1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // ready_queue.cfa --
|
---|
8 | //
|
---|
9 | // Author : Thierry Delisle
|
---|
10 | // Created On : Mon Nov dd 16:29:18 2019
|
---|
11 | // Last Modified By :
|
---|
12 | // Last Modified On :
|
---|
13 | // Update Count :
|
---|
14 | //
|
---|
15 |
|
---|
16 | #define __cforall_thread__
|
---|
17 | #define _GNU_SOURCE
|
---|
18 |
|
---|
19 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__
|
---|
20 |
|
---|
21 |
|
---|
22 | #define USE_RELAXED_FIFO
|
---|
23 | // #define USE_WORK_STEALING
|
---|
24 | // #define USE_CPU_WORK_STEALING
|
---|
25 |
|
---|
26 | #include "bits/defs.hfa"
|
---|
27 | #include "device/cpu.hfa"
|
---|
28 | #include "kernel_private.hfa"
|
---|
29 |
|
---|
30 | #include "stdlib.hfa"
|
---|
31 | #include "math.hfa"
|
---|
32 |
|
---|
33 | #include <errno.h>
|
---|
34 | #include <unistd.h>
|
---|
35 |
|
---|
36 | extern "C" {
|
---|
37 | #include <sys/syscall.h> // __NR_xxx
|
---|
38 | }
|
---|
39 |
|
---|
40 | #include "ready_subqueue.hfa"
|
---|
41 |
|
---|
42 | static const size_t cache_line_size = 64;
|
---|
43 |
|
---|
44 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
45 | #define __STATS(...) __VA_ARGS__
|
---|
46 | #else
|
---|
47 | #define __STATS(...)
|
---|
48 | #endif
|
---|
49 |
|
---|
50 | // No overriden function, no environment variable, no define
|
---|
51 | // fall back to a magic number
|
---|
52 | #ifndef __CFA_MAX_PROCESSORS__
|
---|
53 | #define __CFA_MAX_PROCESSORS__ 1024
|
---|
54 | #endif
|
---|
55 |
|
---|
56 | #if defined(USE_CPU_WORK_STEALING)
|
---|
57 | #define READYQ_SHARD_FACTOR 2
|
---|
58 | #elif defined(USE_RELAXED_FIFO)
|
---|
59 | #define BIAS 4
|
---|
60 | #define READYQ_SHARD_FACTOR 4
|
---|
61 | #define SEQUENTIAL_SHARD 1
|
---|
62 | #elif defined(USE_WORK_STEALING)
|
---|
63 | #define READYQ_SHARD_FACTOR 2
|
---|
64 | #define SEQUENTIAL_SHARD 2
|
---|
65 | #else
|
---|
66 | #error no scheduling strategy selected
|
---|
67 | #endif
|
---|
68 |
|
---|
69 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats));
|
---|
70 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats));
|
---|
71 | static inline struct $thread * search(struct cluster * cltr);
|
---|
72 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred);
|
---|
73 |
|
---|
74 |
|
---|
75 | // returns the maximum number of processors the RWLock support
|
---|
76 | __attribute__((weak)) unsigned __max_processors() {
|
---|
77 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
|
---|
78 | if(!max_cores_s) {
|
---|
79 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
|
---|
80 | return __CFA_MAX_PROCESSORS__;
|
---|
81 | }
|
---|
82 |
|
---|
83 | char * endptr = 0p;
|
---|
84 | long int max_cores_l = strtol(max_cores_s, &endptr, 10);
|
---|
85 | if(max_cores_l < 1 || max_cores_l > 65535) {
|
---|
86 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
|
---|
87 | return __CFA_MAX_PROCESSORS__;
|
---|
88 | }
|
---|
89 | if('\0' != *endptr) {
|
---|
90 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
|
---|
91 | return __CFA_MAX_PROCESSORS__;
|
---|
92 | }
|
---|
93 |
|
---|
94 | return max_cores_l;
|
---|
95 | }
|
---|
96 |
|
---|
97 | #if defined(CFA_HAVE_LINUX_LIBRSEQ)
|
---|
98 | // No forward declaration needed
|
---|
99 | #define __kernel_rseq_register rseq_register_current_thread
|
---|
100 | #define __kernel_rseq_unregister rseq_unregister_current_thread
|
---|
101 | #elif defined(CFA_HAVE_LINUX_RSEQ_H)
|
---|
102 | void __kernel_raw_rseq_register (void);
|
---|
103 | void __kernel_raw_rseq_unregister(void);
|
---|
104 |
|
---|
105 | #define __kernel_rseq_register __kernel_raw_rseq_register
|
---|
106 | #define __kernel_rseq_unregister __kernel_raw_rseq_unregister
|
---|
107 | #else
|
---|
108 | // No forward declaration needed
|
---|
109 | // No initialization needed
|
---|
110 | static inline void noop(void) {}
|
---|
111 |
|
---|
112 | #define __kernel_rseq_register noop
|
---|
113 | #define __kernel_rseq_unregister noop
|
---|
114 | #endif
|
---|
115 |
|
---|
116 | //=======================================================================
|
---|
117 | // Cluster wide reader-writer lock
|
---|
118 | //=======================================================================
|
---|
119 | void ?{}(__scheduler_RWLock_t & this) {
|
---|
120 | this.max = __max_processors();
|
---|
121 | this.alloc = 0;
|
---|
122 | this.ready = 0;
|
---|
123 | this.data = alloc(this.max);
|
---|
124 | this.write_lock = false;
|
---|
125 |
|
---|
126 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
|
---|
127 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
|
---|
128 |
|
---|
129 | }
|
---|
130 | void ^?{}(__scheduler_RWLock_t & this) {
|
---|
131 | free(this.data);
|
---|
132 | }
|
---|
133 |
|
---|
134 |
|
---|
135 | //=======================================================================
|
---|
136 | // Lock-Free registering/unregistering of threads
|
---|
137 | unsigned register_proc_id( void ) with(*__scheduler_lock) {
|
---|
138 | __kernel_rseq_register();
|
---|
139 |
|
---|
140 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc);
|
---|
141 | bool * handle = (bool *)&kernelTLS().sched_lock;
|
---|
142 |
|
---|
143 | // Step - 1 : check if there is already space in the data
|
---|
144 | uint_fast32_t s = ready;
|
---|
145 |
|
---|
146 | // Check among all the ready
|
---|
147 | for(uint_fast32_t i = 0; i < s; i++) {
|
---|
148 | bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems
|
---|
149 | /* paranoid */ verify( handle != *cell );
|
---|
150 |
|
---|
151 | bool * null = 0p; // Re-write every loop since compare thrashes it
|
---|
152 | if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null
|
---|
153 | && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
---|
154 | /* paranoid */ verify(i < ready);
|
---|
155 | /* paranoid */ verify( (kernelTLS().sched_id = i, true) );
|
---|
156 | return i;
|
---|
157 | }
|
---|
158 | }
|
---|
159 |
|
---|
160 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
---|
161 |
|
---|
162 | // Step - 2 : F&A to get a new spot in the array.
