1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // ready_queue.cfa --
|
---|
8 | //
|
---|
9 | // Author : Thierry Delisle
|
---|
10 | // Created On : Mon Nov dd 16:29:18 2019
|
---|
11 | // Last Modified By :
|
---|
12 | // Last Modified On :
|
---|
13 | // Update Count :
|
---|
14 | //
|
---|
15 |
|
---|
16 | #define __cforall_thread__
|
---|
17 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__
|
---|
18 |
|
---|
19 | // #define USE_SNZI
|
---|
20 |
|
---|
21 | #include "bits/defs.hfa"
|
---|
22 | #include "kernel_private.hfa"
|
---|
23 |
|
---|
24 | #define _GNU_SOURCE
|
---|
25 | #include "stdlib.hfa"
|
---|
26 | #include "math.hfa"
|
---|
27 |
|
---|
28 | #include <unistd.h>
|
---|
29 |
|
---|
30 | #include "snzi.hfa"
|
---|
31 | #include "ready_subqueue.hfa"
|
---|
32 |
|
---|
33 | static const size_t cache_line_size = 64;
|
---|
34 |
|
---|
35 | // No overriden function, no environment variable, no define
|
---|
36 | // fall back to a magic number
|
---|
37 | #ifndef __CFA_MAX_PROCESSORS__
|
---|
38 | #define __CFA_MAX_PROCESSORS__ 1024
|
---|
39 | #endif
|
---|
40 |
|
---|
41 | #define BIAS 16
|
---|
42 |
|
---|
43 | // returns the maximum number of processors the RWLock support
|
---|
44 | __attribute__((weak)) unsigned __max_processors() {
|
---|
45 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
|
---|
46 | if(!max_cores_s) {
|
---|
47 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
|
---|
48 | return __CFA_MAX_PROCESSORS__;
|
---|
49 | }
|
---|
50 |
|
---|
51 | char * endptr = 0p;
|
---|
52 | long int max_cores_l = strtol(max_cores_s, &endptr, 10);
|
---|
53 | if(max_cores_l < 1 || max_cores_l > 65535) {
|
---|
54 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
|
---|
55 | return __CFA_MAX_PROCESSORS__;
|
---|
56 | }
|
---|
57 | if('\0' != *endptr) {
|
---|
58 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
|
---|
59 | return __CFA_MAX_PROCESSORS__;
|
---|
60 | }
|
---|
61 |
|
---|
62 | return max_cores_l;
|
---|
63 | }
|
---|
64 |
|
---|
65 | //=======================================================================
|
---|
66 | // Cluster wide reader-writer lock
|
---|
67 | //=======================================================================
|
---|
68 | void ?{}(__scheduler_RWLock_t & this) {
|
---|
69 | this.max = __max_processors();
|
---|
70 | this.alloc = 0;
|
---|
71 | this.ready = 0;
|
---|
72 | this.lock = false;
|
---|
73 | this.data = alloc(this.max);
|
---|
74 |
|
---|
75 | /*paranoid*/ verify( 0 == (((uintptr_t)(this.data )) % 64) );
|
---|
76 | /*paranoid*/ verify( 0 == (((uintptr_t)(this.data + 1)) % 64) );
|
---|
77 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
|
---|
78 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
|
---|
79 |
|
---|
80 | }
|
---|
81 | void ^?{}(__scheduler_RWLock_t & this) {
|
---|
82 | free(this.data);
|
---|
83 | }
|
---|
84 |
|
---|
85 | void ?{}( __scheduler_lock_id_t & this, __processor_id_t * proc ) {
|
---|
86 | this.handle = proc;
|
---|
87 | this.lock = false;
|
---|
88 | #ifdef __CFA_WITH_VERIFY__
|
---|
89 | this.owned = false;
|
---|
90 | #endif
|
---|
91 | }
|
---|
92 |
|
---|
93 | //=======================================================================
|
---|
94 | // Lock-Free registering/unregistering of threads
|
---|
95 | unsigned doregister( struct __processor_id_t * proc ) with(*__scheduler_lock) {
|
---|
96 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc);
|
---|
97 |
|
---|
98 | // Step - 1 : check if there is already space in the data
|
---|
99 | uint_fast32_t s = ready;
|
---|
100 |
|
---|
101 | // Check among all the ready
|
---|
102 | for(uint_fast32_t i = 0; i < s; i++) {
|
---|
103 | __processor_id_t * null = 0p; // Re-write every loop since compare thrashes it
|
---|
104 | if( __atomic_load_n(&data[i].handle, (int)__ATOMIC_RELAXED) == null
|
---|
105 | && __atomic_compare_exchange_n( &data[i].handle, &null, proc, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
---|
106 | /*paranoid*/ verify(i < ready);
|
---|
107 | /*paranoid*/ verify(0 == (__alignof__(data[i]) % cache_line_size));
|
---|
108 | /*paranoid*/ verify((((uintptr_t)&data[i]) % cache_line_size) == 0);
|
---|
109 | return i;
|
---|
110 | }
|
---|
111 | }
|
---|
112 |
|
---|
113 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
---|
114 |
|
---|
115 | // Step - 2 : F&A to get a new spot in the array.
