1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // ready_queue.cfa --
|
---|
8 | //
|
---|
9 | // Author : Thierry Delisle
|
---|
10 | // Created On : Mon Nov dd 16:29:18 2019
|
---|
11 | // Last Modified By :
|
---|
12 | // Last Modified On :
|
---|
13 | // Update Count :
|
---|
14 | //
|
---|
15 |
|
---|
16 | #define __cforall_thread__
|
---|
17 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__
|
---|
18 |
|
---|
19 | #include "bits/defs.hfa"
|
---|
20 | #include "kernel_private.hfa"
|
---|
21 |
|
---|
22 | #define _GNU_SOURCE
|
---|
23 | #include "stdlib.hfa"
|
---|
24 |
|
---|
25 | static const size_t cache_line_size = 64;
|
---|
26 |
|
---|
27 | // No overriden function, no environment variable, no define
|
---|
28 | // fall back to a magic number
|
---|
29 | #ifndef __CFA_MAX_PROCESSORS__
|
---|
30 | #define __CFA_MAX_PROCESSORS__ 128
|
---|
31 | #endif
|
---|
32 |
|
---|
33 | // returns the maximum number of processors the RWLock support
|
---|
34 | __attribute__((weak)) unsigned __max_processors() {
|
---|
35 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
|
---|
36 | if(!max_cores_s) {
|
---|
37 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
|
---|
38 | return __CFA_MAX_PROCESSORS__;
|
---|
39 | }
|
---|
40 |
|
---|
41 | char * endptr = 0p;
|
---|
42 | long int max_cores_l = strtol(max_cores_s, &endptr, 10);
|
---|
43 | if(max_cores_l < 1 || max_cores_l > 65535) {
|
---|
44 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
|
---|
45 | return __CFA_MAX_PROCESSORS__;
|
---|
46 | }
|
---|
47 | if('\0' != *endptr) {
|
---|
48 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
|
---|
49 | return __CFA_MAX_PROCESSORS__;
|
---|
50 | }
|
---|
51 |
|
---|
52 | return max_cores_l;
|
---|
53 | }
|
---|
54 |
|
---|
55 | // Picks a random 1 bit in 'mask' according to random number 'rnum'.
|
---|
56 | static inline unsigned rand_bit(unsigned rnum, __cfa_readyQ_mask_t mask) {
|
---|
57 | #if defined( __i386 )
|
---|
58 | static_assert(sizeof(mask) == 4);
|
---|
59 | unsigned bit = mask ? rnum % __builtin_popcount(mask) : 0;
|
---|
60 | #if !defined(__BMI2__)
|
---|
61 | #error rand_bit not implemented for non __BMI2__ i386
|
---|
62 | #else
|
---|
63 | uint32_t picked = _pdep_u32(1ul << bit, mask);
|
---|
64 | return picked ? __builtin_ctz(picked) : 0;
|
---|
65 | #endif
|
---|
66 | #elif defined( __x86_64 )
|
---|
67 | static_assert(sizeof(mask) == 8);
|
---|
68 | unsigned bit = mask ? rnum % __builtin_popcountl(mask) : 0;
|
---|
69 | #if !defined(__BMI2__)
|
---|
70 | uint64_t v = mask; // Input value to find position with rank r.
|
---|
71 | unsigned int r = bit + 1;// Input: bit's desired rank [1-64].
|
---|
72 | unsigned int s; // Output: Resulting position of bit with rank r [1-64]
|
---|
73 | uint64_t a, b, c, d; // Intermediate temporaries for bit count.
|
---|
74 | unsigned int t; // Bit count temporary.
|
---|
75 |
|
---|
76 | // Do a normal parallel bit count for a 64-bit integer,
|
---|
77 | // but store all intermediate steps.
|
---|
78 | a = v - ((v >> 1) & ~0UL/3);
|
---|
79 | b = (a & ~0UL/5) + ((a >> 2) & ~0UL/5);
|
---|
80 | c = (b + (b >> 4)) & ~0UL/0x11;
|
---|
81 | d = (c + (c >> 8)) & ~0UL/0x101;
|
---|
82 |
|
---|
83 |
|
---|
84 | t = (d >> 32) + (d >> 48);
|
---|
85 | // Now do branchless select!
