| 1 | //
|
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
|
|---|
| 3 | //
|
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
|
|---|
| 5 | // file "LICENCE" distributed with Cforall.
|
|---|
| 6 | //
|
|---|
| 7 | // ready_queue.cfa --
|
|---|
| 8 | //
|
|---|
| 9 | // Author : Thierry Delisle
|
|---|
| 10 | // Created On : Mon Nov dd 16:29:18 2019
|
|---|
| 11 | // Last Modified By :
|
|---|
| 12 | // Last Modified On :
|
|---|
| 13 | // Update Count :
|
|---|
| 14 | //
|
|---|
| 15 |
|
|---|
| 16 | #define __cforall_thread__
|
|---|
| 17 | #define _GNU_SOURCE
|
|---|
| 18 |
|
|---|
| 19 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__
|
|---|
| 20 |
|
|---|
| 21 |
|
|---|
| 22 | // #define USE_RELAXED_FIFO
|
|---|
| 23 | // #define USE_WORK_STEALING
|
|---|
| 24 | // #define USE_CPU_WORK_STEALING
|
|---|
| 25 | #define USE_AWARE_STEALING
|
|---|
| 26 |
|
|---|
| 27 | #include "bits/defs.hfa"
|
|---|
| 28 | #include "device/cpu.hfa"
|
|---|
| 29 | #include "kernel_private.hfa"
|
|---|
| 30 |
|
|---|
| 31 | #include "stdlib.hfa"
|
|---|
| 32 | #include "limits.hfa"
|
|---|
| 33 | #include "math.hfa"
|
|---|
| 34 |
|
|---|
| 35 | #include <errno.h>
|
|---|
| 36 | #include <unistd.h>
|
|---|
| 37 |
|
|---|
| 38 | extern "C" {
|
|---|
| 39 | #include <sys/syscall.h> // __NR_xxx
|
|---|
| 40 | }
|
|---|
| 41 |
|
|---|
| 42 | #include "ready_subqueue.hfa"
|
|---|
| 43 |
|
|---|
| 44 | static const size_t cache_line_size = 64;
|
|---|
| 45 |
|
|---|
| 46 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 47 | #define __STATS(...) __VA_ARGS__
|
|---|
| 48 | #else
|
|---|
| 49 | #define __STATS(...)
|
|---|
| 50 | #endif
|
|---|
| 51 |
|
|---|
| 52 | // No overriden function, no environment variable, no define
|
|---|
| 53 | // fall back to a magic number
|
|---|
| 54 | #ifndef __CFA_MAX_PROCESSORS__
|
|---|
| 55 | #define __CFA_MAX_PROCESSORS__ 1024
|
|---|
| 56 | #endif
|
|---|
| 57 |
|
|---|
| 58 | #if defined(USE_AWARE_STEALING)
|
|---|
| 59 | #define READYQ_SHARD_FACTOR 2
|
|---|
| 60 | #define SEQUENTIAL_SHARD 2
|
|---|
| 61 | #elif defined(USE_CPU_WORK_STEALING)
|
|---|
| 62 | #define READYQ_SHARD_FACTOR 2
|
|---|
| 63 | #elif defined(USE_RELAXED_FIFO)
|
|---|
| 64 | #define BIAS 4
|
|---|
| 65 | #define READYQ_SHARD_FACTOR 4
|
|---|
| 66 | #define SEQUENTIAL_SHARD 1
|
|---|
| 67 | #elif defined(USE_WORK_STEALING)
|
|---|
| 68 | #define READYQ_SHARD_FACTOR 2
|
|---|
| 69 | #define SEQUENTIAL_SHARD 2
|
|---|
| 70 | #else
|
|---|
| 71 | #error no scheduling strategy selected
|
|---|
| 72 | #endif
|
|---|
| 73 |
|
|---|
| 74 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats));
|
|---|
| 75 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats));
|
|---|
| 76 | static inline struct thread$ * search(struct cluster * cltr);
|
|---|
| 77 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred);
|
|---|
| 78 |
|
|---|
| 79 |
|
|---|
| 80 | // returns the maximum number of processors the RWLock support
|
|---|
| 81 | __attribute__((weak)) unsigned __max_processors() {
|
|---|
| 82 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
|
|---|
| 83 | if(!max_cores_s) {
|
|---|
| 84 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
|
|---|
| 85 | return __CFA_MAX_PROCESSORS__;
|
|---|
| 86 | }
|
|---|
| 87 |
|
|---|
| 88 | char * endptr = 0p;
|
|---|
| 89 | long int max_cores_l = strtol(max_cores_s, &endptr, 10);
|
|---|
| 90 | if(max_cores_l < 1 || max_cores_l > 65535) {
|
|---|
| 91 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
|
|---|
| 92 | return __CFA_MAX_PROCESSORS__;
|
|---|
| 93 | }
|
|---|
| 94 | if('\0' != *endptr) {
|
|---|
| 95 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
|
|---|
| 96 | return __CFA_MAX_PROCESSORS__;
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | return max_cores_l;
|
|---|
| 100 | }
|
|---|
| 101 |
|
|---|
| 102 | #if defined(CFA_HAVE_LINUX_LIBRSEQ)
|
|---|
| 103 | // No forward declaration needed
|
|---|
| 104 | #define __kernel_rseq_register rseq_register_current_thread
|
|---|
| 105 | #define __kernel_rseq_unregister rseq_unregister_current_thread
|
|---|
| 106 | #elif defined(CFA_HAVE_LINUX_RSEQ_H)
|
|---|
| 107 | static void __kernel_raw_rseq_register (void);
|
|---|
| 108 | static void __kernel_raw_rseq_unregister(void);
|
|---|
| 109 |
|
|---|
| 110 | #define __kernel_rseq_register __kernel_raw_rseq_register
|
|---|
| 111 | #define __kernel_rseq_unregister __kernel_raw_rseq_unregister
|
|---|
| 112 | #else
|
|---|
| 113 | // No forward declaration needed
|
|---|
| 114 | // No initialization needed
|
|---|
| 115 | static inline void noop(void) {}
|
|---|
| 116 |
|
|---|
| 117 | #define __kernel_rseq_register noop
|
|---|
| 118 | #define __kernel_rseq_unregister noop
|
|---|
| 119 | #endif
|
|---|
| 120 |
|
|---|
| 121 | //=======================================================================
|
|---|
| 122 | // Cluster wide reader-writer lock
|
|---|
| 123 | //=======================================================================
|
|---|
| 124 | void ?{}(__scheduler_RWLock_t & this) {
|
|---|
| 125 | this.max = __max_processors();
|
|---|
| 126 | this.alloc = 0;
|
|---|
| 127 | this.ready = 0;
|
|---|
| 128 | this.data = alloc(this.max);
|
|---|
| 129 | this.write_lock = false;
|
|---|
| 130 |
|
|---|
| 131 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
|
|---|
| 132 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
|
|---|
| 133 |
|
|---|
| 134 | }
|
|---|
| 135 | void ^?{}(__scheduler_RWLock_t & this) {
|
|---|
| 136 | free(this.data);
|
|---|
| 137 | }
|
|---|
| 138 |
|
|---|
| 139 |
|
|---|
| 140 | //=======================================================================
|
|---|
| 141 | // Lock-Free registering/unregistering of threads
|
|---|
| 142 | unsigned register_proc_id( void ) with(*__scheduler_lock) {
|
|---|
| 143 | __kernel_rseq_register();
|
|---|
| 144 |
|
|---|
| 145 | bool * handle = (bool *)&kernelTLS().sched_lock;
|
|---|
| 146 |
|
|---|
| 147 | // Step - 1 : check if there is already space in the data
|
|---|
| 148 | uint_fast32_t s = ready;
|
|---|
| 149 |
|
|---|
| 150 | // Check among all the ready
|
|---|
| 151 | for(uint_fast32_t i = 0; i < s; i++) {
|
|---|
| 152 | bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems
|
|---|
| 153 | /* paranoid */ verify( handle != *cell );
|
|---|
| 154 |
|
|---|
| 155 | bool * null = 0p; // Re-write every loop since compare thrashes it
|
|---|
| 156 | if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null
|
|---|
| 157 | && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
|---|
| 158 | /* paranoid */ verify(i < ready);
|
|---|
| 159 | /* paranoid */ verify( (kernelTLS().sched_id = i, true) );
|
|---|
| 160 | return i;
|
|---|
| 161 | }
|
|---|
| 162 | }
|
|---|
| 163 |
|
|---|
| 164 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
|---|
| 165 |
|
|---|
| 166 | // Step - 2 : F&A to get a new spot in the array.