|
---|
116 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
|
---|
117 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
---|
118 |
|
---|
119 | // Step - 3 : Mark space as used and then publish it.
|
---|
120 | __scheduler_lock_id_t * storage = (__scheduler_lock_id_t *)&data[n];
|
---|
121 | (*storage){ proc };
|
---|
122 | while() {
|
---|
123 | unsigned copy = n;
|
---|
124 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
|
---|
125 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
|
---|
126 | break;
|
---|
127 | Pause();
|
---|
128 | }
|
---|
129 |
|
---|
130 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n);
|
---|
131 |
|
---|
132 | // Return new spot.
|
---|
133 | /*paranoid*/ verify(n < ready);
|
---|
134 | /*paranoid*/ verify(__alignof__(data[n]) == (2 * cache_line_size));
|
---|
135 | /*paranoid*/ verify((((uintptr_t)&data[n]) % cache_line_size) == 0);
|
---|
136 | return n;
|
---|
137 | }
|
---|
138 |
|
---|
139 | void unregister( struct __processor_id_t * proc ) with(*__scheduler_lock) {
|
---|
140 | unsigned id = proc->id;
|
---|
141 | /*paranoid*/ verify(id < ready);
|
---|
142 | /*paranoid*/ verify(proc == __atomic_load_n(&data[id].handle, __ATOMIC_RELAXED));
|
---|
143 | __atomic_store_n(&data[id].handle, 0p, __ATOMIC_RELEASE);
|
---|
144 |
|
---|
145 | __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc);
|
---|
146 | }
|
---|
147 |
|
---|
148 | //-----------------------------------------------------------------------
|
---|
149 | // Writer side : acquire when changing the ready queue, e.g. adding more
|
---|
150 | // queues or removing them.
|
---|
151 | uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) {
|
---|
152 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
153 |
|
---|
154 | // Step 1 : lock global lock
|
---|
155 | // It is needed to avoid processors that register mid Critical-Section
|
---|
156 | // to simply lock their own lock and enter.
|
---|
157 | __atomic_acquire( &lock );
|
---|
158 |
|
---|
159 | // Step 2 : lock per-proc lock
|
---|
160 | // Processors that are currently being registered aren't counted
|
---|
161 | // but can't be in read_lock or in the critical section.