|
---|
163 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
|
---|
164 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
---|
165 |
|
---|
166 | // Step - 3 : Mark space as used and then publish it.
|
---|
167 | data[n] = handle;
|
---|
168 | while() {
|
---|
169 | unsigned copy = n;
|
---|
170 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
|
---|
171 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
|
---|
172 | break;
|
---|
173 | Pause();
|
---|
174 | }
|
---|
175 |
|
---|
176 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n);
|
---|
177 |
|
---|
178 | // Return new spot.
|
---|
179 | /* paranoid */ verify(n < ready);
|
---|
180 | /* paranoid */ verify( (kernelTLS().sched_id = n, true) );
|
---|
181 | return n;
|
---|
182 | }
|
---|
183 |
|
---|
184 | void unregister_proc_id( unsigned id ) with(*__scheduler_lock) {
|
---|
185 | /* paranoid */ verify(id < ready);
|
---|
186 | /* paranoid */ verify(id == kernelTLS().sched_id);
|
---|
187 | /* paranoid */ verify(data[id] == &kernelTLS().sched_lock);
|
---|
188 |
|
---|
189 | bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems
|
---|
190 |
|
---|
191 | __atomic_store_n(cell, 0p, __ATOMIC_RELEASE);
|
---|
192 |
|
---|
193 | __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc);
|
---|
194 |
|
---|
195 | __kernel_rseq_unregister();
|
---|
196 | }
|
---|
197 |
|
---|
198 | //-----------------------------------------------------------------------
|
---|
199 | // Writer side : acquire when changing the ready queue, e.g. adding more
|
---|
200 | // queues or removing them.
|
---|
201 | uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) {
|
---|
202 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
203 | /* paranoid */ verify( ! kernelTLS().sched_lock );
|
---|
204 |
|
---|
205 | // Step 1 : lock global lock
|
---|
206 | // It is needed to avoid processors that register mid Critical-Section
|
---|
207 | // to simply lock their own lock and enter.
|
---|
208 | __atomic_acquire( &write_lock );
|
---|
209 |
|
---|
210 | // Step 2 : lock per-proc lock
|
---|
211 | // Processors that are currently being registered aren't counted
|
---|
212 | // but can't be in read_lock or in the critical section.
|
---|
213 | // All other processors are counted
|
---|
214 | uint_fast32_t s = ready;
|
---|
215 | for(uint_fast32_t i = 0; i < s; i++) {
|
---|
216 | volatile bool * llock = data[i];
|
---|
217 | if(llock) __atomic_acquire( llock );
|
---|
218 | }
|
---|
219 |
|
---|
220 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
221 | return s;
|
---|
222 | }
|
---|
223 |
|
---|
224 | void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) {
|
---|
225 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
226 |
|
---|
227 | // Step 1 : release local locks
|
---|
228 | // This must be done while the global lock is held to avoid
|
---|
229 | // threads that where created mid critical section
|
---|
230 | // to race to lock their local locks and have the writer
|
---|
231 | // immidiately unlock them
|
---|
232 | // Alternative solution : return s in write_lock and pass it to write_unlock
|
---|
233 | for(uint_fast32_t i = 0; i < last_s; i++) {
|
---|
234 | volatile bool * llock = data[i];
|
---|
235 | if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE);
|
---|
236 | }
|
---|
237 |
|
---|
238 | // Step 2 : release global lock
|
---|
239 | /*paranoid*/ assert(true == write_lock);
|
---|
240 | __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE);
|
---|
241 |
|
---|
242 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
243 | }
|
---|
244 |
|
---|
245 | //=======================================================================
|
---|
246 | // Cforall Ready Queue used for scheduling
|
---|
247 | //=======================================================================
|
---|
248 | void ?{}(__ready_queue_t & this) with (this) {
|
---|
249 | #if defined(USE_CPU_WORK_STEALING)
|
---|
250 | lanes.count = cpu_info.hthrd_count * READYQ_SHARD_FACTOR;
|
---|
251 | lanes.data = alloc( lanes.count );
|
---|
252 | lanes.tscs = alloc( lanes.count );
|
---|
253 |
|
---|
