1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // ready_queue.cfa -- |
---|
8 | // |
---|
9 | // Author : Thierry Delisle |
---|
10 | // Created On : Mon Nov dd 16:29:18 2019 |
---|
11 | // Last Modified By : |
---|
12 | // Last Modified On : |
---|
13 | // Update Count : |
---|
14 | // |
---|
15 | |
---|
16 | #define __cforall_thread__ |
---|
17 | #define _GNU_SOURCE |
---|
18 | |
---|
19 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__ |
---|
20 | |
---|
21 | |
---|
22 | #define USE_RELAXED_FIFO |
---|
23 | // #define USE_WORK_STEALING |
---|
24 | // #define USE_CPU_WORK_STEALING |
---|
25 | |
---|
26 | #include "bits/defs.hfa" |
---|
27 | #include "device/cpu.hfa" |
---|
28 | #include "kernel_private.hfa" |
---|
29 | |
---|
30 | #include "stdlib.hfa" |
---|
31 | #include "math.hfa" |
---|
32 | |
---|
33 | #include <errno.h> |
---|
34 | #include <unistd.h> |
---|
35 | |
---|
36 | extern "C" { |
---|
37 | #include <sys/syscall.h> // __NR_xxx |
---|
38 | } |
---|
39 | |
---|
40 | #include "ready_subqueue.hfa" |
---|
41 | |
---|
42 | static const size_t cache_line_size = 64; |
---|
43 | |
---|
44 | #if !defined(__CFA_NO_STATISTICS__) |
---|
45 | #define __STATS(...) __VA_ARGS__ |
---|
46 | #else |
---|
47 | #define __STATS(...) |
---|
48 | #endif |
---|
49 | |
---|
50 | // No overriden function, no environment variable, no define |
---|
51 | // fall back to a magic number |
---|
52 | #ifndef __CFA_MAX_PROCESSORS__ |
---|
53 | #define __CFA_MAX_PROCESSORS__ 1024 |
---|
54 | #endif |
---|
55 | |
---|
56 | #if defined(USE_CPU_WORK_STEALING) |
---|
57 | #define READYQ_SHARD_FACTOR 2 |
---|
58 | #elif defined(USE_RELAXED_FIFO) |
---|
59 | #define BIAS 4 |
---|
60 | #define READYQ_SHARD_FACTOR 4 |
---|
61 | #define SEQUENTIAL_SHARD 1 |
---|
62 | #elif defined(USE_WORK_STEALING) |
---|
63 | #define READYQ_SHARD_FACTOR 2 |
---|
64 | #define SEQUENTIAL_SHARD 2 |
---|
65 | #else |
---|
66 | #error no scheduling strategy selected |
---|
67 | #endif |
---|
68 | |
---|
69 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)); |
---|
70 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)); |
---|
71 | static inline struct $thread * search(struct cluster * cltr); |
---|
72 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred); |
---|
73 | |
---|
74 | |
---|
75 | // returns the maximum number of processors the RWLock support |
---|
76 | __attribute__((weak)) unsigned __max_processors() { |
---|
77 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS"); |
---|
78 | if(!max_cores_s) { |
---|
79 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n"); |
---|
80 | return __CFA_MAX_PROCESSORS__; |
---|
81 | } |
---|
82 | |
---|
83 | char * endptr = 0p; |
---|
84 | long int max_cores_l = strtol(max_cores_s, &endptr, 10); |
---|
85 | if(max_cores_l < 1 || max_cores_l > 65535) { |
---|
86 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l); |
---|
87 | return __CFA_MAX_PROCESSORS__; |
---|
88 | } |
---|
89 | if('\0' != *endptr) { |
---|
90 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s); |
---|
91 | return __CFA_MAX_PROCESSORS__; |
---|
92 | } |
---|
93 | |
---|
94 | return max_cores_l; |
---|
95 | } |
---|
96 | |
---|
97 | #if defined(CFA_HAVE_LINUX_LIBRSEQ) |
---|
98 | // No forward declaration needed |
---|
99 | #define __kernel_rseq_register rseq_register_current_thread |
---|
100 | #define __kernel_rseq_unregister rseq_unregister_current_thread |
---|
101 | #elif defined(CFA_HAVE_LINUX_RSEQ_H) |
---|
102 | void __kernel_raw_rseq_register (void); |
---|
103 | void __kernel_raw_rseq_unregister(void); |
---|
104 | |
---|
105 | #define __kernel_rseq_register __kernel_raw_rseq_register |
---|
106 | #define __kernel_rseq_unregister __kernel_raw_rseq_unregister |
---|
107 | #else |
---|
108 | // No forward declaration needed |
---|
109 | // No initialization needed |
---|
110 | static inline void noop(void) {} |
---|
111 | |
---|
112 | #define __kernel_rseq_register noop |
---|
113 | #define __kernel_rseq_unregister noop |
---|
114 | #endif |
---|
115 | |
---|
116 | //======================================================================= |
---|
117 | // Cluster wide reader-writer lock |
---|
118 | //======================================================================= |
---|
119 | void ?{}(__scheduler_RWLock_t & this) { |
---|
120 | this.max = __max_processors(); |
---|
121 | this.alloc = 0; |
---|
122 | this.ready = 0; |
---|
123 | this.data = alloc(this.max); |
---|
124 | this.write_lock = false; |
---|
125 | |
---|
126 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc)); |
---|
127 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready)); |
---|
128 | |
---|
129 | } |
---|
130 | void ^?{}(__scheduler_RWLock_t & this) { |
---|
131 | free(this.data); |
---|
132 | } |
---|
133 | |
---|
134 | |
---|
135 | //======================================================================= |
---|
136 | // Lock-Free registering/unregistering of threads |
---|