|
---|
162 | // All other processors are counted
|
---|
163 | uint_fast32_t s = ready;
|
---|
164 | for(uint_fast32_t i = 0; i < s; i++) {
|
---|
165 | __atomic_acquire( &data[i].lock );
|
---|
166 | }
|
---|
167 |
|
---|
168 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
169 | return s;
|
---|
170 | }
|
---|
171 |
|
---|
172 | void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) {
|
---|
173 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
174 |
|
---|
175 | // Step 1 : release local locks
|
---|
176 | // This must be done while the global lock is held to avoid
|
---|
177 | // threads that where created mid critical section
|
---|
178 | // to race to lock their local locks and have the writer
|
---|
179 | // immidiately unlock them
|
---|
180 | // Alternative solution : return s in write_lock and pass it to write_unlock
|
---|
181 | for(uint_fast32_t i = 0; i < last_s; i++) {
|
---|
182 | verify(data[i].lock);
|
---|
183 | __atomic_store_n(&data[i].lock, (bool)false, __ATOMIC_RELEASE);
|
---|
184 | }
|
---|
185 |
|
---|
186 | // Step 2 : release global lock
|
---|
187 | /*paranoid*/ assert(true == lock);
|
---|
188 | __atomic_store_n(&lock, (bool)false, __ATOMIC_RELEASE);
|
---|
189 |
|
---|
190 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
191 | }
|
---|
192 |
|
---|
193 | //=======================================================================
|
---|
194 | // Cforall Reqdy Queue used for scheduling
|
---|
195 | //=======================================================================
|
---|
196 | void ?{}(__ready_queue_t & this) with (this) {
|
---|
197 | lanes.data = 0p;
|
---|
198 | lanes.count = 0;
|
---|
199 | }
|
---|
200 |
|
---|
201 | void ^?{}(__ready_queue_t & this) with (this) {
|
---|
202 | verify( 1 == lanes.count );
|
---|
203 | #ifdef USE_SNZI
|
---|
204 | verify( !query( snzi ) );
|
---|
205 | #endif
|
---|
206 | free(lanes.data);
|
---|
207 | }
|
---|
208 |
|
---|
209 | //-----------------------------------------------------------------------
|
---|
210 | __attribute__((hot)) bool query(struct cluster * cltr) {
|
---|
211 | #ifdef USE_SNZI
|
---|
212 | return query(cltr->ready_queue.snzi);
|
---|
213 | #endif
|
---|
214 | return true;
|
---|
215 | }
|
---|
216 |
|
---|
217 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred) {
|
---|
218 | unsigned i;
|
---|
219 | bool local;
|
---|
220 | #if defined(BIAS)
|
---|
221 | unsigned rlow = r % BIAS;
|
---|
222 | unsigned rhigh = r / BIAS;
|
---|
223 | if((0 != rlow) && preferred >= 0) {
|
---|
224 | // (BIAS - 1) out of BIAS chances
|
---|
225 | // Use perferred queues
|
---|
226 | i = preferred + (rhigh % 4);
|
---|
227 | local = true;
|
---|
228 | }
|
---|
229 | else {
|
---|
230 | // 1 out of BIAS chances
|
---|
231 | // Use all queues
|
---|
232 | i = rhigh;
|
---|
233 | local = false;
|
---|
234 | }
|
---|
235 | #else
|
---|
236 | i = r;
|
---|
237 | local = false;
|
---|
238 | #endif
|
---|
239 | return [i, local];
|
---|
240 | }
|
---|
241 |
|
---|
242 | //-----------------------------------------------------------------------
|
---|
243 | __attribute__((hot)) bool push(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) {
|
---|
244 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
---|
245 |
|
---|
246 | // write timestamp
|
---|
247 | thrd->link.ts = rdtscl();
|
---|
248 |
|
---|
249 | __attribute__((unused)) bool local;
|
---|
250 | __attribute__((unused)) int preferred;
|
---|
251 | #if defined(BIAS)
|
---|
252 | preferred =
|
---|
253 | //*
|
---|
254 | kernelTLS().this_processor ? kernelTLS().this_processor->id * 4 : -1;
|
---|
255 | /*/
|
---|
256 | thrd->link.preferred * 4;