|
|---|
| 167 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
|
|---|
| 168 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
|---|
| 169 |
|
|---|
| 170 | // Step - 3 : Mark space as used and then publish it.
|
|---|
| 171 | data[n] = handle;
|
|---|
| 172 | while() {
|
|---|
| 173 | unsigned copy = n;
|
|---|
| 174 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
|
|---|
| 175 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
|
|---|
| 176 | break;
|
|---|
| 177 | Pause();
|
|---|
| 178 | }
|
|---|
| 179 |
|
|---|
| 180 | // Return new spot.
|
|---|
| 181 | /* paranoid */ verify(n < ready);
|
|---|
| 182 | /* paranoid */ verify( (kernelTLS().sched_id = n, true) );
|
|---|
| 183 | return n;
|
|---|
| 184 | }
|
|---|
| 185 |
|
|---|
| 186 | void unregister_proc_id( unsigned id ) with(*__scheduler_lock) {
|
|---|
| 187 | /* paranoid */ verify(id < ready);
|
|---|
| 188 | /* paranoid */ verify(id == kernelTLS().sched_id);
|
|---|
| 189 | /* paranoid */ verify(data[id] == &kernelTLS().sched_lock);
|
|---|
| 190 |
|
|---|
| 191 | bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems
|
|---|
| 192 |
|
|---|
| 193 | __atomic_store_n(cell, 0p, __ATOMIC_RELEASE);
|
|---|
| 194 |
|
|---|
| 195 | __kernel_rseq_unregister();
|
|---|
| 196 | }
|
|---|
| 197 |
|
|---|
| 198 | //-----------------------------------------------------------------------
|
|---|
| 199 | // Writer side : acquire when changing the ready queue, e.g. adding more
|
|---|
| 200 | // queues or removing them.
|
|---|
| 201 | uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) {
|
|---|
| 202 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 203 |
|
|---|
| 204 | // Step 1 : lock global lock
|
|---|
| 205 | // It is needed to avoid processors that register mid Critical-Section
|
|---|
| 206 | // to simply lock their own lock and enter.
|
|---|
| 207 | __atomic_acquire( &write_lock );
|
|---|
| 208 |
|
|---|
| 209 | // Make sure we won't deadlock ourself
|
|---|
| 210 | // Checking before acquiring the writer lock isn't safe
|
|---|
| 211 | // because someone else could have locked us.
|
|---|
| 212 | /* paranoid */ verify( ! kernelTLS().sched_lock );
|
|---|
| 213 |
|
|---|
| 214 | // Step 2 : lock per-proc lock
|
|---|
| 215 | // Processors that are currently being registered aren't counted
|
|---|
| 216 | // but can't be in read_lock or in the critical section.
|
|---|
| 217 | // All other processors are counted
|
|---|
| 218 | uint_fast32_t s = ready;
|
|---|
| 219 | for(uint_fast32_t i = 0; i < s; i++) {
|
|---|
| 220 | volatile bool * llock = data[i];
|
|---|
| 221 | if(llock) __atomic_acquire( llock );
|
|---|
| 222 | }
|
|---|
| 223 |
|
|---|
| 224 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 225 | return s;
|
|---|
| 226 | }
|
|---|
| 227 |
|
|---|
| 228 | void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) {
|
|---|
| 229 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 230 |
|
|---|
| 231 | // Step 1 : release local locks
|
|---|
| 232 | // This must be done while the global lock is held to avoid
|
|---|
| 233 | // threads that where created mid critical section
|
|---|
| 234 | // to race to lock their local locks and have the writer
|
|---|
| 235 | // immidiately unlock them
|
|---|
| 236 | // Alternative solution : return s in write_lock and pass it to write_unlock
|
|---|
| 237 | for(uint_fast32_t i = 0; i < last_s; i++) {
|
|---|
| 238 | volatile bool * llock = data[i];
|
|---|
| 239 | if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE);
|
|---|
| 240 | }
|
|---|
| 241 |
|
|---|
| 242 | // Step 2 : release global lock
|
|---|
| 243 | /*paranoid*/ assert(true == write_lock);
|
|---|
| 244 | __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE);
|
|---|
| 245 |
|
|---|
| 246 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 247 | }
|
|---|
| 248 |
|
|---|
| 249 | //=======================================================================
|
|---|
| 250 | // caches handling
|
|---|
| 251 |
|
|---|
| 252 | struct __attribute__((aligned(128))) __ready_queue_caches_t {
|
|---|
| 253 | // Count States:
|
|---|
| 254 | // - 0 : No one is looking after this cache
|
|---|
| 255 | // - 1 : No one is looking after this cache, BUT it's not empty
|
|---|
| 256 | // - 2+ : At least one processor is looking after this cache
|
|---|
| 257 | volatile unsigned count;
|
|---|
| 258 | };
|
|---|
| 259 |
|
|---|
| 260 | void ?{}(__ready_queue_caches_t & this) { this.count = 0; }
|
|---|
| 261 | void ^?{}(__ready_queue_caches_t & this) {}
|
|---|
| 262 |
|
|---|
| 263 | static inline void depart(__ready_queue_caches_t & cache) {
|
|---|
| 264 | /* paranoid */ verify( cache.count > 1);
|
|---|
| 265 | __atomic_fetch_add(&cache.count, -1, __ATOMIC_SEQ_CST);
|
|---|
| 266 | /* paranoid */ verify( cache.count != 0);
|
|---|
| 267 | /* paranoid */ verify( cache.count < 65536 ); // This verify assumes no cluster will have more than 65000 kernel threads mapped to a single cache, which could be correct but is super weird.
|
|---|
| 268 | }
|
|---|
| 269 |
|
|---|
| 270 | static inline void arrive(__ready_queue_caches_t & cache) {
|
|---|
| 271 | // for() {
|
|---|
| 272 | // unsigned expected = cache.count;
|
|---|
| 273 | // unsigned desired = 0 == expected ? 2 : expected + 1;
|
|---|
| 274 | // }
|
|---|
| 275 | }
|
|---|
| 276 |
|
|---|
| 277 | //=======================================================================
|
|---|
| 278 | // Cforall Ready Queue used for scheduling
|
|---|
| 279 | //=======================================================================
|
|---|
| 280 | unsigned long long moving_average(unsigned long long currtsc, unsigned long long instsc, unsigned long long old_avg) {
|
|---|
| 281 | /* paranoid */ verifyf( currtsc < 45000000000000000, "Suspiciously large current time: %'llu (%llx)\n", currtsc, currtsc );
|
|---|
| 282 | /* paranoid */ verifyf( instsc < 45000000000000000, "Suspiciously large insert time: %'llu (%llx)\n", instsc, instsc );
|
|---|
| 283 | /* paranoid */ verifyf( old_avg < 15000000000000, "Suspiciously large previous average: %'llu (%llx)\n", old_avg, old_avg );
|
|---|
| 284 |
|
|---|
| 285 | const unsigned long long new_val = currtsc > instsc ? currtsc - instsc : 0;
|
|---|
| 286 | const unsigned long long total_weight = 16;