|
---|
86 | s = 64;
|
---|
87 | s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8));
|
---|
88 | t = (d >> (s - 16)) & 0xff;
|
---|
89 | s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8));
|
---|
90 | t = (c >> (s - 8)) & 0xf;
|
---|
91 | s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8));
|
---|
92 | t = (b >> (s - 4)) & 0x7;
|
---|
93 | s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8));
|
---|
94 | t = (a >> (s - 2)) & 0x3;
|
---|
95 | s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8));
|
---|
96 | t = (v >> (s - 1)) & 0x1;
|
---|
97 | s -= ((t - r) & 256) >> 8;
|
---|
98 | return s - 1;
|
---|
99 | #else
|
---|
100 | uint64_t picked = _pdep_u64(1ul << bit, mask);
|
---|
101 | return picked ? __builtin_ctzl(picked) : 0;
|
---|
102 | #endif
|
---|
103 | #elif defined( __ARM_ARCH )
|
---|
104 | #error rand_bit not implemented for arm
|
---|
105 | #else
|
---|
106 | #error uknown hardware architecture
|
---|
107 | #endif
|
---|
108 | }
|
---|
109 |
|
---|
110 |
|
---|
111 | //-----------------------------------------------------------------------------
|
---|
112 | // Helpers used by extract
|
---|
113 | // (_mask_bitsidx() & X) returns a bit index valid for a __cfa_readyQ_mask_t, where X is any integer
|
---|
114 | static inline __cfa_readyQ_mask_t _mask_bitsidx () __attribute__ ((const)) { return (8 * sizeof(__cfa_readyQ_mask_t)) - 1; }
|
---|
115 |
|
---|
116 | // (X >> _mask_shiftidx()) retuns an index into an array of __cfa_readyQ_mask_t
|
---|
117 | static inline __cfa_readyQ_mask_t _mask_shiftidx() __attribute__ ((const)) { return (8 * sizeof(__cfa_readyQ_mask_t)) - __builtin_clzl(_mask_bitsidx()); }
|
---|
118 |
|
---|
119 |
|
---|
120 | // Assuming a large bit mask represented as an array of __cfa_readyQ_mask_t
|
---|
121 | // Given an index into the large mask, returns the bit index and which __cfa_readyQ_mask_t index in the array
|
---|
122 | static inline [__cfa_readyQ_mask_t, __cfa_readyQ_mask_t] extract(__cfa_readyQ_mask_t idx) {
|
---|
123 | __cfa_readyQ_mask_t word = idx >> _mask_shiftidx();
|
---|
124 | __cfa_readyQ_mask_t bit = idx & _mask_bitsidx();
|
---|
125 | return [bit, word];
|
---|
126 | }
|
---|
127 |
|
---|
128 | //=======================================================================
|
---|
129 | // Cluster wide reader-writer lock
|
---|
130 | //=======================================================================
|
---|
131 | void ?{}(__clusterRWLock_t & this) {
|
---|
132 | this.max = __max_processors();
|
---|
133 | this.alloc = 0;
|
---|
134 | this.ready = 0;
|
---|
135 | this.lock = false;
|
---|
136 | this.data = alloc(this.max);
|
---|
137 |
|
---|
138 | /*paranoid*/ verify( 0 == (((uintptr_t)(this.data )) % 64) );
|
---|
139 | /*paranoid*/ verify( 0 == (((uintptr_t)(this.data + 1)) % 64) );
|
---|
140 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
|
---|
141 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
|
---|
142 |
|
---|
143 | }
|
---|
144 | void ^?{}(__clusterRWLock_t & this) {
|
---|
145 | free(this.data);
|
---|
146 | }
|
---|
147 |
|
---|
148 | void ?{}( __processor_id & this, struct processor * proc ) {
|
---|
149 | this.handle = proc;
|
---|
150 | this.lock = false;
|
---|
151 | }
|
---|
152 |
|
---|
153 | //=======================================================================
|
---|
154 | // Lock-Free registering/unregistering of threads
|
---|
155 | unsigned doregister2( struct cluster * cltr, struct processor * proc ) with(cltr->ready_lock) {
|
---|
156 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p with cluster %p\n", proc, cltr);
|
---|
157 |
|
---|
158 | // Step - 1 : check if there is already space in the data
|
---|
159 | uint_fast32_t s = ready;
|
---|
160 |
|
---|
161 | // Check among all the ready
|
---|
162 | for(uint_fast32_t i = 0; i < s; i++) {
|
---|
163 | processor * null = 0p; // Re-write every loop since compare thrashes it
|
---|
164 | if( __atomic_load_n(&data[i].handle, (int)__ATOMIC_RELAXED) == null
|
---|
165 | && __atomic_compare_exchange_n( &data[i].handle, &null, proc, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
---|
166 | /*paranoid*/ verify(i < ready);
|
---|
167 | /*paranoid*/ verify(__alignof__(data[i]) == cache_line_size);
|
---|
168 | /*paranoid*/ verify((((uintptr_t)&data[i]) % cache_line_size) == 0);
|
---|
169 | return i;
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | if(max <= alloc) abort("Trying to create more than %ud processors", cltr->ready_lock.max);
|
---|
174 |
|
---|
175 | // Step - 2 : F&A to get a new spot in the array.