|
---|
257 | //*/
|
---|
258 | #endif
|
---|
259 |
|
---|
260 | // Try to pick a lane and lock it
|
---|
261 | unsigned i;
|
---|
262 | do {
|
---|
263 | // Pick the index of a lane
|
---|
264 | // unsigned r = __tls_rand();
|
---|
265 | unsigned r = __tls_rand_fwd();
|
---|
266 | [i, local] = idx_from_r(r, preferred);
|
---|
267 |
|
---|
268 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
269 | if(local) {
|
---|
270 | __tls_stats()->ready.pick.push.local++;
|
---|
271 | }
|
---|
272 | #endif
|
---|
273 |
|
---|
274 | i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
275 |
|
---|
276 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
277 | __tls_stats()->ready.pick.push.attempt++;
|
---|
278 | #endif
|
---|
279 |
|
---|
280 | // If we can't lock it retry
|
---|
281 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
---|
282 |
|
---|
283 | bool first = false;
|
---|
284 |
|
---|
285 | // Actually push it
|
---|
286 | #ifdef USE_SNZI
|
---|
287 | bool lane_first =
|
---|
288 | #endif
|
---|
289 |
|
---|
290 | push(lanes.data[i], thrd);
|
---|
291 |
|
---|
292 | #ifdef USE_SNZI
|
---|
293 | // If this lane used to be empty we need to do more
|
---|
294 | if(lane_first) {
|
---|
295 | // Check if the entire queue used to be empty
|
---|
296 | first = !query(snzi);
|
---|
297 |
|
---|
298 | // Update the snzi
|
---|
299 | arrive( snzi, i );
|
---|
300 | }
|
---|
301 | #endif
|
---|
302 |
|
---|
303 | __tls_rand_advance_bck();
|
---|
304 |
|
---|
305 | // Unlock and return
|
---|
306 | __atomic_unlock( &lanes.data[i].lock );
|
---|
307 |
|
---|
308 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
---|
309 |
|
---|
310 | // Update statistics
|
---|
311 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
312 | #if defined(BIAS)
|
---|
313 | if( local ) __tls_stats()->ready.pick.push.lsuccess++;
|
---|
314 | #endif
|
---|
315 | __tls_stats()->ready.pick.push.success++;
|
---|
316 | #endif
|
---|
317 |
|
---|
318 | // return whether or not the list was empty before this push
|
---|
319 | return first;
|
---|
320 | }
|
---|
321 |
|
---|
322 | static struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j);
|
---|
323 | static struct $thread * try_pop(struct cluster * cltr, unsigned i);
|
---|
324 |
|
---|
325 | // Pop from the ready queue from a given cluster
|
---|
326 | __attribute__((hot)) $thread * pop(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
327 | /* paranoid */ verify( lanes.count > 0 );
|
---|
328 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
329 | int preferred;
|
---|
330 | #if defined(BIAS)
|
---|
331 | // Don't bother trying locally too much
|
---|
332 | int local_tries = 8;
|
---|
333 | preferred = kernelTLS().this_processor->id * 4;
|
---|
334 | #endif
|
---|
335 |
|
---|
336 |
|
---|
337 | // As long as the list is not empty, try finding a lane that isn't empty and pop from it
|
---|
338 | #ifdef USE_SNZI
|
---|
339 | while( query(snzi) ) {
|
---|
340 | #else
|
---|
341 | for(25) {
|
---|
342 | #endif
|
---|
343 | // Pick two lists at random
|
---|
344 | // unsigned ri = __tls_rand();
|
---|
345 | // unsigned rj = __tls_rand();
|
---|
346 | unsigned ri = __tls_rand_bck();
|
---|
347 | unsigned rj = __tls_rand_bck();
|
---|
348 |
|
---|
349 | unsigned i, j;
|
---|
350 | __attribute__((unused)) bool locali, localj;
|
---|
351 | [i, locali] = idx_from_r(ri, preferred);
|
---|
352 | [j, localj] = idx_from_r(rj, preferred);
|
---|
353 |
|
---|
354 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
355 | if(locali) {
|
---|
356 | __tls_stats()->ready.pick.pop.local++;
|
---|
357 | }
|
---|
358 | if(localj) {
|
---|