254 | for( idx; (size_t)lanes.count ) {
|
---|
255 | (lanes.data[idx]){};
|
---|
256 | lanes.tscs[idx].tv = rdtscl();
|
---|
257 | }
|
---|
258 | #else
|
---|
259 | lanes.data = 0p;
|
---|
260 | lanes.tscs = 0p;
|
---|
261 | lanes.count = 0;
|
---|
262 | #endif
|
---|
263 | }
|
---|
264 |
|
---|
265 | void ^?{}(__ready_queue_t & this) with (this) {
|
---|
266 | #if !defined(USE_CPU_WORK_STEALING)
|
---|
267 | verify( SEQUENTIAL_SHARD == lanes.count );
|
---|
268 | #endif
|
---|
269 |
|
---|
270 | free(lanes.data);
|
---|
271 | free(lanes.tscs);
|
---|
272 | }
|
---|
273 |
|
---|
274 | //-----------------------------------------------------------------------
|
---|
275 | #if defined(USE_CPU_WORK_STEALING)
|
---|
276 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) {
|
---|
277 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
---|
278 |
|
---|
279 | processor * const proc = kernelTLS().this_processor;
|
---|
280 | const bool external = !push_local || (!proc) || (cltr != proc->cltr);
|
---|
281 |
|
---|
282 | const int cpu = __kernel_getcpu();
|
---|
283 | /* paranoid */ verify(cpu >= 0);
|
---|
284 | /* paranoid */ verify(cpu < cpu_info.hthrd_count);
|
---|
285 | /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count);
|
---|
286 |
|
---|
287 | const cpu_map_entry_t & map = cpu_info.llc_map[cpu];
|
---|
288 | /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count);
|
---|
289 | /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count);
|
---|
290 | /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %zu lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR);
|
---|
291 |
|
---|
292 | const int start = map.self * READYQ_SHARD_FACTOR;
|
---|
293 | unsigned i;
|
---|
294 | do {
|
---|
295 | unsigned r;
|
---|
296 | if(unlikely(external)) { r = __tls_rand(); }
|
---|
297 | else { r = proc->rdq.its++; }
|
---|
298 | i = start + (r % READYQ_SHARD_FACTOR);
|
---|
299 | // If we can't lock it retry
|
---|
300 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
---|
301 |
|
---|
302 | // Actually push it
|
---|
303 | push(lanes.data[i], thrd);
|
---|
304 |
|
---|
305 | // Unlock and return
|
---|
306 | __atomic_unlock( &lanes.data[i].lock );
|
---|
307 |
|
---|
308 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
309 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
---|
310 | else __tls_stats()->ready.push.local.success++;
|
---|
311 | #endif
|
---|
312 |
|
---|
313 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
---|
314 |
|
---|
315 | }
|
---|
316 |
|
---|
317 | // Pop from the ready queue from a given cluster
|
---|
318 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
319 | /* paranoid */ verify( lanes.count > 0 );
|
---|
320 | /* paranoid */ verify( kernelTLS().this_processor );
|
---|
321 |
|
---|
322 | const int cpu = __kernel_getcpu();
|
---|
323 | /* paranoid */ verify(cpu >= 0);
|
---|
324 | /* paranoid */ verify(cpu < cpu_info.hthrd_count);
|
---|
325 | /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count);
|
---|
326 |
|
---|
327 | const cpu_map_entry_t & map = cpu_info.llc_map[cpu];
|
---|
328 | /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count);
|
---|
329 | /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count);
|
---|
330 | /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %zu lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR);
|
---|
331 |
|
---|
332 | processor * const proc = kernelTLS().this_processor;
|
---|
333 | const int start = map.self * READYQ_SHARD_FACTOR;
|
---|
334 |
|
---|
335 | // Did we already have a help target
|
---|
336 | if(proc->rdq.target == -1u) {
|
---|
337 | // if We don't have a
|
---|
338 | unsigned long long min = ts(lanes.data[start]);
|
---|
339 | for(i; READYQ_SHARD_FACTOR) {
|
---|
340 | unsigned long long tsc = ts(lanes.data[start + i]);
|
---|
341 | if(tsc < min) min = tsc;
|
---|
342 | }
|
---|
343 | proc->rdq.cutoff = min;
|
---|
344 |
|
---|
345 | /* paranoid */ verify(lanes.count < 65536); // The following code assumes max 65536 cores.
|
---|
346 | /* paranoid */ verify(map.count < 65536); // The following code assumes max 65536 cores.