|
---|
176 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
|
---|
177 | if(max <= n) abort("Trying to create more than %ud processors", cltr->ready_lock.max);
|
---|
178 |
|
---|
179 | // Step - 3 : Mark space as used and then publish it.
|
---|
180 | __processor_id * storage = (__processor_id *)&data[n];
|
---|
181 | (*storage){ proc };
|
---|
182 | while(true) {
|
---|
183 | unsigned copy = n;
|
---|
184 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
|
---|
185 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
|
---|
186 | break;
|
---|
187 | asm volatile("pause");
|
---|
188 | }
|
---|
189 |
|
---|
190 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n);
|
---|
191 |
|
---|
192 | // Return new spot.
|
---|
193 | /*paranoid*/ verify(n < ready);
|
---|
194 | /*paranoid*/ verify(__alignof__(data[n]) == cache_line_size);
|
---|
195 | /*paranoid*/ verify((((uintptr_t)&data[n]) % cache_line_size) == 0);
|
---|
196 | return n;
|
---|
197 | }
|
---|
198 |
|
---|
199 | void unregister2( struct cluster * cltr, struct processor * proc ) with(cltr->ready_lock) {
|
---|
200 | unsigned id = proc->id;
|
---|
201 | /*paranoid*/ verify(id < ready);
|
---|
202 | /*paranoid*/ verify(proc == __atomic_load_n(&data[id].handle, __ATOMIC_RELAXED));
|
---|
203 | __atomic_store_n(&data[id].handle, 0p, __ATOMIC_RELEASE);
|
---|
204 |
|
---|
205 | __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc);
|
---|
206 | }
|
---|
207 |
|
---|
208 | //-----------------------------------------------------------------------
|
---|
209 | // Writer side : acquire when changing the ready queue, e.g. adding more
|
---|
210 | // queues or removing them.
|
---|
211 | uint_fast32_t ready_mutate_lock( struct cluster & cltr ) with(cltr.ready_lock) {
|
---|
212 | // Step 1 : lock global lock
|
---|
213 | // It is needed to avoid processors that register mid Critical-Section
|
---|
214 | // to simply lock their own lock and enter.
|
---|
215 | __atomic_acquire( &lock );
|
---|
216 |
|
---|
217 | // Step 2 : lock per-proc lock
|
---|
218 | // Processors that are currently being registered aren't counted
|
---|
219 | // but can't be in read_lock or in the critical section.
|
---|
220 | // All other processors are counted
|
---|
221 | uint_fast32_t s = ready;
|
---|
222 | for(uint_fast32_t i = 0; i < s; i++) {
|
---|
223 | __atomic_acquire( &data[i].lock );
|
---|
224 | }
|
---|
225 |
|
---|
226 | return s;
|
---|
227 | }
|
---|
228 |
|
---|
229 | void ready_mutate_unlock( struct cluster & cltr, uint_fast32_t last_s ) with(cltr.ready_lock) {
|
---|
230 | // Step 1 : release local locks
|
---|
231 | // This must be done while the global lock is held to avoid
|
---|
232 | // threads that where created mid critical section
|
---|
233 | // to race to lock their local locks and have the writer
|
---|
234 | // immidiately unlock them
|
---|
235 | // Alternative solution : return s in write_lock and pass it to write_unlock
|
---|
236 | for(uint_fast32_t i = 0; i < last_s; i++) {
|
---|
237 | verify(data[i].lock);
|
---|
238 | __atomic_store_n(&data[i].lock, (bool)false, __ATOMIC_RELEASE);
|
---|
239 | }
|
---|
240 |
|
---|
241 | // Step 2 : release global lock
|
---|
242 | /*paranoid*/ assert(true == lock);
|
---|
243 | __atomic_store_n(&lock, (bool)false, __ATOMIC_RELEASE);
|
---|
244 | }
|
---|
245 |
|
---|
246 | //=======================================================================
|
---|
247 | // Intrusive Queue used by ready queue
|
---|