359 | __tls_stats()->ready.pick.pop.local++;
|
---|
360 | }
|
---|
361 | #endif
|
---|
362 |
|
---|
363 | i %= count;
|
---|
364 | j %= count;
|
---|
365 |
|
---|
366 | // try popping from the 2 picked lists
|
---|
367 | struct $thread * thrd = try_pop(cltr, i, j);
|
---|
368 | if(thrd) {
|
---|
369 | #if defined(BIAS) && !defined(__CFA_NO_STATISTICS__)
|
---|
370 | if( locali || localj ) __tls_stats()->ready.pick.pop.lsuccess++;
|
---|
371 | #endif
|
---|
372 | return thrd;
|
---|
373 | }
|
---|
374 | }
|
---|
375 |
|
---|
376 | // All lanes where empty return 0p
|
---|
377 | return 0p;
|
---|
378 | }
|
---|
379 |
|
---|
380 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
381 | /* paranoid */ verify( lanes.count > 0 );
|
---|
382 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
383 | unsigned offset = __tls_rand();
|
---|
384 | for(i; count) {
|
---|
385 | unsigned idx = (offset + i) % count;
|
---|
386 | struct $thread * thrd = try_pop(cltr, idx);
|
---|
387 | if(thrd) {
|
---|
388 | return thrd;
|
---|
389 | }
|
---|
390 | }
|
---|
391 |
|
---|
392 | // All lanes where empty return 0p
|
---|
393 | return 0p;
|
---|
394 | }
|
---|
395 |
|
---|
396 |
|
---|
397 | //-----------------------------------------------------------------------
|
---|
398 | // Given 2 indexes, pick the list with the oldest push an try to pop from it
|
---|
399 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j) with (cltr->ready_queue) {
|
---|
400 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
401 | __tls_stats()->ready.pick.pop.attempt++;
|
---|
402 | #endif
|
---|
403 |
|
---|
404 | // Pick the bet list
|
---|
405 | int w = i;
|
---|
406 | if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
|
---|
407 | w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
|
---|
408 | }
|
---|
409 |
|
---|
410 | return try_pop(cltr, w);
|
---|
411 | }
|
---|
412 |
|
---|
413 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w) with (cltr->ready_queue) {
|
---|
414 | // Get relevant elements locally
|
---|
415 | __intrusive_lane_t & lane = lanes.data[w];
|
---|
416 |
|
---|
417 | // If list looks empty retry
|
---|
418 | if( is_empty(lane) ) return 0p;
|
---|
419 |
|
---|
420 | // If we can't get the lock retry
|
---|
421 | if( !__atomic_try_acquire(&lane.lock) ) return 0p;
|
---|
422 |
|
---|
423 |
|
---|
424 | // If list is empty, unlock and retry
|
---|
425 | if( is_empty(lane) ) {
|
---|
426 | __atomic_unlock(&lane.lock);
|
---|
427 | return 0p;
|
---|
428 | }
|
---|
429 |
|
---|
430 | // Actually pop the list
|
---|
431 | struct $thread * thrd;
|
---|
432 | thrd = pop(lane);
|
---|
433 |
|
---|
434 | /* paranoid */ verify(thrd);
|
---|
435 | /* paranoid */ verify(lane.lock);
|
---|
436 |
|
---|
437 | #ifdef USE_SNZI
|
---|
438 | // If this was the last element in the lane
|
---|
439 | if(emptied) {
|
---|
440 | depart( snzi, w );
|
---|
441 | }
|
---|
442 | #endif
|
---|
443 |
|
---|
444 | // Unlock and return
|
---|
445 | __atomic_unlock(&lane.lock);
|
---|
446 |
|
---|
447 | // Update statistics
|
---|
448 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
449 | __tls_stats()->ready.pick.pop.success++;
|
---|
450 | #endif
|
---|
451 |
|
---|
452 | // Update the thread bias
|
---|
453 | thrd->link.preferred = w / 4;
|
---|
454 |
|
---|
455 | // return the popped thread
|
---|
456 | return thrd;
|
---|
457 | }
|
---|
458 | //-----------------------------------------------------------------------
|
---|
459 |
|
---|
460 | bool remove_head(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) {
|
---|
461 | for(i; lanes.count) {
|
---|
462 | __intrusive_lane_t & lane = lanes.data[i];