|
---|
347 | uint64_t chaos = __tls_rand();
|
---|
348 | uint64_t high_chaos = (chaos >> 32);
|
---|
349 | uint64_t mid_chaos = (chaos >> 16) & 0xffff;
|
---|
350 | uint64_t low_chaos = chaos & 0xffff;
|
---|
351 |
|
---|
352 | unsigned me = map.self;
|
---|
353 | unsigned cpu_chaos = map.start + (mid_chaos % map.count);
|
---|
354 | bool global = cpu_chaos == me;
|
---|
355 |
|
---|
356 | if(global) {
|
---|
357 | proc->rdq.target = high_chaos % lanes.count;
|
---|
358 | } else {
|
---|
359 | proc->rdq.target = (cpu_chaos * READYQ_SHARD_FACTOR) + (low_chaos % READYQ_SHARD_FACTOR);
|
---|
360 | /* paranoid */ verify(proc->rdq.target >= (map.start * READYQ_SHARD_FACTOR));
|
---|
361 | /* paranoid */ verify(proc->rdq.target < ((map.start + map.count) * READYQ_SHARD_FACTOR));
|
---|
362 | }
|
---|
363 |
|
---|
364 | /* paranoid */ verify(proc->rdq.target != -1u);
|
---|
365 | }
|
---|
366 | else {
|
---|
367 | const unsigned long long bias = 0; //2_500_000_000;
|
---|
368 | const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff;
|
---|
369 | {
|
---|
370 | unsigned target = proc->rdq.target;
|
---|
371 | proc->rdq.target = -1u;
|
---|
372 | if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) {
|
---|
373 | $thread * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
|
---|
374 | proc->rdq.last = target;
|
---|
375 | if(t) return t;
|
---|
376 | }
|
---|
377 | }
|
---|
378 |
|
---|
379 | unsigned last = proc->rdq.last;
|
---|
380 | if(last != -1u && lanes.tscs[last].tv < cutoff && ts(lanes.data[last]) < cutoff) {
|
---|
381 | $thread * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.help));
|
---|
382 | if(t) return t;
|
---|
383 | }
|
---|
384 | else {
|
---|
385 | proc->rdq.last = -1u;
|
---|
386 | }
|
---|
387 | }
|
---|
388 |
|
---|
389 | for(READYQ_SHARD_FACTOR) {
|
---|
390 | unsigned i = start + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
|
---|
391 | if($thread * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
|
---|
392 | }
|
---|
393 |
|
---|
394 | // All lanes where empty return 0p
|
---|
395 | return 0p;
|
---|
396 | }
|
---|
397 |
|
---|
398 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
399 | processor * const proc = kernelTLS().this_processor;
|
---|
400 | unsigned last = proc->rdq.last;
|
---|
401 | if(last != -1u) {
|
---|
402 | struct $thread * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.steal));
|
---|
403 | if(t) return t;
|
---|
404 | proc->rdq.last = -1u;
|
---|
405 | }
|
---|
406 |
|
---|
407 | unsigned i = __tls_rand() % lanes.count;
|
---|
408 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
|
---|
409 | }
|
---|
410 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) {
|
---|
411 | return search(cltr);
|
---|
412 | }
|
---|
413 | #endif
|
---|
414 | #if defined(USE_RELAXED_FIFO)
|
---|
415 | //-----------------------------------------------------------------------
|
---|
416 | // get index from random number with or without bias towards queues
|
---|
417 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred) {
|
---|
418 | unsigned i;
|
---|
419 | bool local;
|
---|
420 | unsigned rlow = r % BIAS;
|
---|
421 | unsigned rhigh = r / BIAS;
|
---|
422 | if((0 != rlow) && preferred >= 0) {
|
---|
423 | // (BIAS - 1) out of BIAS chances
|
---|
424 | // Use perferred queues
|
---|
425 | i = preferred + (rhigh % READYQ_SHARD_FACTOR);
|
---|
426 | local = true;
|
---|
427 | }
|
---|
428 | else {
|
---|
429 | // 1 out of BIAS chances
|
---|
430 | // Use all queues
|
---|
431 | i = rhigh;
|
---|
432 | local = false;
|
---|
433 | }
|
---|
434 | return [i, local];
|
---|
435 | }
|
---|
436 |
|
---|
437 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) {
|
---|
438 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
---|
439 |
|
---|
440 | const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
|
---|
441 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
|
---|
442 |
|
---|
443 | bool local;
|
---|
444 | int preferred = external ? -1 : kernelTLS().this_processor->rdq.id;
|
---|
445 |
|
---|
446 | // Try to pick a lane and lock it
|
---|
447 | unsigned i;
|
---|
448 | do {
|
---|
449 | // Pick the index of a lane
|
---|
450 | unsigned r = __tls_rand_fwd();
|
---|
451 | [i, local] = idx_from_r(r, preferred);
|
---|
452 |
|
---|
453 | i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
454 |
|
---|
455 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
456 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
|
---|
457 | else if(local) __tls_stats()->ready.push.local.attempt++;
|
---|
458 | else __tls_stats()->ready.push.share.attempt++;
|
---|
459 | #endif
|
---|
460 |
|
---|
461 | // If we can't lock it retry
|
---|
462 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
---|
463 |
|
---|
464 | // Actually push it
|
---|
465 | push(lanes.data[i], thrd);
|
---|
466 |
|
---|
467 | // Unlock and return
|
---|
468 | __atomic_unlock( &lanes.data[i].lock );
|
---|
469 |
|
---|
470 | // Mark the current index in the tls rng instance as having an item