137 | unsigned register_proc_id( void ) with(*__scheduler_lock) { |
---|
138 | __kernel_rseq_register(); |
---|
139 | |
---|
140 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc); |
---|
141 | bool * handle = (bool *)&kernelTLS().sched_lock; |
---|
142 | |
---|
143 | // Step - 1 : check if there is already space in the data |
---|
144 | uint_fast32_t s = ready; |
---|
145 | |
---|
146 | // Check among all the ready |
---|
147 | for(uint_fast32_t i = 0; i < s; i++) { |
---|
148 | bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems |
---|
149 | /* paranoid */ verify( handle != *cell ); |
---|
150 | |
---|
151 | bool * null = 0p; // Re-write every loop since compare thrashes it |
---|
152 | if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null |
---|
153 | && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { |
---|
154 | /* paranoid */ verify(i < ready); |
---|
155 | /* paranoid */ verify( (kernelTLS().sched_id = i, true) ); |
---|
156 | return i; |
---|
157 | } |
---|
158 | } |
---|
159 | |
---|
160 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max); |
---|
161 | |
---|
162 | // Step - 2 : F&A to get a new spot in the array. |
---|
163 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST); |
---|
164 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max); |
---|
165 | |
---|
166 | // Step - 3 : Mark space as used and then publish it. |
---|
167 | data[n] = handle; |
---|
168 | while() { |
---|
169 | unsigned copy = n; |
---|
170 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n |
---|
171 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) |
---|
172 | break; |
---|
173 | Pause(); |
---|
174 | } |
---|
175 | |
---|
176 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n); |
---|
177 | |
---|
178 | // Return new spot. |
---|
179 | /* paranoid */ verify(n < ready); |
---|
180 | /* paranoid */ verify( (kernelTLS().sched_id = n, true) ); |
---|
181 | return n; |
---|
182 | } |
---|
183 | |
---|
184 | void unregister_proc_id( unsigned id ) with(*__scheduler_lock) { |
---|
185 | /* paranoid */ verify(id < ready); |
---|
186 | /* paranoid */ verify(id == kernelTLS().sched_id); |
---|
187 | /* paranoid */ verify(data[id] == &kernelTLS().sched_lock); |
---|
188 | |
---|
189 | bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems |
---|
190 | |
---|
191 | __atomic_store_n(cell, 0p, __ATOMIC_RELEASE); |
---|
192 | |
---|
193 | __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc); |
---|
194 | |
---|
195 | __kernel_rseq_unregister(); |
---|
196 | } |
---|
197 | |
---|
198 | //----------------------------------------------------------------------- |
---|
199 | // Writer side : acquire when changing the ready queue, e.g. adding more |
---|
200 | // queues or removing them. |
---|
201 | uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) { |
---|
202 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
203 | /* paranoid */ verify( ! kernelTLS().sched_lock ); |
---|
204 | |
---|
205 | // Step 1 : lock global lock |
---|
206 | // It is needed to avoid processors that register mid Critical-Section |
---|
207 | // to simply lock their own lock and enter. |
---|
208 | __atomic_acquire( &write_lock ); |
---|
209 | |
---|
210 | // Step 2 : lock per-proc lock |
---|
211 | // Processors that are currently being registered aren't counted |
---|
212 | // but can't be in read_lock or in the critical section. |
---|
213 | // All other processors are counted |
---|
214 | uint_fast32_t s = ready; |
---|
215 | for(uint_fast32_t i = 0; i < s; i++) { |
---|
216 | volatile bool * llock = data[i]; |
---|
217 | if(llock) __atomic_acquire( llock ); |
---|
218 | } |
---|
219 | |
---|
220 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
221 | return s; |
---|
222 | } |
---|
223 | |
---|
224 | void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) { |
---|
225 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
226 | |
---|
227 | // Step 1 : release local locks |
---|
228 | // This must be done while the global lock is held to avoid |
---|
229 | // threads that where created mid critical section |
---|
230 | // to race to lock their local locks and have the writer |
---|
231 | // immidiately unlock them |
---|
232 | // Alternative solution : return s in write_lock and pass it to write_unlock |
---|
233 | for(uint_fast32_t i = 0; i < last_s; i++) { |
---|
234 | volatile bool * llock = data[i]; |
---|
235 | if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE); |
---|
236 | } |
---|
237 | |
---|
238 | // Step 2 : release global lock |
---|
239 | /*paranoid*/ assert(true == write_lock); |
---|
240 | __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE); |
---|
241 | |
---|
242 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
243 | } |
---|
244 | |
---|
245 | //======================================================================= |
---|
246 | // Cforall Ready Queue used for scheduling |
---|
247 | //======================================================================= |