|
---|
463 |
|
---|
464 | bool removed = false;
|
---|
465 |
|
---|
466 | __atomic_acquire(&lane.lock);
|
---|
467 | if(head(lane)->link.next == thrd) {
|
---|
468 | $thread * pthrd;
|
---|
469 | pthrd = pop(lane);
|
---|
470 |
|
---|
471 | /* paranoid */ verify( pthrd == thrd );
|
---|
472 |
|
---|
473 | removed = true;
|
---|
474 | #ifdef USE_SNZI
|
---|
475 | if(emptied) {
|
---|
476 | depart( snzi, i );
|
---|
477 | }
|
---|
478 | #endif
|
---|
479 | }
|
---|
480 | __atomic_unlock(&lane.lock);
|
---|
481 |
|
---|
482 | if( removed ) return true;
|
---|
483 | }
|
---|
484 | return false;
|
---|
485 | }
|
---|
486 |
|
---|
487 | //-----------------------------------------------------------------------
|
---|
488 |
|
---|
489 | static void check( __ready_queue_t & q ) with (q) {
|
---|
490 | #if defined(__CFA_WITH_VERIFY__)
|
---|
491 | {
|
---|
492 | for( idx ; lanes.count ) {
|
---|
493 | __intrusive_lane_t & sl = lanes.data[idx];
|
---|
494 | assert(!lanes.data[idx].lock);
|
---|
495 |
|
---|
496 | assert(head(sl)->link.prev == 0p );
|
---|
497 | assert(head(sl)->link.next->link.prev == head(sl) );
|
---|
498 | assert(tail(sl)->link.next == 0p );
|
---|
499 | assert(tail(sl)->link.prev->link.next == tail(sl) );
|
---|
500 |
|
---|
501 | if(sl.before.link.ts == 0l) {
|
---|
502 | assert(tail(sl)->link.prev == head(sl));
|
---|
503 | assert(head(sl)->link.next == tail(sl));
|
---|
504 | } else {
|
---|
505 | assert(tail(sl)->link.prev != head(sl));
|
---|
506 | assert(head(sl)->link.next != tail(sl));
|
---|
507 | }
|
---|
508 | }
|
---|
509 | }
|
---|
510 | #endif
|
---|
511 | }
|
---|
512 |
|
---|
513 | // Call this function of the intrusive list was moved using memcpy
|
---|
514 | // fixes the list so that the pointers back to anchors aren't left dangling
|
---|
515 | static inline void fix(__intrusive_lane_t & ll) {
|
---|
516 | // if the list is not empty then follow he pointer and fix its reverse
|
---|
517 | if(!is_empty(ll)) {
|
---|
518 | head(ll)->link.next->link.prev = head(ll);
|
---|
519 | tail(ll)->link.prev->link.next = tail(ll);
|
---|
520 | }
|
---|
521 | // Otherwise just reset the list
|
---|
522 | else {
|
---|
523 | verify(tail(ll)->link.next == 0p);
|
---|
524 | tail(ll)->link.prev = head(ll);
|
---|
525 | head(ll)->link.next = tail(ll);
|
---|
526 | verify(head(ll)->link.prev == 0p);
|
---|
527 | }
|
---|
528 | }
|
---|
529 |
|
---|
530 | // Grow the ready queue
|
---|
531 | void ready_queue_grow (struct cluster * cltr, int target) {
|
---|
532 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
533 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
|
---|
534 |
|
---|
535 | // Make sure that everything is consistent
|
---|
536 | /* paranoid */ check( cltr->ready_queue );
|
---|
537 |
|
---|
538 | // grow the ready queue
|
---|
539 | with( cltr->ready_queue ) {
|
---|
540 | #ifdef USE_SNZI
|
---|
541 | ^(snzi){};
|
---|
542 | #endif
|
---|
543 |
|
---|
544 | // Find new count
|
---|
545 | // Make sure we always have atleast 1 list
|
---|
546 | size_t ncount = target >= 2 ? target * 4: 1;
|
---|
547 |
|
---|
548 | // Allocate new array (uses realloc and memcpies the data)
|
---|
549 | lanes.data = alloc( ncount, lanes.data`realloc );
|
---|
550 |
|
---|
551 | // Fix the moved data
|
---|
552 | for( idx; (size_t)lanes.count ) {
|
---|
553 | fix(lanes.data[idx]);
|
---|
554 | }
|
---|
555 |
|
---|
556 | // Construct new data
|
---|
557 | for( idx; (size_t)lanes.count ~ ncount) {
|
---|
558 | (lanes.data[idx]){};
|
---|
559 | }
|
---|
560 |
|
---|
561 | // Update original
|
---|
562 | lanes.count = ncount;
|
---|
563 |
|
---|
564 | #ifdef USE_SNZI
|