|
|---|
| 287 | const unsigned long long new_weight = 4;
|
|---|
| 288 | const unsigned long long old_weight = total_weight - new_weight;
|
|---|
| 289 | const unsigned long long ret = ((new_weight * new_val) + (old_weight * old_avg)) / total_weight;
|
|---|
| 290 | return ret;
|
|---|
| 291 | }
|
|---|
| 292 |
|
|---|
| 293 | void ?{}(__ready_queue_t & this) with (this) {
|
|---|
| 294 | #if defined(USE_CPU_WORK_STEALING)
|
|---|
| 295 | lanes.count = cpu_info.hthrd_count * READYQ_SHARD_FACTOR;
|
|---|
| 296 | lanes.data = alloc( lanes.count );
|
|---|
| 297 | lanes.tscs = alloc( lanes.count );
|
|---|
| 298 | lanes.help = alloc( cpu_info.hthrd_count );
|
|---|
| 299 |
|
|---|
| 300 | for( idx; (size_t)lanes.count ) {
|
|---|
| 301 | (lanes.data[idx]){};
|
|---|
| 302 | lanes.tscs[idx].tv = rdtscl();
|
|---|
| 303 | lanes.tscs[idx].ma = rdtscl();
|
|---|
| 304 | }
|
|---|
| 305 | for( idx; (size_t)cpu_info.hthrd_count ) {
|
|---|
| 306 | lanes.help[idx].src = 0;
|
|---|
| 307 | lanes.help[idx].dst = 0;
|
|---|
| 308 | lanes.help[idx].tri = 0;
|
|---|
| 309 | }
|
|---|
| 310 | #else
|
|---|
| 311 | lanes.data = 0p;
|
|---|
| 312 | lanes.tscs = 0p;
|
|---|
| 313 | lanes.caches = 0p;
|
|---|
| 314 | lanes.help = 0p;
|
|---|
| 315 | lanes.count = 0;
|
|---|
| 316 | #endif
|
|---|
| 317 | }
|
|---|
| 318 |
|
|---|
| 319 | void ^?{}(__ready_queue_t & this) with (this) {
|
|---|
| 320 | #if !defined(USE_CPU_WORK_STEALING)
|
|---|
| 321 | verify( SEQUENTIAL_SHARD == lanes.count );
|
|---|
| 322 | #endif
|
|---|
| 323 |
|
|---|
| 324 | free(lanes.data);
|
|---|
| 325 | free(lanes.tscs);
|
|---|
| 326 | free(lanes.caches);
|
|---|
| 327 | free(lanes.help);
|
|---|
| 328 | }
|
|---|
| 329 |
|
|---|
| 330 | //-----------------------------------------------------------------------
|
|---|
| 331 | #if defined(USE_AWARE_STEALING)
|
|---|
| 332 | __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, unpark_hint hint) with (cltr->ready_queue) {
|
|---|
| 333 | processor * const proc = kernelTLS().this_processor;
|
|---|
| 334 | const bool external = (!proc) || (cltr != proc->cltr);
|
|---|
| 335 | const bool remote = hint == UNPARK_REMOTE;
|
|---|
| 336 |
|
|---|
| 337 | unsigned i;
|
|---|
| 338 | if( external || remote ) {
|
|---|
| 339 | // Figure out where thread was last time and make sure it's valid
|
|---|
| 340 | /* paranoid */ verify(thrd->preferred >= 0);
|
|---|
| 341 | if(thrd->preferred * READYQ_SHARD_FACTOR < lanes.count) {
|
|---|
| 342 | /* paranoid */ verify(thrd->preferred * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 343 | unsigned start = thrd->preferred * READYQ_SHARD_FACTOR;
|
|---|
| 344 | do {
|
|---|
| 345 | unsigned r = __tls_rand();
|
|---|
| 346 | i = start + (r % READYQ_SHARD_FACTOR);
|
|---|
| 347 | /* paranoid */ verify( i < lanes.count );
|
|---|
| 348 | // If we can't lock it retry
|
|---|
| 349 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 350 | } else {
|
|---|
| 351 | do {
|
|---|
| 352 | i = __tls_rand() % lanes.count;
|
|---|
| 353 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 354 | }
|
|---|
| 355 | } else {
|
|---|
| 356 | do {
|
|---|
| 357 | unsigned r = proc->rdq.its++;
|
|---|
| 358 | i = proc->rdq.id + (r % READYQ_SHARD_FACTOR);
|
|---|
| 359 | /* paranoid */ verify( i < lanes.count );
|
|---|
| 360 | // If we can't lock it retry
|
|---|
| 361 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 362 | }
|
|---|
| 363 |
|
|---|
| 364 | // Actually push it
|
|---|
| 365 | push(lanes.data[i], thrd);
|
|---|
| 366 |
|
|---|
| 367 | // Unlock and return
|
|---|
| 368 | __atomic_unlock( &lanes.data[i].lock );
|
|---|
| 369 |
|
|---|
| 370 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 371 | if(unlikely(external || remote)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
|---|
| 372 | else __tls_stats()->ready.push.local.success++;
|
|---|
| 373 | #endif
|
|---|
| 374 | }
|
|---|
| 375 |
|
|---|
| 376 | static inline unsigned long long calc_cutoff(const unsigned long long ctsc, const processor * proc, __ready_queue_t & rdq) {
|
|---|
| 377 | unsigned start = proc->rdq.id;
|
|---|
| 378 | unsigned long long max = 0;
|
|---|
| 379 | for(i; READYQ_SHARD_FACTOR) {
|
|---|
| 380 | unsigned long long ptsc = ts(rdq.lanes.data[start + i]);
|
|---|
| 381 | if(ptsc != -1ull) {
|
|---|
| 382 | /* paranoid */ verify( start + i < rdq.lanes.count );
|
|---|
| 383 | unsigned long long tsc = moving_average(ctsc, ptsc, rdq.lanes.tscs[start + i].ma);
|
|---|
| 384 | if(tsc > max) max = tsc;
|
|---|
| 385 | }
|
|---|
| 386 | }
|
|---|
| 387 | return (max + 2 * max) / 2;
|
|---|
| 388 | }
|
|---|
| 389 |
|
|---|
| 390 | __attribute__((hot)) struct thread$ * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 391 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 392 | /* paranoid */ verify( kernelTLS().this_processor );
|
|---|
| 393 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 394 |
|
|---|
| 395 | processor * const proc = kernelTLS().this_processor;
|
|---|
| 396 | unsigned this = proc->rdq.id;
|
|---|
| 397 | /* paranoid */ verify( this < lanes.count );
|
|---|
| 398 | __cfadbg_print_safe(ready_queue, "Kernel : pop from %u\n", this);
|
|---|
| 399 |
|
|---|
| 400 | // Figure out the current cpu and make sure it is valid
|
|---|
| 401 | const int cpu = __kernel_getcpu();
|
|---|
| 402 | /* paranoid */ verify(cpu >= 0);
|
|---|
| 403 | /* paranoid */ verify(cpu < cpu_info.hthrd_count);
|
|---|
| 404 | unsigned this_cache = cpu_info.llc_map[cpu].cache;
|
|---|
| 405 |
|
|---|
| 406 | // Super important: don't write the same value over and over again
|
|---|
| 407 | // We want to maximise our chances that his particular values stays in cache
|
|---|
| 408 | if(lanes.caches[this / READYQ_SHARD_FACTOR].id != this_cache)
|
|---|
| 409 | __atomic_store_n(&lanes.caches[this / READYQ_SHARD_FACTOR].id, this_cache, __ATOMIC_RELAXED);
|
|---|
| 410 |
|
|---|
| 411 | const unsigned long long ctsc = rdtscl();
|
|---|
| 412 |
|
|---|
| 413 | if(proc->rdq.target == MAX) {
|
|---|
| 414 | uint64_t chaos = __tls_rand();
|
|---|
| 415 | unsigned ext = chaos & 0xff;
|
|---|
| 416 | unsigned other = (chaos >> 8) % (lanes.count);
|
|---|
| 417 |
|
|---|
| 418 | if(ext < 3 || __atomic_load_n(&lanes.caches[other / READYQ_SHARD_FACTOR].id, __ATOMIC_RELAXED) == this_cache) {