---|
248 | void ?{}(__ready_queue_t & this) with (this) { |
---|
249 | #if defined(USE_CPU_WORK_STEALING) |
---|
250 | lanes.count = cpu_info.hthrd_count * READYQ_SHARD_FACTOR; |
---|
251 | lanes.data = alloc( lanes.count ); |
---|
252 | lanes.tscs = alloc( lanes.count ); |
---|
253 | |
---|
254 | for( idx; (size_t)lanes.count ) { |
---|
255 | (lanes.data[idx]){}; |
---|
256 | lanes.tscs[idx].tv = rdtscl(); |
---|
257 | } |
---|
258 | #else |
---|
259 | lanes.data = 0p; |
---|
260 | lanes.tscs = 0p; |
---|
261 | lanes.count = 0; |
---|
262 | #endif |
---|
263 | } |
---|
264 | |
---|
265 | void ^?{}(__ready_queue_t & this) with (this) { |
---|
266 | #if !defined(USE_CPU_WORK_STEALING) |
---|
267 | verify( SEQUENTIAL_SHARD == lanes.count ); |
---|
268 | #endif |
---|
269 | |
---|
270 | free(lanes.data); |
---|
271 | free(lanes.tscs); |
---|
272 | } |
---|
273 | |
---|
274 | //----------------------------------------------------------------------- |
---|
275 | #if defined(USE_CPU_WORK_STEALING) |
---|
276 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) { |
---|
277 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr); |
---|
278 | |
---|
279 | processor * const proc = kernelTLS().this_processor; |
---|
280 | const bool external = !push_local || (!proc) || (cltr != proc->cltr); |
---|
281 | |
---|
282 | const int cpu = __kernel_getcpu(); |
---|
283 | /* paranoid */ verify(cpu >= 0); |
---|
284 | /* paranoid */ verify(cpu < cpu_info.hthrd_count); |
---|
285 | /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count); |
---|
286 | |
---|
287 | const cpu_map_entry_t & map = cpu_info.llc_map[cpu]; |
---|
288 | /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count); |
---|
289 | /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count); |
---|
290 | /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %zu lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR); |
---|
291 | |
---|
292 | const int start = map.self * READYQ_SHARD_FACTOR; |
---|
293 | unsigned i; |
---|
294 | do { |
---|
295 | unsigned r; |
---|
296 | if(unlikely(external)) { r = __tls_rand(); } |
---|
297 | else { r = proc->rdq.its++; } |
---|
298 | i = start + (r % READYQ_SHARD_FACTOR); |
---|
299 | // If we can't lock it retry |
---|
300 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) ); |
---|
301 | |
---|
302 | // Actually push it |
---|
303 | push(lanes.data[i], thrd); |
---|
304 | |
---|
305 | // Unlock and return |
---|
306 | __atomic_unlock( &lanes.data[i].lock ); |
---|
307 | |
---|
308 | #if !defined(__CFA_NO_STATISTICS__) |
---|
309 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED); |
---|
310 | else __tls_stats()->ready.push.local.success++; |
---|
311 | #endif |
---|
312 | |
---|
313 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first); |
---|
314 | |
---|
315 | } |
---|
316 | |
---|
317 | // Pop from the ready queue from a given cluster |
---|
318 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) { |
---|
319 | /* paranoid */ verify( lanes.count > 0 ); |
---|
320 | /* paranoid */ verify( kernelTLS().this_processor ); |
---|
321 | |
---|
322 | const int cpu = __kernel_getcpu(); |
---|
323 | /* paranoid */ verify(cpu >= 0); |
---|
324 | /* paranoid */ verify(cpu < cpu_info.hthrd_count); |
---|
325 | /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count); |
---|
326 | |
---|
327 | const cpu_map_entry_t & map = cpu_info.llc_map[cpu]; |
---|
328 | /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count); |
---|
329 | /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count); |
---|
330 | /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %zu lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR); |
---|
331 | |
---|
332 | processor * const proc = kernelTLS().this_processor; |
---|
333 | const int start = map.self * READYQ_SHARD_FACTOR; |
---|
334 | |
---|
335 | // Did we already have a help target |
---|
336 | if(proc->rdq.target == -1u) { |
---|
337 | // if We don't have a |
---|
338 | unsigned long long min = ts(lanes.data[start]); |
---|
339 | for(i; READYQ_SHARD_FACTOR) { |
---|
340 | unsigned long long tsc = ts(lanes.data[start + i]); |
---|
341 | if(tsc < min) min = tsc; |
---|
342 | } |
---|
343 | proc->rdq.cutoff = min; |
---|
344 | |
---|
345 | /* paranoid */ verify(lanes.count < 65536); // The following code assumes max 65536 cores. |
---|
346 | /* paranoid */ verify(map.count < 65536); // The following code assumes max 65536 cores. |
---|
347 | uint64_t chaos = __tls_rand(); |
---|
348 | uint64_t high_chaos = (chaos >> 32); |
---|
349 | uint64_t mid_chaos = (chaos >> 16) & 0xffff; |
---|
350 | uint64_t low_chaos = chaos & 0xffff; |
---|
351 | |
---|
352 | unsigned me = map.self; |
---|
353 | unsigned cpu_chaos = map.start + (mid_chaos % map.count); |
---|
354 | bool global = cpu_chaos == me; |
---|
355 | |
---|
356 | if(global) { |
---|
357 | proc->rdq.target = high_chaos % lanes.count; |
---|
358 | } else { |