248 | //=======================================================================
|
---|
249 | // Get the head pointer (one before the first element) from the anchor
|
---|
250 | static inline $thread * head(const __intrusive_lane_t & this) {
|
---|
251 | $thread * rhead = ($thread *)(
|
---|
252 | (uintptr_t)( &this.before ) - offsetof( $thread, link )
|
---|
253 | );
|
---|
254 | /* paranoid */ verify(rhead);
|
---|
255 | return rhead;
|
---|
256 | }
|
---|
257 |
|
---|
258 | // Get the tail pointer (one after the last element) from the anchor
|
---|
259 | static inline $thread * tail(const __intrusive_lane_t & this) {
|
---|
260 | $thread * rtail = ($thread *)(
|
---|
261 | (uintptr_t)( &this.after ) - offsetof( $thread, link )
|
---|
262 | );
|
---|
263 | /* paranoid */ verify(rtail);
|
---|
264 | return rtail;
|
---|
265 | }
|
---|
266 |
|
---|
267 | // Ctor
|
---|
268 | void ?{}( __intrusive_lane_t & this ) {
|
---|
269 | this.lock = false;
|
---|
270 | #if defined(__CFA_WITH_VERIFY__)
|
---|
271 | this.last_id = -1u;
|
---|
272 | this.count = 0u;
|
---|
273 | #endif
|
---|
274 |
|
---|
275 | this.before.link.prev = 0p;
|
---|
276 | this.before.link.next = tail(this);
|
---|
277 | this.before.link.ts = 0;
|
---|
278 |
|
---|
279 | this.after .link.prev = head(this);
|
---|
280 | this.after .link.next = 0p;
|
---|
281 | this.after .link.ts = 0;
|
---|
282 |
|
---|
283 | #if !defined(__CFA_NO_SCHED_STATS__)
|
---|
284 | this.stat.diff = 0;
|
---|
285 | this.stat.push = 0;
|
---|
286 | this.stat.pop = 0;
|
---|
287 | #endif
|
---|
288 |
|
---|
289 | // We add a boat-load of assertions here because the anchor code is very fragile
|
---|
290 | /* paranoid */ verify(((uintptr_t)( head(this) ) + offsetof( $thread, link )) == (uintptr_t)(&this.before));
|
---|
291 | /* paranoid */ verify(((uintptr_t)( tail(this) ) + offsetof( $thread, link )) == (uintptr_t)(&this.after ));
|
---|
292 | /* paranoid */ verify(head(this)->link.prev == 0p );
|
---|
293 | /* paranoid */ verify(head(this)->link.next == tail(this) );
|
---|
294 | /* paranoid */ verify(tail(this)->link.next == 0p );
|
---|
295 | /* paranoid */ verify(tail(this)->link.prev == head(this) );
|
---|
296 | /* paranoid */ verify(&head(this)->link.prev == &this.before.link.prev );
|
---|
297 | /* paranoid */ verify(&head(this)->link.next == &this.before.link.next );
|
---|
298 | /* paranoid */ verify(&tail(this)->link.prev == &this.after .link.prev );
|
---|
299 | /* paranoid */ verify(&tail(this)->link.next == &this.after .link.next );
|
---|
300 | /* paranoid */ verify(sizeof(__intrusive_lane_t) == 128);
|
---|
301 | /* paranoid */ verify(sizeof(this) == 128);
|
---|
302 | /* paranoid */ verify(__alignof__(__intrusive_lane_t) == 128);
|
---|
303 | /* paranoid */ verify(__alignof__(this) == 128);
|
---|
304 | /* paranoid */ verifyf(((intptr_t)(&this) % 128) == 0, "Expected address to be aligned %p %% 128 == %zd", &this, ((intptr_t)(&this) % 128));
|
---|
305 |
|
---|
306 | /* paranoid */ verifyf(_mask_shiftidx() == 6 , "%llu", _mask_shiftidx());
|
---|
307 | /* paranoid */ verifyf(_mask_bitsidx () == 63, "%llu", _mask_bitsidx());
|
---|
308 | }
|
---|
309 |
|
---|
310 | // Dtor is trivial
|
---|
311 | void ^?{}( __intrusive_lane_t & this ) {
|
---|
312 | // Make sure the list is empty
|
---|
313 | /* paranoid */ verify(head(this)->link.prev == 0p );
|
---|
314 | /* paranoid */ verify(head(this)->link.next == tail(this) );
|
---|
315 | /* paranoid */ verify(tail(this)->link.next == 0p );
|
---|