|
|---|
| 419 | proc->rdq.target = other;
|
|---|
| 420 | }
|
|---|
| 421 | }
|
|---|
| 422 | else {
|
|---|
| 423 | const unsigned target = proc->rdq.target;
|
|---|
| 424 | __cfadbg_print_safe(ready_queue, "Kernel : %u considering helping %u, tcsc %llu\n", this, target, lanes.tscs[target].tv);
|
|---|
| 425 | /* paranoid */ verify( lanes.tscs[target].tv != MAX );
|
|---|
| 426 | if(target < lanes.count) {
|
|---|
| 427 | const unsigned long long cutoff = calc_cutoff(ctsc, proc, cltr->ready_queue);
|
|---|
| 428 | const unsigned long long age = moving_average(ctsc, lanes.tscs[target].tv, lanes.tscs[target].ma);
|
|---|
| 429 | __cfadbg_print_safe(ready_queue, "Kernel : Help attempt on %u from %u, age %'llu vs cutoff %'llu, %s\n", target, this, age, cutoff, age > cutoff ? "yes" : "no");
|
|---|
| 430 | if(age > cutoff) {
|
|---|
| 431 | thread$ * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
|
|---|
| 432 | if(t) return t;
|
|---|
| 433 | }
|
|---|
| 434 | }
|
|---|
| 435 | proc->rdq.target = MAX;
|
|---|
| 436 | }
|
|---|
| 437 |
|
|---|
| 438 | for(READYQ_SHARD_FACTOR) {
|
|---|
| 439 | unsigned i = this + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
|
|---|
| 440 | if(thread$ * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
|
|---|
| 441 | }
|
|---|
| 442 |
|
|---|
| 443 | // All lanes where empty return 0p
|
|---|
| 444 | return 0p;
|
|---|
| 445 |
|
|---|
| 446 | }
|
|---|
| 447 | __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 448 | unsigned i = __tls_rand() % lanes.count;
|
|---|
| 449 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
|
|---|
| 450 | }
|
|---|
| 451 | __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) {
|
|---|
| 452 | return search(cltr);
|
|---|
| 453 | }
|
|---|
| 454 | #endif
|
|---|
| 455 | #if defined(USE_CPU_WORK_STEALING)
|
|---|
| 456 | __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, unpark_hint hint) with (cltr->ready_queue) {
|
|---|
| 457 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
|---|
| 458 |
|
|---|
| 459 | processor * const proc = kernelTLS().this_processor;
|
|---|
| 460 | const bool external = (!proc) || (cltr != proc->cltr);
|
|---|
| 461 |
|
|---|
| 462 | // Figure out the current cpu and make sure it is valid
|
|---|
| 463 | const int cpu = __kernel_getcpu();
|
|---|
| 464 | /* paranoid */ verify(cpu >= 0);
|
|---|
| 465 | /* paranoid */ verify(cpu < cpu_info.hthrd_count);
|
|---|
| 466 | /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 467 |
|
|---|
| 468 | // Figure out where thread was last time and make sure it's
|
|---|
| 469 | /* paranoid */ verify(thrd->preferred >= 0);
|
|---|
| 470 | /* paranoid */ verify(thrd->preferred < cpu_info.hthrd_count);
|
|---|
| 471 | /* paranoid */ verify(thrd->preferred * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 472 | const int prf = thrd->preferred * READYQ_SHARD_FACTOR;
|
|---|
| 473 |
|
|---|
| 474 | const cpu_map_entry_t & map;
|
|---|
| 475 | choose(hint) {
|
|---|
| 476 | case UNPARK_LOCAL : &map = &cpu_info.llc_map[cpu];
|
|---|
| 477 | case UNPARK_REMOTE: &map = &cpu_info.llc_map[prf];
|
|---|
| 478 | }
|
|---|
| 479 | /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 480 | /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 481 | /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %zu lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR);
|
|---|
| 482 |
|
|---|
| 483 | const int start = map.self * READYQ_SHARD_FACTOR;
|
|---|
| 484 | unsigned i;
|
|---|
| 485 | do {
|
|---|
| 486 | unsigned r;
|
|---|
| 487 | if(unlikely(external)) { r = __tls_rand(); }
|
|---|
| 488 | else { r = proc->rdq.its++; }
|
|---|
| 489 | choose(hint) {
|
|---|
| 490 | case UNPARK_LOCAL : i = start + (r % READYQ_SHARD_FACTOR);
|
|---|
| 491 | case UNPARK_REMOTE: i = prf + (r % READYQ_SHARD_FACTOR);
|
|---|
| 492 | }
|
|---|
| 493 | // If we can't lock it retry
|
|---|
| 494 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 495 |
|
|---|
| 496 | // Actually push it
|
|---|
| 497 | push(lanes.data[i], thrd);
|
|---|
| 498 |
|
|---|
| 499 | // Unlock and return
|
|---|
| 500 | __atomic_unlock( &lanes.data[i].lock );
|
|---|
| 501 |
|
|---|
| 502 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 503 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
|---|
| 504 | else __tls_stats()->ready.push.local.success++;
|
|---|
| 505 | #endif
|
|---|
| 506 |
|
|---|
| 507 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
|---|
| 508 |
|
|---|
| 509 | }
|
|---|
| 510 |
|
|---|
| 511 | // Pop from the ready queue from a given cluster
|
|---|
| 512 | __attribute__((hot)) thread$ * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 513 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 514 | /* paranoid */ verify( kernelTLS().this_processor );
|
|---|
| 515 |
|
|---|
| 516 | processor * const proc = kernelTLS().this_processor;
|
|---|
| 517 | const int cpu = __kernel_getcpu();
|
|---|
| 518 | /* paranoid */ verify(cpu >= 0);
|
|---|
| 519 | /* paranoid */ verify(cpu < cpu_info.hthrd_count);
|
|---|
| 520 | /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 521 |
|
|---|
| 522 | const cpu_map_entry_t & map = cpu_info.llc_map[cpu];
|
|---|
| 523 | /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 524 | /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 525 | /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %zu lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR);
|
|---|
| 526 |
|
|---|
| 527 | const int start = map.self * READYQ_SHARD_FACTOR;
|
|---|
| 528 | const unsigned long long ctsc = rdtscl();
|
|---|
| 529 |
|
|---|
| 530 | // Did we already have a help target
|
|---|
| 531 | if(proc->rdq.target == MAX) {
|
|---|
| 532 | unsigned long long max = 0;
|
|---|
| 533 | for(i; READYQ_SHARD_FACTOR) {
|
|---|
| 534 | unsigned long long tsc = moving_average(ctsc, ts(lanes.data[start + i]), lanes.tscs[start + i].ma);
|
|---|
| 535 | if(tsc > max) max = tsc;
|
|---|
| 536 | }
|
|---|
| 537 | // proc->rdq.cutoff = (max + 2 * max) / 2;
|
|---|
| 538 | /* paranoid */ verify(lanes.count < 65536); // The following code assumes max 65536 cores.
|
|---|
| 539 | /* paranoid */ verify(map.count < 65536); // The following code assumes max 65536 cores.