---|
359 | proc->rdq.target = (cpu_chaos * READYQ_SHARD_FACTOR) + (low_chaos % READYQ_SHARD_FACTOR); |
---|
360 | /* paranoid */ verify(proc->rdq.target >= (map.start * READYQ_SHARD_FACTOR)); |
---|
361 | /* paranoid */ verify(proc->rdq.target < ((map.start + map.count) * READYQ_SHARD_FACTOR)); |
---|
362 | } |
---|
363 | |
---|
364 | /* paranoid */ verify(proc->rdq.target != -1u); |
---|
365 | } |
---|
366 | else { |
---|
367 | const unsigned long long bias = 0; //2_500_000_000; |
---|
368 | const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff; |
---|
369 | { |
---|
370 | unsigned target = proc->rdq.target; |
---|
371 | proc->rdq.target = -1u; |
---|
372 | if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) { |
---|
373 | $thread * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help)); |
---|
374 | proc->rdq.last = target; |
---|
375 | if(t) return t; |
---|
376 | } |
---|
377 | } |
---|
378 | |
---|
379 | unsigned last = proc->rdq.last; |
---|
380 | if(last != -1u && lanes.tscs[last].tv < cutoff && ts(lanes.data[last]) < cutoff) { |
---|
381 | $thread * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.help)); |
---|
382 | if(t) return t; |
---|
383 | } |
---|
384 | else { |
---|
385 | proc->rdq.last = -1u; |
---|
386 | } |
---|
387 | } |
---|
388 | |
---|
389 | for(READYQ_SHARD_FACTOR) { |
---|
390 | unsigned i = start + (proc->rdq.itr++ % READYQ_SHARD_FACTOR); |
---|
391 | if($thread * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t; |
---|
392 | } |
---|
393 | |
---|
394 | // All lanes where empty return 0p |
---|
395 | return 0p; |
---|
396 | } |
---|
397 | |
---|
398 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) with (cltr->ready_queue) { |
---|
399 | processor * const proc = kernelTLS().this_processor; |
---|
400 | unsigned last = proc->rdq.last; |
---|
401 | if(last != -1u) { |
---|
402 | struct $thread * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.steal)); |
---|
403 | if(t) return t; |
---|
404 | proc->rdq.last = -1u; |
---|
405 | } |
---|
406 | |
---|
407 | unsigned i = __tls_rand() % lanes.count; |
---|
408 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal)); |
---|
409 | } |
---|
410 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) { |
---|
411 | return search(cltr); |
---|
412 | } |
---|
413 | #endif |
---|
414 | #if defined(USE_RELAXED_FIFO) |
---|
415 | //----------------------------------------------------------------------- |
---|
416 | // get index from random number with or without bias towards queues |
---|
417 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred) { |
---|
418 | unsigned i; |
---|
419 | bool local; |
---|
420 | unsigned rlow = r % BIAS; |
---|
421 | unsigned rhigh = r / BIAS; |
---|
422 | if((0 != rlow) && preferred >= 0) { |
---|
423 | // (BIAS - 1) out of BIAS chances |
---|
424 | // Use perferred queues |
---|
425 | i = preferred + (rhigh % READYQ_SHARD_FACTOR); |
---|
426 | local = true; |
---|
427 | } |
---|
428 | else { |
---|
429 | // 1 out of BIAS chances |
---|
430 | // Use all queues |
---|
431 | i = rhigh; |
---|
432 | local = false; |
---|
433 | } |
---|
434 | return [i, local]; |
---|
435 | } |
---|
436 | |
---|
437 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) { |
---|
438 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr); |
---|
439 | |
---|
440 | const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr); |
---|
441 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count ); |
---|
442 | |
---|
443 | bool local; |
---|
444 | int preferred = external ? -1 : kernelTLS().this_processor->rdq.id; |
---|
445 | |
---|
446 | // Try to pick a lane and lock it |
---|
447 | unsigned i; |
---|
448 | do { |
---|
449 | // Pick the index of a lane |
---|
450 | unsigned r = __tls_rand_fwd(); |
---|
451 | [i, local] = idx_from_r(r, preferred); |
---|
452 | |
---|
453 | i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED ); |
---|
454 | |
---|
455 | #if !defined(__CFA_NO_STATISTICS__) |
---|
456 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED); |
---|
457 | else if(local) __tls_stats()->ready.push.local.attempt++; |
---|
458 | else __tls_stats()->ready.push.share.attempt++; |
---|
459 | #endif |
---|
460 | |
---|
461 | // If we can't lock it retry |
---|
462 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) ); |
---|
463 | |
---|
464 | // Actually push it |
---|
465 | push(lanes.data[i], thrd); |
---|
466 | |
---|
467 | // Unlock and return |
---|
468 | __atomic_unlock( &lanes.data[i].lock ); |
---|
469 | |
---|
470 | // Mark the current index in the tls rng instance as having an item |
---|
471 | __tls_rand_advance_bck(); |
---|
472 | |
---|
473 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first); |
---|
474 | |
---|
475 | // Update statistics |
---|
476 | #if !defined(__CFA_NO_STATISTICS__) |
---|
477 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED); |
---|
478 | else if(local) __tls_stats()->ready.push.local.success++; |