---|
565 | // Re-create the snzi
|
---|
566 | snzi{ log2( lanes.count / 8 ) };
|
---|
567 | for( idx; (size_t)lanes.count ) {
|
---|
568 | if( !is_empty(lanes.data[idx]) ) {
|
---|
569 | arrive(snzi, idx);
|
---|
570 | }
|
---|
571 | }
|
---|
572 | #endif
|
---|
573 | }
|
---|
574 |
|
---|
575 | // Make sure that everything is consistent
|
---|
576 | /* paranoid */ check( cltr->ready_queue );
|
---|
577 |
|
---|
578 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
|
---|
579 |
|
---|
580 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
581 | }
|
---|
582 |
|
---|
583 | // Shrink the ready queue
|
---|
584 | void ready_queue_shrink(struct cluster * cltr, int target) {
|
---|
585 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
586 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
|
---|
587 |
|
---|
588 | // Make sure that everything is consistent
|
---|
589 | /* paranoid */ check( cltr->ready_queue );
|
---|
590 |
|
---|
591 | with( cltr->ready_queue ) {
|
---|
592 | #ifdef USE_SNZI
|
---|
593 | ^(snzi){};
|
---|
594 | #endif
|
---|
595 |
|
---|
596 | // Remember old count
|
---|
597 | size_t ocount = lanes.count;
|
---|
598 |
|
---|
599 | // Find new count
|
---|
600 | // Make sure we always have atleast 1 list
|
---|
601 | lanes.count = target >= 2 ? target * 4: 1;
|
---|
602 | /* paranoid */ verify( ocount >= lanes.count );
|
---|
603 | /* paranoid */ verify( lanes.count == target * 4 || target < 2 );
|
---|
604 |
|
---|
605 | // for printing count the number of displaced threads
|
---|
606 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
---|
607 | __attribute__((unused)) size_t displaced = 0;
|
---|
608 | #endif
|
---|
609 |
|
---|
610 | // redistribute old data
|
---|
611 | for( idx; (size_t)lanes.count ~ ocount) {
|
---|
612 | // Lock is not strictly needed but makes checking invariants much easier
|
---|
613 | __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
|
---|
614 | verify(locked);
|
---|
615 |
|
---|
616 | // As long as we can pop from this lane to push the threads somewhere else in the queue
|
---|
617 | while(!is_empty(lanes.data[idx])) {
|
---|
618 | struct $thread * thrd;
|
---|
619 | thrd = pop(lanes.data[idx]);
|
---|
620 |
|
---|
621 | push(cltr, thrd);
|
---|
622 |
|
---|
623 | // for printing count the number of displaced threads
|
---|
624 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
---|
625 | displaced++;
|
---|
626 | #endif
|
---|
627 | }
|
---|
628 |
|
---|
629 | // Unlock the lane
|
---|
630 | __atomic_unlock(&lanes.data[idx].lock);
|
---|
631 |
|
---|
632 | // TODO print the queue statistics here
|
---|
633 |
|
---|
634 | ^(lanes.data[idx]){};
|
---|
635 | }
|
---|
636 |
|
---|
637 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
|
---|
638 |
|
---|
639 | // Allocate new array (uses realloc and memcpies the data)
|
---|
640 | lanes.data = alloc( lanes.count, lanes.data`realloc );
|
---|
641 |
|
---|
642 | // Fix the moved data
|
---|
643 | for( idx; (size_t)lanes.count ) {
|
---|
644 | fix(lanes.data[idx]);
|
---|
645 | }
|
---|
646 |
|
---|
647 | #ifdef USE_SNZI
|
---|
648 | // Re-create the snzi
|
---|
649 | snzi{ log2( lanes.count / 8 ) };
|
---|
650 | for( idx; (size_t)lanes.count ) {
|
---|
651 | if( !is_empty(lanes.data[idx]) ) {
|
---|
652 | arrive(snzi, idx);
|
---|
653 | }
|
---|
654 | }
|
---|
655 | #endif
|
---|
656 | }
|
---|
657 |
|
---|
658 | // Make sure that everything is consistent
|
---|
659 | /* paranoid */ check( cltr->ready_queue );
|
---|
660 |
|
---|
661 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
|
---|
662 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
663 | }
|
---|