|
|---|
| 540 |
|
|---|
| 541 | if(0 == (__tls_rand() % 100)) {
|
|---|
| 542 | proc->rdq.target = __tls_rand() % lanes.count;
|
|---|
| 543 | } else {
|
|---|
| 544 | unsigned cpu_chaos = map.start + (__tls_rand() % map.count);
|
|---|
| 545 | proc->rdq.target = (cpu_chaos * READYQ_SHARD_FACTOR) + (__tls_rand() % READYQ_SHARD_FACTOR);
|
|---|
| 546 | /* paranoid */ verify(proc->rdq.target >= (map.start * READYQ_SHARD_FACTOR));
|
|---|
| 547 | /* paranoid */ verify(proc->rdq.target < ((map.start + map.count) * READYQ_SHARD_FACTOR));
|
|---|
| 548 | }
|
|---|
| 549 |
|
|---|
| 550 | /* paranoid */ verify(proc->rdq.target != MAX);
|
|---|
| 551 | }
|
|---|
| 552 | else {
|
|---|
| 553 | unsigned long long max = 0;
|
|---|
| 554 | for(i; READYQ_SHARD_FACTOR) {
|
|---|
| 555 | unsigned long long tsc = moving_average(ctsc, ts(lanes.data[start + i]), lanes.tscs[start + i].ma);
|
|---|
| 556 | if(tsc > max) max = tsc;
|
|---|
| 557 | }
|
|---|
| 558 | const unsigned long long cutoff = (max + 2 * max) / 2;
|
|---|
| 559 | {
|
|---|
| 560 | unsigned target = proc->rdq.target;
|
|---|
| 561 | proc->rdq.target = MAX;
|
|---|
| 562 | lanes.help[target / READYQ_SHARD_FACTOR].tri++;
|
|---|
| 563 | if(moving_average(ctsc, lanes.tscs[target].tv, lanes.tscs[target].ma) > cutoff) {
|
|---|
| 564 | thread$ * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
|
|---|
| 565 | proc->rdq.last = target;
|
|---|
| 566 | if(t) return t;
|
|---|
| 567 | }
|
|---|
| 568 | proc->rdq.target = MAX;
|
|---|
| 569 | }
|
|---|
| 570 |
|
|---|
| 571 | unsigned last = proc->rdq.last;
|
|---|
| 572 | if(last != MAX && moving_average(ctsc, lanes.tscs[last].tv, lanes.tscs[last].ma) > cutoff) {
|
|---|
| 573 | thread$ * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.help));
|
|---|
| 574 | if(t) return t;
|
|---|
| 575 | }
|
|---|
| 576 | else {
|
|---|
| 577 | proc->rdq.last = MAX;
|
|---|
| 578 | }
|
|---|
| 579 | }
|
|---|
| 580 |
|
|---|
| 581 | for(READYQ_SHARD_FACTOR) {
|
|---|
| 582 | unsigned i = start + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
|
|---|
| 583 | if(thread$ * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
|
|---|
| 584 | }
|
|---|
| 585 |
|
|---|
| 586 | // All lanes where empty return 0p
|
|---|
| 587 | return 0p;
|
|---|
| 588 | }
|
|---|
| 589 |
|
|---|
| 590 | __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 591 | processor * const proc = kernelTLS().this_processor;
|
|---|
| 592 | unsigned last = proc->rdq.last;
|
|---|
| 593 | if(last != MAX) {
|
|---|
| 594 | struct thread$ * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.steal));
|
|---|
| 595 | if(t) return t;
|
|---|
| 596 | proc->rdq.last = MAX;
|
|---|
| 597 | }
|
|---|
| 598 |
|
|---|
| 599 | unsigned i = __tls_rand() % lanes.count;
|
|---|
| 600 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
|
|---|
| 601 | }
|
|---|
| 602 | __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) {
|
|---|
| 603 | return search(cltr);
|
|---|
| 604 | }
|
|---|
| 605 | #endif
|
|---|
| 606 | #if defined(USE_RELAXED_FIFO)
|
|---|
| 607 | //-----------------------------------------------------------------------
|
|---|
| 608 | // get index from random number with or without bias towards queues
|
|---|
| 609 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred) {
|
|---|
| 610 | unsigned i;
|
|---|
| 611 | bool local;
|
|---|
| 612 | unsigned rlow = r % BIAS;
|
|---|
| 613 | unsigned rhigh = r / BIAS;
|
|---|
| 614 | if((0 != rlow) && preferred >= 0) {
|
|---|
| 615 | // (BIAS - 1) out of BIAS chances
|
|---|
| 616 | // Use perferred queues
|
|---|
| 617 | i = preferred + (rhigh % READYQ_SHARD_FACTOR);
|
|---|
| 618 | local = true;
|
|---|
| 619 | }
|
|---|
| 620 | else {
|
|---|
| 621 | // 1 out of BIAS chances
|
|---|
| 622 | // Use all queues
|
|---|
| 623 | i = rhigh;
|
|---|
| 624 | local = false;
|
|---|
| 625 | }
|
|---|
| 626 | return [i, local];
|
|---|
| 627 | }
|
|---|
| 628 |
|
|---|
| 629 | __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, unpark_hint hint) with (cltr->ready_queue) {
|
|---|
| 630 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
|---|
| 631 |
|
|---|
| 632 | const bool external = (hint != UNPARK_LOCAL) || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
|
|---|
| 633 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 634 |
|
|---|
| 635 | bool local;
|
|---|
| 636 | int preferred = external ? -1 : kernelTLS().this_processor->rdq.id;
|
|---|
| 637 |
|
|---|
| 638 | // Try to pick a lane and lock it
|
|---|
| 639 | unsigned i;
|
|---|
| 640 | do {
|
|---|
| 641 | // Pick the index of a lane
|
|---|
| 642 | unsigned r = __tls_rand_fwd();
|
|---|
| 643 | [i, local] = idx_from_r(r, preferred);
|
|---|
| 644 |
|
|---|
| 645 | i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
|---|
| 646 |
|
|---|
| 647 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 648 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
|
|---|
| 649 | else if(local) __tls_stats()->ready.push.local.attempt++;
|
|---|
| 650 | else __tls_stats()->ready.push.share.attempt++;
|
|---|
| 651 | #endif
|
|---|
| 652 |
|
|---|
| 653 | // If we can't lock it retry
|
|---|
| 654 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 655 |
|
|---|
| 656 | // Actually push it
|
|---|
| 657 | push(lanes.data[i], thrd);
|
|---|
| 658 |
|
|---|
| 659 | // Unlock and return
|
|---|
| 660 | __atomic_unlock( &lanes.data[i].lock );
|
|---|
| 661 |
|
|---|
| 662 | // Mark the current index in the tls rng instance as having an item
|
|---|
| 663 | __tls_rand_advance_bck();
|
|---|
| 664 |
|
|---|
| 665 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
|---|
| 666 |
|
|---|
| 667 | // Update statistics
|
|---|
| 668 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 669 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
|---|
| 670 | else if(local) __tls_stats()->ready.push.local.success++;
|
|---|
| 671 | else __tls_stats()->ready.push.share.success++;
|
|---|
| 672 | #endif
|
|---|
| 673 | }
|
|---|
| 674 |
|
|---|
| 675 | // Pop from the ready queue from a given cluster
|
|---|
| 676 | __attribute__((hot)) thread$ * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 677 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 678 | /* paranoid */ verify( kernelTLS().this_processor );
|
|---|
| 679 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 680 |
|
|---|
| 681 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
|---|
| 682 | int preferred = kernelTLS().this_processor->rdq.id;
|
|---|
| 683 |
|
|---|
| 684 |
|
|---|
| 685 | // As long as the list is not empty, try finding a lane that isn't empty and pop from it
|
|---|
| 686 | for(25) {
|
|---|
| 687 | // Pick two lists at random
|
|---|
| 688 | unsigned ri = __tls_rand_bck();
|
|---|
| 689 | unsigned rj = __tls_rand_bck();
|
|---|
| 690 |
|
|---|
| 691 | unsigned i, j;
|
|---|
| 692 | __attribute__((unused)) bool locali, localj;
|
|---|
| 693 | [i, locali] = idx_from_r(ri, preferred);
|
|---|
| 694 | [j, localj] = idx_from_r(rj, preferred);
|
|---|
| 695 |
|
|---|
| 696 | i %= count;
|
|---|
| 697 | j %= count;
|
|---|
| 698 |
|
|---|
| 699 | // try popping from the 2 picked lists
|
|---|
| 700 | struct thread$ * thrd = try_pop(cltr, i, j __STATS(, *(locali || localj ? &__tls_stats()->ready.pop.local : &__tls_stats()->ready.pop.help)));