---|
479 | else __tls_stats()->ready.push.share.success++; |
---|
480 | #endif |
---|
481 | } |
---|
482 | |
---|
483 | // Pop from the ready queue from a given cluster |
---|
484 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) { |
---|
485 | /* paranoid */ verify( lanes.count > 0 ); |
---|
486 | /* paranoid */ verify( kernelTLS().this_processor ); |
---|
487 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count ); |
---|
488 | |
---|
489 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED ); |
---|
490 | int preferred = kernelTLS().this_processor->rdq.id; |
---|
491 | |
---|
492 | |
---|
493 | // As long as the list is not empty, try finding a lane that isn't empty and pop from it |
---|
494 | for(25) { |
---|
495 | // Pick two lists at random |
---|
496 | unsigned ri = __tls_rand_bck(); |
---|
497 | unsigned rj = __tls_rand_bck(); |
---|
498 | |
---|
499 | unsigned i, j; |
---|
500 | __attribute__((unused)) bool locali, localj; |
---|
501 | [i, locali] = idx_from_r(ri, preferred); |
---|
502 | [j, localj] = idx_from_r(rj, preferred); |
---|
503 | |
---|
504 | i %= count; |
---|
505 | j %= count; |
---|
506 | |
---|
507 | // try popping from the 2 picked lists |
---|
508 | struct $thread * thrd = try_pop(cltr, i, j __STATS(, *(locali || localj ? &__tls_stats()->ready.pop.local : &__tls_stats()->ready.pop.help))); |
---|
509 | if(thrd) { |
---|
510 | return thrd; |
---|
511 | } |
---|
512 | } |
---|
513 | |
---|
514 | // All lanes where empty return 0p |
---|
515 | return 0p; |
---|
516 | } |
---|
517 | |
---|
518 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) { return pop_fast(cltr); } |
---|
519 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) { |
---|
520 | return search(cltr); |
---|
521 | } |
---|
522 | #endif |
---|
523 | #if defined(USE_WORK_STEALING) |
---|
524 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) { |
---|
525 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr); |
---|
526 | |
---|
527 | // #define USE_PREFERRED |
---|
528 | #if !defined(USE_PREFERRED) |
---|
529 | const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr); |
---|
530 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count ); |
---|
531 | #else |
---|
532 | unsigned preferred = thrd->preferred; |
---|
533 | const bool external = push_local || (!kernelTLS().this_processor) || preferred == -1u || thrd->curr_cluster != cltr; |
---|
534 | /* paranoid */ verifyf(external || preferred < lanes.count, "Invalid preferred queue %u for %u lanes", preferred, lanes.count ); |
---|
535 | |
---|
536 | unsigned r = preferred % READYQ_SHARD_FACTOR; |
---|
537 | const unsigned start = preferred - r; |
---|
538 | #endif |
---|
539 | |
---|
540 | // Try to pick a lane and lock it |
---|
541 | unsigned i; |
---|
542 | do { |
---|
543 | #if !defined(__CFA_NO_STATISTICS__) |
---|
544 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED); |
---|
545 | else __tls_stats()->ready.push.local.attempt++; |
---|
546 | #endif |
---|
547 | |
---|
548 | if(unlikely(external)) { |
---|
549 | i = __tls_rand() % lanes.count; |
---|
550 | } |
---|
551 | else { |
---|
552 | #if !defined(USE_PREFERRED) |
---|
553 | processor * proc = kernelTLS().this_processor; |
---|
554 | unsigned r = proc->rdq.its++; |
---|
555 | i = proc->rdq.id + (r % READYQ_SHARD_FACTOR); |
---|
556 | #else |
---|
557 | i = start + (r++ % READYQ_SHARD_FACTOR); |
---|
558 | #endif |
---|
559 | } |
---|
560 | // If we can't lock it retry |
---|
561 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) ); |
---|
562 | |
---|
563 | // Actually push it |
---|
564 | push(lanes.data[i], thrd); |
---|
565 | |
---|
566 | // Unlock and return |
---|
567 | __atomic_unlock( &lanes.data[i].lock ); |
---|
568 | |
---|
569 | #if !defined(__CFA_NO_STATISTICS__) |
---|
570 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED); |
---|
571 | else __tls_stats()->ready.push.local.success++; |
---|
572 | #endif |
---|
573 | |
---|
574 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first); |
---|
575 | } |
---|
576 | |
---|
577 | // Pop from the ready queue from a given cluster |
---|
578 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) { |
---|
579 | /* paranoid */ verify( lanes.count > 0 ); |
---|
580 | /* paranoid */ verify( kernelTLS().this_processor ); |
---|
581 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count ); |
---|
582 | |
---|
583 | processor * proc = kernelTLS().this_processor; |
---|
584 | |
---|
585 | if(proc->rdq.target == -1u) { |
---|
586 | unsigned long long min = ts(lanes.data[proc->rdq.id]); |
---|
587 | for(int i = 0; i < READYQ_SHARD_FACTOR; i++) { |
---|
588 | unsigned long long tsc = ts(lanes.data[proc->rdq.id + i]); |
---|
589 | if(tsc < min) min = tsc; |
---|
590 | } |
---|
591 | proc->rdq.cutoff = min; |
---|
592 | proc->rdq.target = __tls_rand() % lanes.count; |
---|
593 | } |
---|
594 | else { |
---|
595 | unsigned target = proc->rdq.target; |
---|
596 | proc->rdq.target = -1u; |
