556 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
---|
557 | __attribute__((unused)) size_t displaced = 0;
|
---|
558 | #endif
|
---|
559 |
|
---|
560 | // redistribute old data
|
---|
561 | for( idx; (size_t)lanes.count ~ ocount) {
|
---|
562 | // Lock is not strictly needed but makes checking invariants much easier
|
---|
563 | __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
|
---|
564 | verify(locked);
|
---|
565 |
|
---|
566 | // As long as we can pop from this lane to push the threads somewhere else in the queue
|
---|
567 | while(!is_empty(lanes.data[idx])) {
|
---|
568 | struct $thread * thrd;
|
---|
569 | __attribute__((unused)) bool _;
|
---|
570 | [thrd, _] = pop(lanes.data[idx]);
|
---|
571 |
|
---|
572 | push(cltr, thrd);
|
---|
573 |
|
---|
574 | // for printing count the number of displaced threads
|
---|
575 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
---|
576 | displaced++;
|
---|
577 | #endif
|
---|
578 | }
|
---|
579 |
|
---|
580 | // Unlock the lane
|
---|
581 | __atomic_unlock(&lanes.data[idx].lock);
|
---|
582 |
|
---|
583 | // TODO print the queue statistics here
|
---|
584 |
|
---|
585 | ^(lanes.data[idx]){};
|
---|
586 | }
|
---|
587 |
|
---|
588 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
|
---|
589 |
|
---|
590 | // Allocate new array (uses realloc and memcpies the data)
|
---|
591 | lanes.data = alloc(lanes.data, lanes.count);
|
---|
592 |
|
---|
593 | // Fix the moved data
|
---|
594 | for( idx; (size_t)lanes.count ) {
|
---|
595 | fix(lanes.data[idx]);
|
---|
596 | }
|
---|
597 |
|
---|
598 | // Re-create the snzi
|
---|
599 | snzi{ log2( lanes.count / 8 ) };
|
---|
600 | for( idx; (size_t)lanes.count ) {
|
---|
601 | if( !is_empty(lanes.data[idx]) ) {
|
---|
602 | arrive(snzi, idx);
|
---|
603 | }
|
---|
604 | }
|
---|
605 | }
|
---|
606 |
|
---|
607 | // Make sure that everything is consistent
|
---|
608 | /* paranoid */ check( cltr->ready_queue );
|
---|
609 |
|
---|
610 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
|
---|
611 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
612 | }
|
---|