|
---|
471 | __tls_rand_advance_bck();
|
---|
472 |
|
---|
473 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
---|
474 |
|
---|
475 | // Update statistics
|
---|
476 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
477 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
---|
478 | else if(local) __tls_stats()->ready.push.local.success++;
|
---|
479 | else __tls_stats()->ready.push.share.success++;
|
---|
480 | #endif
|
---|
481 | }
|
---|
482 |
|
---|
483 | // Pop from the ready queue from a given cluster
|
---|
484 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
485 | /* paranoid */ verify( lanes.count > 0 );
|
---|
486 | /* paranoid */ verify( kernelTLS().this_processor );
|
---|
487 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
|
---|
488 |
|
---|
489 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
490 | int preferred = kernelTLS().this_processor->rdq.id;
|
---|
491 |
|
---|
492 |
|
---|
493 | // As long as the list is not empty, try finding a lane that isn't empty and pop from it
|
---|
494 | for(25) {
|
---|
495 | // Pick two lists at random
|
---|
496 | unsigned ri = __tls_rand_bck();
|
---|
497 | unsigned rj = __tls_rand_bck();
|
---|
498 |
|
---|
499 | unsigned i, j;
|
---|
500 | __attribute__((unused)) bool locali, localj;
|
---|
501 | [i, locali] = idx_from_r(ri, preferred);
|
---|
502 | [j, localj] = idx_from_r(rj, preferred);
|
---|
503 |
|
---|
504 | i %= count;
|
---|
505 | j %= count;
|
---|
506 |
|
---|
507 | // try popping from the 2 picked lists
|
---|
508 | struct $thread * thrd = try_pop(cltr, i, j __STATS(, *(locali || localj ? &__tls_stats()->ready.pop.local : &__tls_stats()->ready.pop.help)));
|
---|
509 | if(thrd) {
|
---|
510 | return thrd;
|
---|
511 | }
|
---|
512 | }
|
---|
513 |
|
---|
514 | // All lanes where empty return 0p
|
---|
515 | return 0p;
|
---|
516 | }
|
---|
517 |
|
---|
518 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) { return pop_fast(cltr); }
|
---|
519 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) {
|
---|
520 | return search(cltr);
|
---|
521 | }
|
---|
522 | #endif
|
---|
523 | #if defined(USE_WORK_STEALING)
|
---|
524 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) {
|
---|
525 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
---|
526 |
|
---|
527 | // #define USE_PREFERRED
|
---|
528 | #if !defined(USE_PREFERRED)
|
---|
529 | const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
|
---|
530 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
|
---|
531 | #else
|
---|
532 | unsigned preferred = thrd->preferred;
|
---|
533 | const bool external = push_local || (!kernelTLS().this_processor) || preferred == -1u || thrd->curr_cluster != cltr;
|
---|
534 | /* paranoid */ verifyf(external || preferred < lanes.count, "Invalid preferred queue %u for %u lanes", preferred, lanes.count );
|
---|
535 |
|
---|
536 | unsigned r = preferred % READYQ_SHARD_FACTOR;
|
---|
537 | const unsigned start = preferred - r;
|
---|
538 | #endif
|
---|
539 |
|
---|
540 | // Try to pick a lane and lock it
|
---|
541 | unsigned i;
|
---|
542 | do {
|
---|
543 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
544 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
|
---|
545 | else __tls_stats()->ready.push.local.attempt++;
|
---|
546 | #endif
|
---|
547 |
|
---|
548 | if(unlikely(external)) {
|
---|
549 | i = __tls_rand() % lanes.count;
|
---|
550 | }
|
---|
551 | else {
|
---|
552 | #if !defined(USE_PREFERRED)
|
---|
553 | processor * proc = kernelTLS().this_processor;
|
---|
554 | unsigned r = proc->rdq.its++;
|
---|
555 | i = proc->rdq.id + (r % READYQ_SHARD_FACTOR);
|
---|
556 | #else
|
---|
557 | i = start + (r++ % READYQ_SHARD_FACTOR);
|
---|
558 | #endif
|
---|
559 | }
|
---|
560 | // If we can't lock it retry
|
---|
561 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
---|
562 |
|
---|
563 | // Actually push it
|
---|
564 | push(lanes.data[i], thrd);
|
---|
565 |
|
---|
566 | // Unlock and return
|
---|
567 | __atomic_unlock( &lanes.data[i].lock );
|
---|
568 |
|
---|
569 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
570 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
---|
571 | else __tls_stats()->ready.push.local.success++;
|
---|
572 | #endif
|
---|
573 |
|
---|
574 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
---|
575 | }
|
---|
576 |
|
---|
577 | // Pop from the ready queue from a given cluster
|
---|
578 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
579 | /* paranoid */ verify( lanes.count > 0 );
|
---|
580 | /* paranoid */ verify( kernelTLS().this_processor );
|
---|
581 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
|
---|
582 |
|
---|
583 | processor * proc = kernelTLS().this_processor;
|
---|
584 |
|
---|
585 | if(proc->rdq.target == -1u) {
|
---|
586 | unsigned long long min = ts(lanes.data[proc->rdq.id]);
|
---|
587 | for(int i = 0; i < READYQ_SHARD_FACTOR; i++) {
|
---|
588 | unsigned long long tsc = ts(lanes.data[proc->rdq.id + i]);
|
---|