---|
597 | const unsigned long long bias = 0; //2_500_000_000; |
---|
598 | const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff; |
---|
599 | if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) { |
---|
600 | $thread * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help)); |
---|
601 | if(t) return t; |
---|
602 | } |
---|
603 | } |
---|
604 | |
---|
605 | for(READYQ_SHARD_FACTOR) { |
---|
606 | unsigned i = proc->rdq.id + (proc->rdq.itr++ % READYQ_SHARD_FACTOR); |
---|
607 | if($thread * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t; |
---|
608 | } |
---|
609 | return 0p; |
---|
610 | } |
---|
611 | |
---|
612 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) with (cltr->ready_queue) { |
---|
613 | unsigned i = __tls_rand() % lanes.count; |
---|
614 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal)); |
---|
615 | } |
---|
616 | |
---|
617 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) with (cltr->ready_queue) { |
---|
618 | return search(cltr); |
---|
619 | } |
---|
620 | #endif |
---|
621 | |
---|
622 | //======================================================================= |
---|
623 | // Various Ready Queue utilities |
---|
624 | //======================================================================= |
---|
625 | // these function work the same or almost the same |
---|
626 | // whether they are using work-stealing or relaxed fifo scheduling |
---|
627 | |
---|
628 | //----------------------------------------------------------------------- |
---|
629 | // try to pop from a lane given by index w |
---|
630 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) { |
---|
631 | __STATS( stats.attempt++; ) |
---|
632 | |
---|
633 | // Get relevant elements locally |
---|
634 | __intrusive_lane_t & lane = lanes.data[w]; |
---|
635 | |
---|
636 | // If list looks empty retry |
---|
637 | if( is_empty(lane) ) { |
---|
638 | return 0p; |
---|
639 | } |
---|
640 | |
---|
641 | // If we can't get the lock retry |
---|
642 | if( !__atomic_try_acquire(&lane.lock) ) { |
---|
643 | return 0p; |
---|
644 | } |
---|
645 | |
---|
646 | // If list is empty, unlock and retry |
---|
647 | if( is_empty(lane) ) { |
---|
648 | __atomic_unlock(&lane.lock); |
---|
649 | return 0p; |
---|
650 | } |
---|
651 | |
---|
652 | // Actually pop the list |
---|
653 | struct $thread * thrd; |
---|
654 | unsigned long long tsv; |
---|
655 | [thrd, tsv] = pop(lane); |
---|
656 | |
---|
657 | /* paranoid */ verify(thrd); |
---|
658 | /* paranoid */ verify(tsv); |
---|
659 | /* paranoid */ verify(lane.lock); |
---|
660 | |
---|
661 | // Unlock and return |
---|
662 | __atomic_unlock(&lane.lock); |
---|
663 | |
---|
664 | // Update statistics |
---|
665 | __STATS( stats.success++; ) |
---|
666 | |
---|
667 | #if defined(USE_WORK_STEALING) |
---|
668 | lanes.tscs[w].tv = tsv; |
---|
669 | #endif |
---|
670 | |
---|
671 | thrd->preferred = w; |
---|
672 | |
---|
673 | // return the popped thread |
---|
674 | return thrd; |
---|
675 | } |
---|
676 | |
---|
677 | //----------------------------------------------------------------------- |
---|
678 | // try to pop from any lanes making sure you don't miss any threads push |
---|
679 | // before the start of the function |
---|
680 | static inline struct $thread * search(struct cluster * cltr) with (cltr->ready_queue) { |
---|
681 | /* paranoid */ verify( lanes.count > 0 ); |
---|
682 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED ); |
---|
683 | unsigned offset = __tls_rand(); |
---|
684 | for(i; count) { |
---|
685 | unsigned idx = (offset + i) % count; |
---|
686 | struct $thread * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search)); |
---|
687 | if(thrd) { |
---|
688 | return thrd; |
---|
689 | } |
---|
690 | } |
---|
691 | |
---|
692 | // All lanes where empty return 0p |
---|
693 | return 0p; |
---|
694 | } |
---|
695 | |
---|
696 | //----------------------------------------------------------------------- |
---|
697 | // Check that all the intrusive queues in the data structure are still consistent |
---|
698 | static void check( __ready_queue_t & q ) with (q) { |
---|
699 | #if defined(__CFA_WITH_VERIFY__) |
---|
700 | { |
---|
701 | for( idx ; lanes.count ) { |
---|
702 | __intrusive_lane_t & sl = lanes.data[idx]; |
---|
703 | assert(!lanes.data[idx].lock); |
---|
704 | |
---|
705 | if(is_empty(sl)) { |
---|
706 | assert( sl.anchor.next == 0p ); |
---|
707 | assert( sl.anchor.ts == -1llu ); |
---|
708 | assert( mock_head(sl) == sl.prev ); |
---|
709 | } else { |
---|
710 | assert( sl.anchor.next != 0p ); |
---|
711 | assert( sl.anchor.ts != -1llu ); |
---|
712 | assert( mock_head(sl) != sl.prev ); |
---|
713 | } |
---|
714 | } |
---|
715 | } |
---|
716 | #endif |
---|
717 | } |
---|
718 | |
---|
719 | //----------------------------------------------------------------------- |
---|
720 | // Given 2 indexes, pick the list with the oldest push an try to pop from it |
---|