|
|---|
| 701 | if(thrd) {
|
|---|
| 702 | return thrd;
|
|---|
| 703 | }
|
|---|
| 704 | }
|
|---|
| 705 |
|
|---|
| 706 | // All lanes where empty return 0p
|
|---|
| 707 | return 0p;
|
|---|
| 708 | }
|
|---|
| 709 |
|
|---|
| 710 | __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) { return pop_fast(cltr); }
|
|---|
| 711 | __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) {
|
|---|
| 712 | return search(cltr);
|
|---|
| 713 | }
|
|---|
| 714 | #endif
|
|---|
| 715 | #if defined(USE_WORK_STEALING)
|
|---|
| 716 | __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, unpark_hint hint) with (cltr->ready_queue) {
|
|---|
| 717 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
|---|
| 718 |
|
|---|
| 719 | // #define USE_PREFERRED
|
|---|
| 720 | #if !defined(USE_PREFERRED)
|
|---|
| 721 | const bool external = (hint != UNPARK_LOCAL) || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
|
|---|
| 722 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 723 | #else
|
|---|
| 724 | unsigned preferred = thrd->preferred;
|
|---|
| 725 | const bool external = (hint != UNPARK_LOCAL) || (!kernelTLS().this_processor) || preferred == MAX || thrd->curr_cluster != cltr;
|
|---|
| 726 | /* paranoid */ verifyf(external || preferred < lanes.count, "Invalid preferred queue %u for %u lanes", preferred, lanes.count );
|
|---|
| 727 |
|
|---|
| 728 | unsigned r = preferred % READYQ_SHARD_FACTOR;
|
|---|
| 729 | const unsigned start = preferred - r;
|
|---|
| 730 | #endif
|
|---|
| 731 |
|
|---|
| 732 | // Try to pick a lane and lock it
|
|---|
| 733 | unsigned i;
|
|---|
| 734 | do {
|
|---|
| 735 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 736 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
|
|---|
| 737 | else __tls_stats()->ready.push.local.attempt++;
|
|---|
| 738 | #endif
|
|---|
| 739 |
|
|---|
| 740 | if(unlikely(external)) {
|
|---|
| 741 | i = __tls_rand() % lanes.count;
|
|---|
| 742 | }
|
|---|
| 743 | else {
|
|---|
| 744 | #if !defined(USE_PREFERRED)
|
|---|
| 745 | processor * proc = kernelTLS().this_processor;
|
|---|
| 746 | unsigned r = proc->rdq.its++;
|
|---|
| 747 | i = proc->rdq.id + (r % READYQ_SHARD_FACTOR);
|
|---|
| 748 | #else
|
|---|
| 749 | i = start + (r++ % READYQ_SHARD_FACTOR);
|
|---|
| 750 | #endif
|
|---|
| 751 | }
|
|---|
| 752 | // If we can't lock it retry
|
|---|
| 753 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 754 |
|
|---|
| 755 | // Actually push it
|
|---|
| 756 | push(lanes.data[i], thrd);
|
|---|
| 757 |
|
|---|
| 758 | // Unlock and return
|
|---|
| 759 | __atomic_unlock( &lanes.data[i].lock );
|
|---|
| 760 |
|
|---|
| 761 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 762 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
|---|
| 763 | else __tls_stats()->ready.push.local.success++;
|
|---|
| 764 | #endif
|
|---|
| 765 |
|
|---|
| 766 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
|---|
| 767 | }
|
|---|
| 768 |
|
|---|
| 769 | // Pop from the ready queue from a given cluster
|
|---|
| 770 | __attribute__((hot)) thread$ * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 771 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 772 | /* paranoid */ verify( kernelTLS().this_processor );
|
|---|
| 773 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 774 |
|
|---|
| 775 | processor * proc = kernelTLS().this_processor;
|
|---|
| 776 |
|
|---|
| 777 | if(proc->rdq.target == MAX) {
|
|---|
| 778 | unsigned long long min = ts(lanes.data[proc->rdq.id]);
|
|---|
| 779 | for(int i = 0; i < READYQ_SHARD_FACTOR; i++) {
|
|---|
| 780 | unsigned long long tsc = ts(lanes.data[proc->rdq.id + i]);
|
|---|
| 781 | if(tsc < min) min = tsc;
|
|---|
| 782 | }
|
|---|
| 783 | proc->rdq.cutoff = min;
|
|---|
| 784 | proc->rdq.target = __tls_rand() % lanes.count;
|
|---|
| 785 | }
|
|---|
| 786 | else {
|
|---|
| 787 | unsigned target = proc->rdq.target;
|
|---|
| 788 | proc->rdq.target = MAX;
|
|---|
| 789 | const unsigned long long bias = 0; //2_500_000_000;
|
|---|
| 790 | const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff;
|
|---|
| 791 | if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) {
|
|---|
| 792 | thread$ * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
|
|---|
| 793 | if(t) return t;
|
|---|
| 794 | }
|
|---|
| 795 | }
|
|---|
| 796 |
|
|---|
| 797 | for(READYQ_SHARD_FACTOR) {
|
|---|
| 798 | unsigned i = proc->rdq.id + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
|
|---|
| 799 | if(thread$ * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
|
|---|
| 800 | }
|
|---|
| 801 | return 0p;
|
|---|
| 802 | }
|
|---|
| 803 |
|
|---|
| 804 | __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 805 | unsigned i = __tls_rand() % lanes.count;
|
|---|
| 806 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
|
|---|
| 807 | }
|
|---|
| 808 |
|
|---|
| 809 | __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 810 | return search(cltr);
|
|---|
| 811 | }
|
|---|
| 812 | #endif
|
|---|
| 813 |
|
|---|
| 814 | //=======================================================================
|
|---|
| 815 | // Various Ready Queue utilities
|
|---|
| 816 | //=======================================================================
|
|---|
| 817 | // these function work the same or almost the same
|
|---|
| 818 | // whether they are using work-stealing or relaxed fifo scheduling
|
|---|
| 819 |
|
|---|
| 820 | //-----------------------------------------------------------------------
|
|---|
| 821 | // try to pop from a lane given by index w
|
|---|
| 822 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
|
|---|
| 823 | /* paranoid */ verify( w < lanes.count );
|
|---|
| 824 | __STATS( stats.attempt++; )
|
|---|
| 825 |
|
|---|
| 826 | // Get relevant elements locally
|
|---|
| 827 | __intrusive_lane_t & lane = lanes.data[w];
|
|---|
| 828 |
|
|---|
| 829 | // If list looks empty retry
|
|---|
| 830 | if( is_empty(lane) ) {
|
|---|
| 831 | return 0p;
|
|---|
| 832 | }
|
|---|
| 833 |
|
|---|
| 834 | // If we can't get the lock retry
|
|---|
| 835 | if( !__atomic_try_acquire(&lane.lock) ) {
|
|---|
| 836 | return 0p;
|
|---|
| 837 | }
|
|---|
| 838 |
|
|---|
| 839 | // If list is empty, unlock and retry
|
|---|
| 840 | if( is_empty(lane) ) {
|
|---|
| 841 | __atomic_unlock(&lane.lock);
|
|---|
| 842 | return 0p;
|
|---|
| 843 | }
|
|---|
| 844 |
|
|---|
| 845 | // Actually pop the list
|
|---|
| 846 | struct thread$ * thrd;
|
|---|
| 847 | #if defined(USE_AWARE_STEALING) || defined(USE_WORK_STEALING) || defined(USE_CPU_WORK_STEALING)
|
|---|
| 848 | unsigned long long tsc_before = ts(lane);
|
|---|
| 849 | #endif
|
|---|
| 850 | unsigned long long tsv;
|
|---|
| 851 | [thrd, tsv] = pop(lane);
|
|---|
| 852 |
|
|---|
| 853 | /* paranoid */ verify(thrd);
|
|---|
| 854 | /* paranoid */ verify(tsv);
|
|---|
| 855 | /* paranoid */ verify(lane.lock);
|
|---|
| 856 |
|
|---|
| 857 | // Unlock and return
|
|---|
| 858 | __atomic_unlock(&lane.lock);
|
|---|
| 859 |
|
|---|
| 860 | // Update statistics
|
|---|
| 861 | __STATS( stats.success++; )
|
|---|
| 862 |
|
|---|
| 863 | #if defined(USE_AWARE_STEALING) || defined(USE_WORK_STEALING) || defined(USE_CPU_WORK_STEALING)
|
|---|
| 864 | if (tsv != MAX) {