589 | if(tsc < min) min = tsc;
|
---|
590 | }
|
---|
591 | proc->rdq.cutoff = min;
|
---|
592 | proc->rdq.target = __tls_rand() % lanes.count;
|
---|
593 | }
|
---|
594 | else {
|
---|
595 | unsigned target = proc->rdq.target;
|
---|
596 | proc->rdq.target = -1u;
|
---|
597 | const unsigned long long bias = 0; //2_500_000_000;
|
---|
598 | const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff;
|
---|
599 | if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) {
|
---|
600 | $thread * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
|
---|
601 | if(t) return t;
|
---|
602 | }
|
---|
603 | }
|
---|
604 |
|
---|
605 | for(READYQ_SHARD_FACTOR) {
|
---|
606 | unsigned i = proc->rdq.id + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
|
---|
607 | if($thread * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
|
---|
608 | }
|
---|
609 | return 0p;
|
---|
610 | }
|
---|
611 |
|
---|
612 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
613 | unsigned i = __tls_rand() % lanes.count;
|
---|
614 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
|
---|
615 | }
|
---|
616 |
|
---|
617 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
618 | return search(cltr);
|
---|
619 | }
|
---|
620 | #endif
|
---|
621 |
|
---|
622 | //=======================================================================
|
---|
623 | // Various Ready Queue utilities
|
---|
624 | //=======================================================================
|
---|
625 | // these function work the same or almost the same
|
---|
626 | // whether they are using work-stealing or relaxed fifo scheduling
|
---|
627 |
|
---|
628 | //-----------------------------------------------------------------------
|
---|
629 | // try to pop from a lane given by index w
|
---|
630 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
|
---|
631 | __STATS( stats.attempt++; )
|
---|
632 |
|
---|
633 | // Get relevant elements locally
|
---|
634 | __intrusive_lane_t & lane = lanes.data[w];
|
---|
635 |
|
---|
636 | // If list looks empty retry
|
---|
637 | if( is_empty(lane) ) {
|
---|
638 | return 0p;
|
---|
639 | }
|
---|
640 |
|
---|
641 | // If we can't get the lock retry
|
---|
642 | if( !__atomic_try_acquire(&lane.lock) ) {
|
---|
643 | return 0p;
|
---|
644 | }
|
---|
645 |
|
---|
646 | // If list is empty, unlock and retry
|
---|
647 | if( is_empty(lane) ) {
|
---|
648 | __atomic_unlock(&lane.lock);
|
---|
649 | return 0p;
|
---|
650 | }
|
---|
651 |
|
---|
652 | // Actually pop the list
|
---|
653 | struct $thread * thrd;
|
---|
654 | unsigned long long tsv;
|
---|
655 | [thrd, tsv] = pop(lane);
|
---|
656 |
|
---|
657 | /* paranoid */ verify(thrd);
|
---|
658 | /* paranoid */ verify(tsv);
|
---|
659 | /* paranoid */ verify(lane.lock);
|
---|
660 |
|
---|
661 | // Unlock and return
|
---|
662 | __atomic_unlock(&lane.lock);
|
---|
663 |
|
---|
664 | // Update statistics
|
---|
665 | __STATS( stats.success++; )
|
---|
666 |
|
---|
667 | #if defined(USE_WORK_STEALING)
|
---|
668 | lanes.tscs[w].tv = tsv;
|
---|
669 | #endif
|
---|
670 |
|
---|
671 | thrd->preferred = w;
|
---|
672 |
|
---|
673 | // return the popped thread
|
---|
674 | return thrd;
|
---|
675 | }
|
---|
676 |
|
---|
677 | //-----------------------------------------------------------------------
|
---|
678 | // try to pop from any lanes making sure you don't miss any threads push
|
---|
679 | // before the start of the function
|
---|
680 | static inline struct $thread * search(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
681 | /* paranoid */ verify( lanes.count > 0 );
|
---|
682 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
683 | unsigned offset = __tls_rand();
|
---|
684 | for(i; count) {
|
---|
685 | unsigned idx = (offset + i) % count;
|
---|
686 | struct $thread * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search));
|
---|
687 | if(thrd) {
|
---|
688 | return thrd;
|
---|
689 | }
|
---|
690 | }
|
---|
691 |
|
---|
692 | // All lanes where empty return 0p
|
---|
693 | return 0p;
|
---|
694 | }
|
---|
695 |
|
---|
696 | //-----------------------------------------------------------------------
|
---|
697 | // Check that all the intrusive queues in the data structure are still consistent
|
---|
698 | static void check( __ready_queue_t & q ) with (q) {
|
---|
699 | #if defined(__CFA_WITH_VERIFY__)
|
---|
700 | {
|
---|
701 | for( idx ; lanes.count ) {
|
---|
702 | __intrusive_lane_t & sl = lanes.data[idx];
|
---|
703 | assert(!lanes.data[idx].lock);
|
---|
704 |
|
---|
705 | if(is_empty(sl)) {
|
---|
706 | assert( sl.anchor.next == 0p );
|
---|
707 | assert( sl.anchor.ts == -1llu );
|
---|
708 | assert( mock_head(sl) == sl.prev );
|
---|
709 | } else {
|
---|
710 | assert( sl.anchor.next != 0p );
|
---|
711 | assert( sl.anchor.ts != -1llu );
|
---|
712 | assert( mock_head(sl) != sl.prev );
|
---|
713 | }
|
---|
714 | }
|
---|
715 | }
|
---|
716 | #endif
|
---|
717 | }
|
---|
718 |
|
---|
719 | //-----------------------------------------------------------------------