721 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) { |
---|
722 | // Pick the bet list |
---|
723 | int w = i; |
---|
724 | if( __builtin_expect(!is_empty(lanes.data[j]), true) ) { |
---|
725 | w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j; |
---|
726 | } |
---|
727 | |
---|
728 | return try_pop(cltr, w __STATS(, stats)); |
---|
729 | } |
---|
730 | |
---|
731 | // Call this function of the intrusive list was moved using memcpy |
---|
732 | // fixes the list so that the pointers back to anchors aren't left dangling |
---|
733 | static inline void fix(__intrusive_lane_t & ll) { |
---|
734 | if(is_empty(ll)) { |
---|
735 | verify(ll.anchor.next == 0p); |
---|
736 | ll.prev = mock_head(ll); |
---|
737 | } |
---|
738 | } |
---|
739 | |
---|
740 | static void assign_list(unsigned & value, dlist(processor) & list, unsigned count) { |
---|
741 | processor * it = &list`first; |
---|
742 | for(unsigned i = 0; i < count; i++) { |
---|
743 | /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count); |
---|
744 | it->rdq.id = value; |
---|
745 | it->rdq.target = -1u; |
---|
746 | value += READYQ_SHARD_FACTOR; |
---|
747 | it = &(*it)`next; |
---|
748 | } |
---|
749 | } |
---|
750 | |
---|
751 | static void reassign_cltr_id(struct cluster * cltr) { |
---|
752 | unsigned preferred = 0; |
---|
753 | assign_list(preferred, cltr->procs.actives, cltr->procs.total - cltr->procs.idle); |
---|
754 | assign_list(preferred, cltr->procs.idles , cltr->procs.idle ); |
---|
755 | } |
---|
756 | |
---|
757 | static void fix_times( struct cluster * cltr ) with( cltr->ready_queue ) { |
---|
758 | #if defined(USE_WORK_STEALING) |
---|
759 | lanes.tscs = alloc(lanes.count, lanes.tscs`realloc); |
---|
760 | for(i; lanes.count) { |
---|
761 | unsigned long long tsc1 = ts(lanes.data[i]); |
---|
762 | unsigned long long tsc2 = rdtscl(); |
---|
763 | lanes.tscs[i].tv = min(tsc1, tsc2); |
---|
764 | } |
---|
765 | #endif |
---|
766 | } |
---|
767 | |
---|
768 | #if defined(USE_CPU_WORK_STEALING) |
---|
769 | // ready_queue size is fixed in this case |
---|
770 | void ready_queue_grow(struct cluster * cltr) {} |
---|
771 | void ready_queue_shrink(struct cluster * cltr) {} |
---|
772 | #else |
---|
773 | // Grow the ready queue |
---|
774 | void ready_queue_grow(struct cluster * cltr) { |
---|
775 | size_t ncount; |
---|
776 | int target = cltr->procs.total; |
---|
777 | |
---|
778 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
779 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n"); |
---|
780 | |
---|
781 | // Make sure that everything is consistent |
---|
782 | /* paranoid */ check( cltr->ready_queue ); |
---|
783 | |
---|
784 | // grow the ready queue |
---|
785 | with( cltr->ready_queue ) { |
---|
786 | // Find new count |
---|
787 | // Make sure we always have atleast 1 list |
---|
788 | if(target >= 2) { |
---|
789 | ncount = target * READYQ_SHARD_FACTOR; |
---|
790 | } else { |
---|
791 | ncount = SEQUENTIAL_SHARD; |
---|
792 | } |
---|
793 | |
---|
794 | // Allocate new array (uses realloc and memcpies the data) |
---|
795 | lanes.data = alloc( ncount, lanes.data`realloc ); |
---|
796 | |
---|
797 | // Fix the moved data |
---|
798 | for( idx; (size_t)lanes.count ) { |
---|
799 | fix(lanes.data[idx]); |
---|
800 | } |
---|
801 | |
---|
802 | // Construct new data |
---|
803 | for( idx; (size_t)lanes.count ~ ncount) { |
---|
804 | (lanes.data[idx]){}; |
---|
805 | } |
---|
806 | |
---|
807 | // Update original |
---|
808 | lanes.count = ncount; |
---|
809 | } |
---|
810 | |
---|
811 | fix_times(cltr); |
---|
812 | |
---|
813 | reassign_cltr_id(cltr); |
---|
814 | |
---|
815 | // Make sure that everything is consistent |
---|
816 | /* paranoid */ check( cltr->ready_queue ); |
---|
817 | |
---|
818 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n"); |
---|
819 | |
---|
820 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
821 | } |
---|
822 | |
---|
823 | // Shrink the ready queue |
---|
824 | void ready_queue_shrink(struct cluster * cltr) { |
---|
825 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
826 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n"); |
---|
827 | |
---|
828 | // Make sure that everything is consistent |
---|
829 | /* paranoid */ check( cltr->ready_queue ); |
---|
830 | |
---|
831 | int target = cltr->procs.total; |
---|
832 | |
---|
833 | with( cltr->ready_queue ) { |
---|
834 | // Remember old count |
---|
835 | size_t ocount = lanes.count; |
---|
836 | |
---|
837 | // Find new count |
---|
838 | // Make sure we always have atleast 1 list |
---|
839 | lanes.count = target >= 2 ? target * READYQ_SHARD_FACTOR: SEQUENTIAL_SHARD; |
---|
840 | /* paranoid */ verify( ocount >= lanes.count ); |
---|
841 | /* paranoid */ verify( lanes.count == target * READYQ_SHARD_FACTOR || target < 2 ); |
---|
842 | |
---|
843 | // for printing count the number of displaced threads |
---|
844 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) |
---|