|
|---|
| 865 | unsigned long long now = rdtscl();
|
|---|
| 866 | unsigned long long pma = __atomic_load_n(&lanes.tscs[w].ma, __ATOMIC_RELAXED);
|
|---|
| 867 | __atomic_store_n(&lanes.tscs[w].tv, tsv, __ATOMIC_RELAXED);
|
|---|
| 868 | __atomic_store_n(&lanes.tscs[w].ma, moving_average(now, tsc_before, pma), __ATOMIC_RELAXED);
|
|---|
| 869 | }
|
|---|
| 870 | #endif
|
|---|
| 871 |
|
|---|
| 872 | #if defined(USE_AWARE_STEALING) || defined(USE_CPU_WORK_STEALING)
|
|---|
| 873 | thrd->preferred = w / READYQ_SHARD_FACTOR;
|
|---|
| 874 | #else
|
|---|
| 875 | thrd->preferred = w;
|
|---|
| 876 | #endif
|
|---|
| 877 |
|
|---|
| 878 | // return the popped thread
|
|---|
| 879 | return thrd;
|
|---|
| 880 | }
|
|---|
| 881 |
|
|---|
| 882 | //-----------------------------------------------------------------------
|
|---|
| 883 | // try to pop from any lanes making sure you don't miss any threads push
|
|---|
| 884 | // before the start of the function
|
|---|
| 885 | static inline struct thread$ * search(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 886 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 887 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
|---|
| 888 | unsigned offset = __tls_rand();
|
|---|
| 889 | for(i; count) {
|
|---|
| 890 | unsigned idx = (offset + i) % count;
|
|---|
| 891 | struct thread$ * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search));
|
|---|
| 892 | if(thrd) {
|
|---|
| 893 | return thrd;
|
|---|
| 894 | }
|
|---|
| 895 | }
|
|---|
| 896 |
|
|---|
| 897 | // All lanes where empty return 0p
|
|---|
| 898 | return 0p;
|
|---|
| 899 | }
|
|---|
| 900 |
|
|---|
| 901 | //-----------------------------------------------------------------------
|
|---|
| 902 | // get preferred ready for new thread
|
|---|
| 903 | unsigned ready_queue_new_preferred() {
|
|---|
| 904 | unsigned pref = 0;
|
|---|
| 905 | if(struct thread$ * thrd = publicTLS_get( this_thread )) {
|
|---|
| 906 | pref = thrd->preferred;
|
|---|
| 907 | }
|
|---|
| 908 | else {
|
|---|
| 909 | #if defined(USE_CPU_WORK_STEALING)
|
|---|
| 910 | pref = __kernel_getcpu();
|
|---|
| 911 | #endif
|
|---|
| 912 | }
|
|---|
| 913 |
|
|---|
| 914 | #if defined(USE_CPU_WORK_STEALING)
|
|---|
| 915 | /* paranoid */ verify(pref >= 0);
|
|---|
| 916 | /* paranoid */ verify(pref < cpu_info.hthrd_count);
|
|---|
| 917 | #endif
|
|---|
| 918 |
|
|---|
| 919 | return pref;
|
|---|
| 920 | }
|
|---|
| 921 |
|
|---|
| 922 | //-----------------------------------------------------------------------
|
|---|
| 923 | // Check that all the intrusive queues in the data structure are still consistent
|
|---|
| 924 | static void check( __ready_queue_t & q ) with (q) {
|
|---|
| 925 | #if defined(__CFA_WITH_VERIFY__)
|
|---|
| 926 | {
|
|---|
| 927 | for( idx ; lanes.count ) {
|
|---|
| 928 | __intrusive_lane_t & sl = lanes.data[idx];
|
|---|
| 929 | assert(!lanes.data[idx].lock);
|
|---|
| 930 |
|
|---|
| 931 | if(is_empty(sl)) {
|
|---|
| 932 | assert( sl.anchor.next == 0p );
|
|---|
| 933 | assert( sl.anchor.ts == -1llu );
|
|---|
| 934 | assert( mock_head(sl) == sl.prev );
|
|---|
| 935 | } else {
|
|---|
| 936 | assert( sl.anchor.next != 0p );
|
|---|
| 937 | assert( sl.anchor.ts != -1llu );
|
|---|
| 938 | assert( mock_head(sl) != sl.prev );
|
|---|
| 939 | }
|
|---|
| 940 | }
|
|---|
| 941 | }
|
|---|
| 942 | #endif
|
|---|
| 943 | }
|
|---|
| 944 |
|
|---|
| 945 | //-----------------------------------------------------------------------
|
|---|
| 946 | // Given 2 indexes, pick the list with the oldest push an try to pop from it
|
|---|
| 947 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
|
|---|
| 948 | // Pick the bet list
|
|---|
| 949 | int w = i;
|
|---|
| 950 | if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
|
|---|
| 951 | w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
|
|---|
| 952 | }
|
|---|
| 953 |
|
|---|
| 954 | return try_pop(cltr, w __STATS(, stats));
|
|---|
| 955 | }
|
|---|
| 956 |
|
|---|
| 957 | // Call this function of the intrusive list was moved using memcpy
|
|---|
| 958 | // fixes the list so that the pointers back to anchors aren't left dangling
|
|---|
| 959 | static inline void fix(__intrusive_lane_t & ll) {
|
|---|
| 960 | if(is_empty(ll)) {
|
|---|
| 961 | verify(ll.anchor.next == 0p);
|
|---|
| 962 | ll.prev = mock_head(ll);
|
|---|
| 963 | }
|
|---|
| 964 | }
|
|---|
| 965 |
|
|---|
| 966 | static void assign_list(unsigned & value, dlist(processor) & list, unsigned count) {
|
|---|
| 967 | processor * it = &list`first;
|
|---|
| 968 | for(unsigned i = 0; i < count; i++) {
|
|---|
| 969 | /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count);
|
|---|
| 970 | it->rdq.id = value;
|
|---|
| 971 | it->rdq.target = MAX;
|
|---|
| 972 | value += READYQ_SHARD_FACTOR;
|
|---|
| 973 | it = &(*it)`next;
|
|---|
| 974 | }
|
|---|
| 975 | }
|
|---|
| 976 |
|
|---|
| 977 | static void reassign_cltr_id(struct cluster * cltr) {
|
|---|
| 978 | unsigned preferred = 0;
|
|---|
| 979 | assign_list(preferred, cltr->procs.actives, cltr->procs.total - cltr->procs.idle);
|
|---|
| 980 | assign_list(preferred, cltr->procs.idles , cltr->procs.idle );
|
|---|
| 981 | }
|
|---|
| 982 |
|
|---|
| 983 | static void fix_times( struct cluster * cltr ) with( cltr->ready_queue ) {
|
|---|
| 984 | #if defined(USE_AWARE_STEALING) || defined(USE_WORK_STEALING)
|
|---|
| 985 | lanes.tscs = alloc(lanes.count, lanes.tscs`realloc);
|
|---|
| 986 | for(i; lanes.count) {
|
|---|
| 987 | lanes.tscs[i].tv = rdtscl();
|
|---|
| 988 | lanes.tscs[i].ma = 0;
|
|---|
| 989 | }
|
|---|
| 990 | #endif
|
|---|
| 991 | }
|
|---|
| 992 |
|
|---|
| 993 | #if defined(USE_CPU_WORK_STEALING)
|
|---|
| 994 | // ready_queue size is fixed in this case
|
|---|
| 995 | void ready_queue_grow(struct cluster * cltr) {}
|
|---|
| 996 | void ready_queue_shrink(struct cluster * cltr) {}
|
|---|
| 997 | #else
|
|---|
| 998 | // Grow the ready queue
|
|---|
| 999 | void ready_queue_grow(struct cluster * cltr) {
|
|---|
| 1000 | size_t ncount;
|
|---|
| 1001 | int target = cltr->procs.total;
|
|---|
| 1002 |
|
|---|
| 1003 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 1004 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
|
|---|
| 1005 |
|
|---|
| 1006 | // Make sure that everything is consistent
|
|---|
| 1007 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 1008 |
|
|---|
| 1009 | // grow the ready queue
|
|---|
| 1010 | with( cltr->ready_queue ) {
|
|---|
| 1011 | // Find new count
|
|---|
| 1012 | // Make sure we always have atleast 1 list
|
|---|
| 1013 | if(target >= 2) {
|
|---|
| 1014 | ncount = target * READYQ_SHARD_FACTOR;
|
|---|
| 1015 | } else {
|
|---|
| 1016 | ncount = SEQUENTIAL_SHARD;
|
|---|
| 1017 | }
|
|---|
| 1018 |
|
|---|
| 1019 | // Allocate new array (uses realloc and memcpies the data)
|
|---|
| 1020 | lanes.data = alloc( ncount, lanes.data`realloc );
|
|---|
| 1021 |
|
|---|
| 1022 | // Fix the moved data
|
|---|
| 1023 | for( idx; (size_t)lanes.count ) {
|
|---|
| 1024 | fix(lanes.data[idx]);
|
|---|
| 1025 | }
|
|---|
| 1026 |
|
|---|
| 1027 | // Construct new data
|
|---|
| 1028 | for( idx; (size_t)lanes.count ~ ncount) {
|
|---|
| 1029 | (lanes.data[idx]){};
|
|---|
| 1030 | }
|
|---|
| 1031 |
|
|---|