|
---|
720 | // Given 2 indexes, pick the list with the oldest push an try to pop from it
|
---|
721 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
|
---|
722 | // Pick the bet list
|
---|
723 | int w = i;
|
---|
724 | if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
|
---|
725 | w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
|
---|
726 | }
|
---|
727 |
|
---|
728 | return try_pop(cltr, w __STATS(, stats));
|
---|
729 | }
|
---|
730 |
|
---|
731 | // Call this function of the intrusive list was moved using memcpy
|
---|
732 | // fixes the list so that the pointers back to anchors aren't left dangling
|
---|
733 | static inline void fix(__intrusive_lane_t & ll) {
|
---|
734 | if(is_empty(ll)) {
|
---|
735 | verify(ll.anchor.next == 0p);
|
---|
736 | ll.prev = mock_head(ll);
|
---|
737 | }
|
---|
738 | }
|
---|
739 |
|
---|
740 | static void assign_list(unsigned & value, dlist(processor) & list, unsigned count) {
|
---|
741 | processor * it = &list`first;
|
---|
742 | for(unsigned i = 0; i < count; i++) {
|
---|
743 | /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count);
|
---|
744 | it->rdq.id = value;
|
---|
745 | it->rdq.target = -1u;
|
---|
746 | value += READYQ_SHARD_FACTOR;
|
---|
747 | it = &(*it)`next;
|
---|
748 | }
|
---|
749 | }
|
---|
750 |
|
---|
751 | static void reassign_cltr_id(struct cluster * cltr) {
|
---|
752 | unsigned preferred = 0;
|
---|
753 | assign_list(preferred, cltr->procs.actives, cltr->procs.total - cltr->procs.idle);
|
---|
754 | assign_list(preferred, cltr->procs.idles , cltr->procs.idle );
|
---|
755 | }
|
---|
756 |
|
---|
757 | static void fix_times( struct cluster * cltr ) with( cltr->ready_queue ) {
|
---|
758 | #if defined(USE_WORK_STEALING)
|
---|
759 | lanes.tscs = alloc(lanes.count, lanes.tscs`realloc);
|
---|
760 | for(i; lanes.count) {
|
---|
761 | unsigned long long tsc1 = ts(lanes.data[i]);
|
---|
762 | unsigned long long tsc2 = rdtscl();
|
---|
763 | lanes.tscs[i].tv = min(tsc1, tsc2);
|
---|
764 | }
|
---|
765 | #endif
|
---|
766 | }
|
---|
767 |
|
---|
768 | #if defined(USE_CPU_WORK_STEALING)
|
---|
769 | // ready_queue size is fixed in this case
|
---|
770 | void ready_queue_grow(struct cluster * cltr) {}
|
---|
771 | void ready_queue_shrink(struct cluster * cltr) {}
|
---|
772 | #else
|
---|
773 | // Grow the ready queue
|
---|
774 | void ready_queue_grow(struct cluster * cltr) {
|
---|
775 | size_t ncount;
|
---|
776 | int target = cltr->procs.total;
|
---|
777 |
|
---|
778 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
779 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
|
---|
780 |
|
---|
781 | // Make sure that everything is consistent
|
---|
782 | /* paranoid */ check( cltr->ready_queue );
|
---|
783 |
|
---|
784 | // grow the ready queue
|
---|
785 | with( cltr->ready_queue ) {
|
---|
786 | // Find new count
|
---|
787 | // Make sure we always have atleast 1 list
|
---|
788 | if(target >= 2) {
|
---|
789 | ncount = target * READYQ_SHARD_FACTOR;
|
---|
790 | } else {
|
---|
791 | ncount = SEQUENTIAL_SHARD;
|
---|
792 | }
|
---|
793 |
|
---|
794 | // Allocate new array (uses realloc and memcpies the data)
|
---|
795 | lanes.data = alloc( ncount, lanes.data`realloc );
|
---|
796 |
|
---|
797 | // Fix the moved data
|
---|
798 | for( idx; (size_t)lanes.count ) {
|
---|
799 | fix(lanes.data[idx]);
|
---|
800 | }
|
---|
801 |
|
---|
802 | // Construct new data
|
---|
803 | for( idx; (size_t)lanes.count ~ ncount) {
|
---|
804 | (lanes.data[idx]){};
|
---|
805 | }
|
---|
806 |
|
---|
807 | // Update original
|
---|
808 | lanes.count = ncount;
|
---|
809 | }
|
---|
810 |
|
---|
811 | fix_times(cltr);
|
---|
812 |
|
---|
813 | reassign_cltr_id(cltr);
|
---|
814 |
|
---|
815 | // Make sure that everything is consistent
|
---|
816 | /* paranoid */ check( cltr->ready_queue );
|
---|
817 |
|
---|
818 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
|
---|
819 |
|
---|
820 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
821 | }
|
---|
822 |
|
---|
823 | // Shrink the ready queue
|
---|
824 | void ready_queue_shrink(struct cluster * cltr) {
|
---|
825 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
826 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
|
---|
827 |
|
---|
828 | // Make sure that everything is consistent
|
---|
829 | /* paranoid */ check( cltr->ready_queue );
|
---|
830 |
|
---|
831 | int target = cltr->procs.total;
|
---|
832 |
|
---|
833 | with( cltr->ready_queue ) {
|
---|
834 | // Remember old count
|
---|
835 | size_t ocount = lanes.count;
|
---|
836 |
|
---|
837 | // Find new count
|
---|
838 | // Make sure we always have atleast 1 list
|
---|
839 | lanes.count = target >= 2 ? target * READYQ_SHARD_FACTOR: SEQUENTIAL_SHARD;
|
---|
840 | /* paranoid */ verify( ocount >= lanes.count );
|
---|
841 | /* paranoid */ verify( lanes.count == target * READYQ_SHARD_FACTOR || target < 2 );
|
---|
842 |
|
---|
843 | // for printing count the number of displaced threads
|
---|
844 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