845 | __attribute__((unused)) size_t displaced = 0; |
---|
846 | #endif |
---|
847 | |
---|
848 | // redistribute old data |
---|
849 | for( idx; (size_t)lanes.count ~ ocount) { |
---|
850 | // Lock is not strictly needed but makes checking invariants much easier |
---|
851 | __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock); |
---|
852 | verify(locked); |
---|
853 | |
---|
854 | // As long as we can pop from this lane to push the threads somewhere else in the queue |
---|
855 | while(!is_empty(lanes.data[idx])) { |
---|
856 | struct $thread * thrd; |
---|
857 | unsigned long long _; |
---|
858 | [thrd, _] = pop(lanes.data[idx]); |
---|
859 | |
---|
860 | push(cltr, thrd, true); |
---|
861 | |
---|
862 | // for printing count the number of displaced threads |
---|
863 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) |
---|
864 | displaced++; |
---|
865 | #endif |
---|
866 | } |
---|
867 | |
---|
868 | // Unlock the lane |
---|
869 | __atomic_unlock(&lanes.data[idx].lock); |
---|
870 | |
---|
871 | // TODO print the queue statistics here |
---|
872 | |
---|
873 | ^(lanes.data[idx]){}; |
---|
874 | } |
---|
875 | |
---|
876 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced); |
---|
877 | |
---|
878 | // Allocate new array (uses realloc and memcpies the data) |
---|
879 | lanes.data = alloc( lanes.count, lanes.data`realloc ); |
---|
880 | |
---|
881 | // Fix the moved data |
---|
882 | for( idx; (size_t)lanes.count ) { |
---|
883 | fix(lanes.data[idx]); |
---|
884 | } |
---|
885 | } |
---|
886 | |
---|
887 | fix_times(cltr); |
---|
888 | |
---|
889 | reassign_cltr_id(cltr); |
---|
890 | |
---|
891 | // Make sure that everything is consistent |
---|
892 | /* paranoid */ check( cltr->ready_queue ); |
---|
893 | |
---|
894 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n"); |
---|
895 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
896 | } |
---|
897 | #endif |
---|
898 | |
---|
899 | #if !defined(__CFA_NO_STATISTICS__) |
---|
900 | unsigned cnt(const __ready_queue_t & this, unsigned idx) { |
---|
901 | /* paranoid */ verify(this.lanes.count > idx); |
---|
902 | return this.lanes.data[idx].cnt; |
---|
903 | } |
---|
904 | #endif |
---|
905 | |
---|
906 | |
---|
907 | #if defined(CFA_HAVE_LINUX_LIBRSEQ) |
---|
908 | // No definition needed |
---|
909 | #elif defined(CFA_HAVE_LINUX_RSEQ_H) |
---|
910 | |
---|
911 | #if defined( __x86_64 ) || defined( __i386 ) |
---|
912 | #define RSEQ_SIG 0x53053053 |
---|
913 | #elif defined( __ARM_ARCH ) |
---|
914 | #ifdef __ARMEB__ |
---|
915 | #define RSEQ_SIG 0xf3def5e7 /* udf #24035 ; 0x5de3 (ARMv6+) */ |
---|
916 | #else |
---|
917 | #define RSEQ_SIG 0xe7f5def3 /* udf #24035 ; 0x5de3 */ |
---|
918 | #endif |
---|
919 | #endif |
---|
920 | |
---|
921 | extern void __disable_interrupts_hard(); |
---|
922 | extern void __enable_interrupts_hard(); |
---|
923 | |
---|
924 | void __kernel_raw_rseq_register (void) { |
---|
925 | /* paranoid */ verify( __cfaabi_rseq.cpu_id == RSEQ_CPU_ID_UNINITIALIZED ); |
---|
926 | |
---|
927 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, (sigset_t *)0p, _NSIG / 8); |
---|
928 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, RSEQ_SIG); |
---|
929 | if(ret != 0) { |
---|
930 | int e = errno; |
---|
931 | switch(e) { |
---|
932 | case EINVAL: abort("KERNEL ERROR: rseq register invalid argument"); |
---|
933 | case ENOSYS: abort("KERNEL ERROR: rseq register no supported"); |
---|
934 | case EFAULT: abort("KERNEL ERROR: rseq register with invalid argument"); |
---|
935 | case EBUSY : abort("KERNEL ERROR: rseq register already registered"); |
---|
936 | case EPERM : abort("KERNEL ERROR: rseq register sig argument on unregistration does not match the signature received on registration"); |
---|
937 | default: abort("KERNEL ERROR: rseq register unexpected return %d", e); |
---|
938 | } |
---|
939 | } |
---|
940 | } |
---|
941 | |
---|
942 | void __kernel_raw_rseq_unregister(void) { |
---|
943 | /* paranoid */ verify( __cfaabi_rseq.cpu_id >= 0 ); |
---|
944 | |
---|
945 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, (sigset_t *)0p, _NSIG / 8); |
---|
946 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, RSEQ_SIG); |
---|
947 | if(ret != 0) { |
---|
948 | int e = errno; |
---|
949 | switch(e) { |
---|
950 | case EINVAL: abort("KERNEL ERROR: rseq unregister invalid argument"); |
---|
951 | case ENOSYS: abort("KERNEL ERROR: rseq unregister no supported"); |
---|
952 | case EFAULT: abort("KERNEL ERROR: rseq unregister with invalid argument"); |
---|
953 | case EBUSY : abort("KERNEL ERROR: rseq unregister already registered"); |
---|
954 | case EPERM : abort("KERNEL ERROR: rseq unregister sig argument on unregistration does not match the signature received on registration"); |
---|
955 | default: abort("KERNEL ERROR: rseq unregisteunexpected return %d", e); |
---|
956 | } |
---|
957 | } |
---|
958 | } |
---|
959 | #else |
---|
960 | // No definition needed |
---|
961 | #endif |
---|