| 1032 | // Update original
|
|---|
| 1033 | lanes.count = ncount;
|
|---|
| 1034 |
|
|---|
| 1035 | lanes.caches = alloc( target, lanes.caches`realloc );
|
|---|
| 1036 | }
|
|---|
| 1037 |
|
|---|
| 1038 | fix_times(cltr);
|
|---|
| 1039 |
|
|---|
| 1040 | reassign_cltr_id(cltr);
|
|---|
| 1041 |
|
|---|
| 1042 | // Make sure that everything is consistent
|
|---|
| 1043 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 1044 |
|
|---|
| 1045 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
|
|---|
| 1046 |
|
|---|
| 1047 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 1048 | }
|
|---|
| 1049 |
|
|---|
| 1050 | // Shrink the ready queue
|
|---|
| 1051 | void ready_queue_shrink(struct cluster * cltr) {
|
|---|
| 1052 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 1053 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
|
|---|
| 1054 |
|
|---|
| 1055 | // Make sure that everything is consistent
|
|---|
| 1056 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 1057 |
|
|---|
| 1058 | int target = cltr->procs.total;
|
|---|
| 1059 |
|
|---|
| 1060 | with( cltr->ready_queue ) {
|
|---|
| 1061 | // Remember old count
|
|---|
| 1062 | size_t ocount = lanes.count;
|
|---|
| 1063 |
|
|---|
| 1064 | // Find new count
|
|---|
| 1065 | // Make sure we always have atleast 1 list
|
|---|
| 1066 | lanes.count = target >= 2 ? target * READYQ_SHARD_FACTOR: SEQUENTIAL_SHARD;
|
|---|
| 1067 | /* paranoid */ verify( ocount >= lanes.count );
|
|---|
| 1068 | /* paranoid */ verify( lanes.count == target * READYQ_SHARD_FACTOR || target < 2 );
|
|---|
| 1069 |
|
|---|
| 1070 | // for printing count the number of displaced threads
|
|---|
| 1071 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
|---|
| 1072 | __attribute__((unused)) size_t displaced = 0;
|
|---|
| 1073 | #endif
|
|---|
| 1074 |
|
|---|
| 1075 | // redistribute old data
|
|---|
| 1076 | for( idx; (size_t)lanes.count ~ ocount) {
|
|---|
| 1077 | // Lock is not strictly needed but makes checking invariants much easier
|
|---|
| 1078 | __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
|
|---|
| 1079 | verify(locked);
|
|---|
| 1080 |
|
|---|
| 1081 | // As long as we can pop from this lane to push the threads somewhere else in the queue
|
|---|
| 1082 | while(!is_empty(lanes.data[idx])) {
|
|---|
| 1083 | struct thread$ * thrd;
|
|---|
| 1084 | unsigned long long _;
|
|---|
| 1085 | [thrd, _] = pop(lanes.data[idx]);
|
|---|
| 1086 |
|
|---|
| 1087 | push(cltr, thrd, true);
|
|---|
| 1088 |
|
|---|
| 1089 | // for printing count the number of displaced threads
|
|---|
| 1090 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
|---|
| 1091 | displaced++;
|
|---|
| 1092 | #endif
|
|---|
| 1093 | }
|
|---|
| 1094 |
|
|---|
| 1095 | // Unlock the lane
|
|---|
| 1096 | __atomic_unlock(&lanes.data[idx].lock);
|
|---|
| 1097 |
|
|---|
| 1098 | // TODO print the queue statistics here
|
|---|
| 1099 |
|
|---|
| 1100 | ^(lanes.data[idx]){};
|
|---|
| 1101 | }
|
|---|
| 1102 |
|
|---|
| 1103 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
|
|---|
| 1104 |
|
|---|
| 1105 | // Allocate new array (uses realloc and memcpies the data)
|
|---|
| 1106 | lanes.data = alloc( lanes.count, lanes.data`realloc );
|
|---|
| 1107 |
|
|---|
| 1108 | // Fix the moved data
|
|---|
| 1109 | for( idx; (size_t)lanes.count ) {
|
|---|
| 1110 | fix(lanes.data[idx]);
|
|---|
| 1111 | }
|
|---|
| 1112 |
|
|---|
| 1113 | lanes.caches = alloc( target, lanes.caches`realloc );
|
|---|
| 1114 | }
|
|---|
| 1115 |
|
|---|
| 1116 | fix_times(cltr);
|
|---|
| 1117 |
|
|---|
| 1118 |
|
|---|
| 1119 | reassign_cltr_id(cltr);
|
|---|
| 1120 |
|
|---|
| 1121 | // Make sure that everything is consistent
|
|---|
| 1122 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 1123 |
|
|---|
| 1124 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
|
|---|
| 1125 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 1126 | }
|
|---|
| 1127 | #endif
|
|---|
| 1128 |
|
|---|
| 1129 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 1130 | unsigned cnt(const __ready_queue_t & this, unsigned idx) {
|
|---|
| 1131 | /* paranoid */ verify(this.lanes.count > idx);
|
|---|
| 1132 | return this.lanes.data[idx].cnt;
|
|---|
| 1133 | }
|
|---|
| 1134 | #endif
|
|---|
| 1135 |
|
|---|
| 1136 |
|
|---|
| 1137 | #if defined(CFA_HAVE_LINUX_LIBRSEQ)
|
|---|
| 1138 | // No definition needed
|
|---|
| 1139 | #elif defined(CFA_HAVE_LINUX_RSEQ_H)
|
|---|
| 1140 |
|
|---|
| 1141 | #if defined( __x86_64 ) || defined( __i386 )
|
|---|
| 1142 | #define RSEQ_SIG 0x53053053
|
|---|
| 1143 | #elif defined( __ARM_ARCH )
|
|---|
| 1144 | #ifdef __ARMEB__
|
|---|
| 1145 | #define RSEQ_SIG 0xf3def5e7 /* udf #24035 ; 0x5de3 (ARMv6+) */
|
|---|
| 1146 | #else
|
|---|
| 1147 | #define RSEQ_SIG 0xe7f5def3 /* udf #24035 ; 0x5de3 */
|
|---|
| 1148 | #endif
|
|---|
| 1149 | #endif
|
|---|
| 1150 |
|
|---|
| 1151 | extern void __disable_interrupts_hard();
|
|---|
| 1152 | extern void __enable_interrupts_hard();
|
|---|
| 1153 |
|
|---|
| 1154 | static void __kernel_raw_rseq_register (void) {
|
|---|
| 1155 | /* paranoid */ verify( __cfaabi_rseq.cpu_id == RSEQ_CPU_ID_UNINITIALIZED );
|
|---|
| 1156 |
|
|---|
| 1157 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, (sigset_t *)0p, _NSIG / 8);
|
|---|
| 1158 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, RSEQ_SIG);
|
|---|
| 1159 | if(ret != 0) {
|
|---|
| 1160 | int e = errno;
|
|---|
| 1161 | switch(e) {
|
|---|
| 1162 | case EINVAL: abort("KERNEL ERROR: rseq register invalid argument");
|
|---|
| 1163 | case ENOSYS: abort("KERNEL ERROR: rseq register no supported");
|
|---|
| 1164 | case EFAULT: abort("KERNEL ERROR: rseq register with invalid argument");
|
|---|
| 1165 | case EBUSY : abort("KERNEL ERROR: rseq register already registered");
|
|---|
| 1166 | case EPERM : abort("KERNEL ERROR: rseq register sig argument on unregistration does not match the signature received on registration");
|
|---|
| 1167 | default: abort("KERNEL ERROR: rseq register unexpected return %d", e);
|
|---|
| 1168 | }
|
|---|
| 1169 | }
|
|---|
| 1170 | }
|
|---|
| 1171 |
|
|---|
| 1172 | static void __kernel_raw_rseq_unregister(void) {
|
|---|
| 1173 | /* paranoid */ verify( __cfaabi_rseq.cpu_id >= 0 );
|
|---|
| 1174 |
|
|---|
| 1175 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, (sigset_t *)0p, _NSIG / 8);
|
|---|
| 1176 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, RSEQ_SIG);
|
|---|
| 1177 | if(ret != 0) {
|
|---|
| 1178 | int e = errno;
|
|---|
| 1179 | switch(e) {
|
|---|
| 1180 | case EINVAL: abort("KERNEL ERROR: rseq unregister invalid argument");
|
|---|
| 1181 | case ENOSYS: abort("KERNEL ERROR: rseq unregister no supported");
|
|---|
| 1182 | case EFAULT: abort("KERNEL ERROR: rseq unregister with invalid argument");
|
|---|
| 1183 | case EBUSY : abort("KERNEL ERROR: rseq unregister already registered");
|
|---|
| 1184 | case EPERM : abort("KERNEL ERROR: rseq unregister sig argument on unregistration does not match the signature received on registration");
|
|---|
| 1185 | default: abort("KERNEL ERROR: rseq unregisteunexpected return %d", e);
|
|---|
| 1186 | }
|
|---|
| 1187 | }
|
|---|
| 1188 | }
|
|---|
| 1189 | #else
|
|---|
| 1190 | // No definition needed
|
|---|
| 1191 | #endif
|
|---|