316 | /* paranoid */ verify(tail(this)->link.prev == head(this) );
|
---|
317 | /* paranoid */ verify(this.count == 0u );
|
---|
318 | }
|
---|
319 |
|
---|
320 | // Push a thread onto this lane
|
---|
321 | // returns true of lane was empty before push, false otherwise
|
---|
322 | bool push(__intrusive_lane_t & this, $thread * node) {
|
---|
323 | #if defined(__CFA_WITH_VERIFY__)
|
---|
324 | /* paranoid */ verify(this.lock);
|
---|
325 | /* paranoid */ verify(node->link.ts != 0);
|
---|
326 | /* paranoid */ verify(node->link.next == 0p);
|
---|
327 | /* paranoid */ verify(node->link.prev == 0p);
|
---|
328 | /* paranoid */ verify(tail(this)->link.next == 0p);
|
---|
329 | /* paranoid */ verify(head(this)->link.prev == 0p);
|
---|
330 |
|
---|
331 | this.count++;
|
---|
332 |
|
---|
333 | if(this.before.link.ts == 0l) {
|
---|
334 | /* paranoid */ verify(tail(this)->link.prev == head(this));
|
---|
335 | /* paranoid */ verify(head(this)->link.next == tail(this));
|
---|
336 | } else {
|
---|
337 | /* paranoid */ verify(tail(this)->link.prev != head(this));
|
---|
338 | /* paranoid */ verify(head(this)->link.next != tail(this));
|
---|
339 | }
|
---|
340 | #endif
|
---|
341 |
|
---|
342 | // Get the relevant nodes locally
|
---|
343 | $thread * tail = tail(this);
|
---|
344 | $thread * prev = tail->link.prev;
|
---|
345 |
|
---|
346 | // Do the push
|
---|
347 | node->link.next = tail;
|
---|
348 | node->link.prev = prev;
|
---|
349 | prev->link.next = node;
|
---|
350 | tail->link.prev = node;
|
---|
351 |
|
---|
352 | // Update stats
|
---|
353 | #if !defined(__CFA_NO_SCHED_STATS__)
|
---|
354 | this.stat.diff++;
|
---|
355 | this.stat.push++;
|
---|
356 | #endif
|
---|
357 |
|
---|
358 | verify(node->link.next == tail(this));
|
---|
359 |
|
---|
360 | // Check if the queue used to be empty
|
---|
361 | if(this.before.link.ts == 0l) {
|
---|
362 | this.before.link.ts = node->link.ts;
|
---|
363 | /* paranoid */ verify(node->link.prev == head(this));
|
---|
364 | return true;
|
---|
365 | }
|
---|
366 | return false;
|
---|
367 | }
|
---|
368 |
|
---|
369 | // Pop a thread from this lane (must be non-empty)
|
---|
370 | // returns popped
|
---|
371 | // returns true of lane was empty before push, false otherwise
|
---|
372 | [$thread *, bool] pop(__intrusive_lane_t & this) {
|
---|
373 | /* paranoid */ verify(this.lock);
|
---|
374 | /* paranoid */ verify(this.before.link.ts != 0ul);
|
---|
375 |
|
---|
376 | // Get anchors locally
|
---|
377 | $thread * head = head(this);
|
---|
378 | $thread * tail = tail(this);
|
---|
379 |
|
---|
380 | // Get the relevant nodes locally
|
---|
381 | $thread * node = head->link.next;
|
---|
382 | $thread * next = node->link.next;
|
---|
383 |
|
---|
384 | #if defined(__CFA_WITH_VERIFY__)
|
---|
385 | this.count--;
|
---|
386 | /* paranoid */ verify(node != tail);
|
---|
387 | /* paranoid */ verify(node);
|
---|
388 | #endif
|
---|
389 |
|
---|
390 | // Do the pop
|
---|
391 | head->link.next = next;
|
---|
392 | next->link.prev = head;
|
---|
393 | node->link.[next, prev] = 0p;
|
---|
394 |
|
---|
395 | // Update head time stamp
|
---|
396 | this.before.link.ts = next->link.ts;
|
---|
397 |
|
---|
398 | // Update stats
|
---|
399 | #ifndef __CFA_NO_SCHED_STATS__
|
---|
400 | this.stat.diff--;
|
---|
401 | this.stat.pop ++;
|
---|
402 | #endif
|
---|
403 |
|
---|
404 | // Check if we emptied list and return accordingly
|
---|
405 | /* paranoid */ verify(tail(this)->link.next == 0p);
|
---|
406 | /* paranoid */ verify(head(this)->link.prev == 0p);