---|
845 | __attribute__((unused)) size_t displaced = 0;
|
---|
846 | #endif
|
---|
847 |
|
---|
848 | // redistribute old data
|
---|
849 | for( idx; (size_t)lanes.count ~ ocount) {
|
---|
850 | // Lock is not strictly needed but makes checking invariants much easier
|
---|
851 | __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
|
---|
852 | verify(locked);
|
---|
853 |
|
---|
854 | // As long as we can pop from this lane to push the threads somewhere else in the queue
|
---|
855 | while(!is_empty(lanes.data[idx])) {
|
---|
856 | struct $thread * thrd;
|
---|
857 | unsigned long long _;
|
---|
858 | [thrd, _] = pop(lanes.data[idx]);
|
---|
859 |
|
---|
860 | push(cltr, thrd, true);
|
---|
861 |
|
---|
862 | // for printing count the number of displaced threads
|
---|
863 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
---|
864 | displaced++;
|
---|
865 | #endif
|
---|
866 | }
|
---|
867 |
|
---|
868 | // Unlock the lane
|
---|
869 | __atomic_unlock(&lanes.data[idx].lock);
|
---|
870 |
|
---|
871 | // TODO print the queue statistics here
|
---|
872 |
|
---|
873 | ^(lanes.data[idx]){};
|
---|
874 | }
|
---|
875 |
|
---|
876 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
|
---|
877 |
|
---|
878 | // Allocate new array (uses realloc and memcpies the data)
|
---|
879 | lanes.data = alloc( lanes.count, lanes.data`realloc );
|
---|
880 |
|
---|
881 | // Fix the moved data
|
---|
882 | for( idx; (size_t)lanes.count ) {
|
---|
883 | fix(lanes.data[idx]);
|
---|
884 | }
|
---|
885 | }
|
---|
886 |
|
---|
887 | fix_times(cltr);
|
---|
888 |
|
---|
889 | reassign_cltr_id(cltr);
|
---|
890 |
|
---|
891 | // Make sure that everything is consistent
|
---|
892 | /* paranoid */ check( cltr->ready_queue );
|
---|
893 |
|
---|
894 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
|
---|
895 | /* paranoid */ verify( ready_mutate_islocked() );
|
---|
896 | }
|
---|
897 | #endif
|
---|
898 |
|
---|
899 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
900 | unsigned cnt(const __ready_queue_t & this, unsigned idx) {
|
---|
901 | /* paranoid */ verify(this.lanes.count > idx);
|
---|
902 | return this.lanes.data[idx].cnt;
|
---|
903 | }
|
---|
904 | #endif
|
---|
905 |
|
---|
906 |
|
---|
907 | #if defined(CFA_HAVE_LINUX_LIBRSEQ)
|
---|
908 | // No definition needed
|
---|
909 | #elif defined(CFA_HAVE_LINUX_RSEQ_H)
|
---|
910 |
|
---|
911 | #if defined( __x86_64 ) || defined( __i386 )
|
---|
912 | #define RSEQ_SIG 0x53053053
|
---|
913 | #elif defined( __ARM_ARCH )
|
---|
914 | #ifdef __ARMEB__
|
---|
915 | #define RSEQ_SIG 0xf3def5e7 /* udf #24035 ; 0x5de3 (ARMv6+) */
|
---|
916 | #else
|
---|
917 | #define RSEQ_SIG 0xe7f5def3 /* udf #24035 ; 0x5de3 */
|
---|
918 | #endif
|
---|
919 | #endif
|
---|
920 |
|
---|
921 | extern void __disable_interrupts_hard();
|
---|
922 | extern void __enable_interrupts_hard();
|
---|
923 |
|
---|
924 | void __kernel_raw_rseq_register (void) {
|
---|
925 | /* paranoid */ verify( __cfaabi_rseq.cpu_id == RSEQ_CPU_ID_UNINITIALIZED );
|
---|
926 |
|
---|
927 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, (sigset_t *)0p, _NSIG / 8);
|
---|
928 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, RSEQ_SIG);
|
---|
929 | if(ret != 0) {
|
---|
930 | int e = errno;
|
---|
931 | switch(e) {
|
---|
932 | case EINVAL: abort("KERNEL ERROR: rseq register invalid argument");
|
---|
933 | case ENOSYS: abort("KERNEL ERROR: rseq register no supported");
|
---|
934 | case EFAULT: abort("KERNEL ERROR: rseq register with invalid argument");
|
---|
935 | case EBUSY : abort("KERNEL ERROR: rseq register already registered");
|
---|
936 | case EPERM : abort("KERNEL ERROR: rseq register sig argument on unregistration does not match the signature received on registration");
|
---|
937 | default: abort("KERNEL ERROR: rseq register unexpected return %d", e);
|
---|
938 | }
|
---|
939 | }
|
---|
940 | }
|
---|
941 |
|
---|
942 | void __kernel_raw_rseq_unregister(void) {
|
---|
943 | /* paranoid */ verify( __cfaabi_rseq.cpu_id >= 0 );
|
---|
944 |
|
---|
945 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, (sigset_t *)0p, _NSIG / 8);
|
---|
946 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, RSEQ_SIG);
|
---|
947 | if(ret != 0) {
|
---|
948 | int e = errno;
|
---|
949 | switch(e) {
|
---|
950 | case EINVAL: abort("KERNEL ERROR: rseq unregister invalid argument");
|
---|
951 | case ENOSYS: abort("KERNEL ERROR: rseq unregister no supported");
|
---|
952 | case EFAULT: abort("KERNEL ERROR: rseq unregister with invalid argument");
|
---|
953 | case EBUSY : abort("KERNEL ERROR: rseq unregister already registered");
|
---|
954 | case EPERM : abort("KERNEL ERROR: rseq unregister sig argument on unregistration does not match the signature received on registration");
|
---|
955 | default: abort("KERNEL ERROR: rseq unregisteunexpected return %d", e);
|
---|
956 | }
|
---|
957 | }
|
---|
958 | }
|
---|
959 | #else
|
---|
960 | // No definition needed
|
---|
961 | #endif
|
---|