|
---|
407 | if(next == tail) {
|
---|
408 | /* paranoid */ verify(this.before.link.ts == 0);
|
---|
409 | /* paranoid */ verify(tail(this)->link.prev == head(this));
|
---|
410 | /* paranoid */ verify(head(this)->link.next == tail(this));
|
---|
411 | return [node, true];
|
---|
412 | }
|
---|
413 | else {
|
---|
414 | /* paranoid */ verify(next->link.ts != 0);
|
---|
415 | /* paranoid */ verify(tail(this)->link.prev != head(this));
|
---|
416 | /* paranoid */ verify(head(this)->link.next != tail(this));
|
---|
417 | /* paranoid */ verify(this.before.link.ts != 0);
|
---|
418 | return [node, false];
|
---|
419 | }
|
---|
420 | }
|
---|
421 |
|
---|
422 | // Check whether or not list is empty
|
---|
423 | static inline bool is_empty(__intrusive_lane_t & this) {
|
---|
424 | // Cannot verify here since it may not be locked
|
---|
425 | return this.before.link.ts == 0;
|
---|
426 | }
|
---|
427 |
|
---|
428 | // Return the timestamp
|
---|
429 | static inline unsigned long long ts(__intrusive_lane_t & this) {
|
---|
430 | // Cannot verify here since it may not be locked
|
---|
431 | return this.before.link.ts;
|
---|
432 | }
|
---|
433 |
|
---|
434 | //=======================================================================
|
---|
435 | // Cforall Reqdy Queue used by ready queue
|
---|
436 | //=======================================================================
|
---|
437 |
|
---|
438 | // Thread local mirror of ready queue statistics
|
---|
439 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
440 | static __attribute__((aligned(128))) thread_local struct {
|
---|
441 | struct {
|
---|
442 | struct {
|
---|
443 | size_t attempt;
|
---|
444 | size_t success;
|
---|
445 | } push;
|
---|
446 | struct {
|
---|
447 | size_t maskrds;
|
---|
448 | size_t attempt;
|
---|
449 | size_t success;
|
---|
450 | } pop;
|
---|
451 | } pick;
|
---|
452 | struct {
|
---|
453 | size_t value;
|
---|
454 | size_t count;
|
---|
455 | } used;
|
---|
456 | } tls = {
|
---|
457 | /* pick */{
|
---|
458 | /* push */{ 0, 0 },
|
---|
459 | /* pop */{ 0, 0, 0 },
|
---|
460 | },
|
---|
461 | /* used */{ 0, 0 }
|
---|
462 | };
|
---|
463 | #endif
|
---|
464 |
|
---|
465 | //-----------------------------------------------------------------------
|
---|
466 |
|
---|
467 | void ?{}(__ready_queue_t & this) with (this) {
|
---|
468 | used.count = 0;
|
---|
469 | for( i ; __cfa_lane_mask_size ) {
|
---|
470 | used.mask[i] = 0;
|
---|
471 | }
|
---|
472 |
|
---|
473 | lanes.data = alloc(4);
|
---|
474 | for( i; 4 ) {
|
---|
475 | (lanes.data[i]){};
|
---|
476 | }
|
---|
477 | lanes.count = 4;
|
---|
478 |
|
---|
479 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
480 | global_stats.pick.push.attempt = 0;
|
---|
481 | global_stats.pick.push.success = 0;
|
---|
482 | global_stats.pick.pop .maskrds = 0;
|
---|
483 | global_stats.pick.pop .attempt = 0;
|
---|
484 | global_stats.pick.pop .success = 0;
|
---|
485 |
|
---|
486 | global_stats.used.value = 0;
|
---|
487 | global_stats.used.count = 0;
|
---|
488 | #endif
|
---|
489 | }
|
---|
490 |
|
---|
491 | void ^?{}(__ready_queue_t & this) with (this) {
|
---|
492 | verify( 4 == lanes.count );
|
---|
493 | verify( 0 == used .count );
|
---|
494 |
|
---|
495 | for( i; 4 ) {
|
---|
496 | ^(lanes.data[i]){};
|
---|
497 | }
|
---|
498 | free(lanes.data);
|
---|
499 |
|
---|
500 |
|
---|
501 | #if defined(__CFA_WITH_VERIFY__)
|
---|
502 | for( i ; __cfa_lane_mask_size ) {
|
---|
503 | assert( 0 == used.mask[i] );
|
---|
504 | }
|
---|
505 | #endif
|
---|
506 | }
|
---|
507 |
|
---|
508 | //-----------------------------------------------------------------------
|
---|
509 | enum mask_strictness {
|
---|
510 | STRICT,
|
---|
511 | NOCHECK
|
---|
512 | };
|
---|
513 |
|
---|
514 | // Set a given bit in the bit mask array
|
---|
515 | // strictness determines of the bit had to be cleared before
|
---|
516 | static inline void mask_set(__cfa_readyQ_mask_t * mask, unsigned index, mask_strictness strict) {
|
---|
517 | // Extract the array and bit indexes
|
---|
518 | __cfa_readyQ_mask_t word;
|
---|
519 | __cfa_readyQ_mask_t bit;
|
---|
520 | [bit, word] = extract(index);
|
---|
521 |
|
---|
522 | __cfadbg_print_safe(ready_queue, "Kernel : Ready queue extracted index %u as [bit %llu, word %llu]\n", index, bit, word);
|
---|
523 |
|
---|
524 | // Conditional check
|
---|
525 | verifyf(
|
---|
526 | strict != STRICT || // Conditional check if it was expected to be cleared
|
---|
527 | ((mask[word] & (1ull << bit)) == 0),
|
---|
528 | "Before set %llu:%llu (%u), %llx & %llx", word, bit, index, mask[word], (1ull << bit)
|
---|
529 | );
|
---|
530 |
|
---|
531 | // Atomically set the bit
|
---|
532 | __attribute__((unused)) bool ret = __atomic_bts(&mask[word], bit);
|
---|
533 |
|
---|
534 | // Conditional check
|
---|
535 | verifyf(
|
---|
536 | strict != STRICT || // Conditional check if it was expected to be cleared
|
---|
537 | !ret,
|
---|
538 | "Bit was not set but bts returned true"
|
---|
539 | );
|
---|
540 |
|
---|
541 | // Unconditional check
|
---|
542 | verifyf(
|
---|
543 | (mask[word] & (1ull << bit)) != 0,
|
---|
544 | "After set %llu:%llu (%u), %llx & %llx", word, bit, index, mask[word], (1ull << bit)
|
---|
545 | );
|
---|
546 | }
|
---|
547 |
|
---|
548 | static inline void mask_clear(__cfa_readyQ_mask_t * mask, unsigned index, mask_strictness strict) {
|
---|
549 | // Extract the array and bit indexes
|
---|
550 | __cfa_readyQ_mask_t word;
|
---|
551 | __cfa_readyQ_mask_t bit;
|
---|
552 | [bit, word] = extract(index);
|
---|
553 |
|
---|
554 | // Conditional check
|
---|
555 | verifyf(
|
---|
556 | strict != STRICT || // Conditional check if it was expected to be set
|
---|
557 | ((mask[word] & (1ull << bit)) != 0),
|
---|
558 | "Before clear %llu:%llu (%u), %llx & %llx", word, bit, index, mask[word], (1ull << bit)
|
---|
559 | );
|
---|
560 |
|
---|
561 | // Atomically clear the bit
|
---|
562 | __attribute__((unused)) bool ret = __atomic_btr(&mask[word], bit);
|
---|
563 |
|
---|
564 | // Conditional check
|
---|
565 | verifyf(
|
---|
566 | strict != STRICT || // Conditional check if it was expected to be cleared
|
---|
567 | ret,
|
---|
568 | "Bit was set but btr returned false"
|
---|
569 | );
|
---|
570 |
|
---|
571 | // Unconditional check
|
---|
572 | verifyf(
|
---|
573 | (mask[word] & (1ull << bit)) == 0,
|
---|
574 | "After clear %llu:%llu (%u), %llx & %llx", word, bit, index, mask[word], (1ull << bit)
|
---|
575 | );
|
---|
576 | }
|
---|
577 |
|
---|
578 | //-----------------------------------------------------------------------
|
---|
579 | __attribute__((hot)) bool push(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) {
|
---|
580 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p (mask %llu)\n", thrd, cltr, used.mask[0]);
|
---|
581 |
|
---|
582 | // write timestamp
|
---|
583 | thrd->link.ts = rdtscl();
|
---|
584 |
|
---|
585 | // Try to pick a lane and lock it
|
---|
586 | unsigned i;
|
---|
587 | do {
|
---|
588 | // Pick the index of a lane
|
---|
589 | i = __tls_rand() % lanes.count;
|
---|
590 |
|
---|
591 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
592 | tls.pick.push.attempt++;
|
---|
593 | #endif
|
---|
594 |
|
---|
595 | // If we can't lock it retry
|
---|
596 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
---|
597 |
|
---|
598 | #if defined(__CFA_WITH_VERIFY__)
|
---|
599 | /* paranoid */ verify(lanes.data[i].last_id == -1u);
|
---|
600 | /* paranoid */ lanes.data[i].last_id = kernelTLS.this_processor->id;
|
---|
601 | #endif
|
---|
602 |
|
---|
603 | __attribute__((unused)) size_t num = __atomic_load_n( &used.count, __ATOMIC_RELAXED );
|
---|
604 | bool first = false;
|
---|
605 |
|
---|
606 | // Actually push it
|
---|
607 | bool lane_first = push(lanes.data[i], thrd);
|
---|
608 |
|
---|
609 | // If this lane used to be empty we need to do more
|
---|
610 | if(lane_first) {
|
---|
611 | // Update the bit mask
|
---|
612 | mask_set((__cfa_readyQ_mask_t *)used.mask, i, STRICT);
|
---|
613 |
|
---|
614 | // Update the global count
|
---|
615 | size_t ret = __atomic_fetch_add( &used.count, 1z, __ATOMIC_SEQ_CST);
|
---|
616 |
|
---|
617 | // Check if the entire queue used to be empty
|
---|
618 | first = (ret == 0);
|
---|
619 | }
|
---|
620 |
|
---|
621 | #if defined(__CFA_WITH_VERIFY__)
|
---|
622 | /* paranoid */ verifyf( used.count <= lanes.count, "Non-empty count (%zu) exceeds actual count (%zu)\n", used.count, lanes.count );
|
---|
623 | /* paranoid */ verifyf( lanes.data[i].last_id == kernelTLS.this_processor->id, "Expected last processor to lock queue %u to be %u, was %u\n", i, lanes.data[i].last_id, kernelTLS.this_processor->id );
|
---|
624 | /* paranoid */ verifyf( lanes.data[i].lock, "List %u is not locked\n", i );
|
---|
625 | /* paranoid */ lanes.data[i].last_id = -1u;
|
---|
626 | #endif
|
---|
627 |
|
---|
628 | // Unlock and return
|
---|
629 | __atomic_unlock( &lanes.data[i].lock );
|
---|
630 |
|
---|
631 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
---|
632 |
|
---|
633 | // Update statistics
|
---|
634 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
635 | tls.pick.push.success++;
|
---|
636 | tls.used.value += num;
|
---|
637 | tls.used.count += 1;
|
---|
638 | #endif
|
---|
639 |
|
---|
640 | // return whether or not the list was empty before this push
|
---|
641 | return first;
|
---|
642 | }
|
---|
643 |
|
---|
644 | //-----------------------------------------------------------------------
|
---|
645 | // Given 2 indexes, pick the list with the oldest push an try to pop from it
|
---|
646 | static struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j) with (cltr->ready_queue) {
|
---|
647 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
648 | tls.pick.pop.attempt++;
|
---|
649 | #endif
|
---|
650 |
|
---|
651 | // Pick the bet list
|
---|
652 | int w = i;
|
---|
653 | if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
|
---|
654 | w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
|
---|
655 | }
|
---|
656 |
|
---|
657 | // Get relevant elements locally
|
---|
658 | __intrusive_lane_t & lane = lanes.data[w];
|
---|
659 |
|
---|
660 | // If list looks empty retry
|
---|
661 | if( is_empty(lane) ) return 0p;
|
---|
662 |
|
---|
663 | // If we can't get the lock retry
|
---|
664 | if( !__atomic_try_acquire(&lane.lock) ) return 0p;
|
---|
665 |
|
---|
666 | #if defined(__CFA_WITH_VERIFY__)
|
---|
667 | /* paranoid */ verify(lane.last_id == -1u);
|
---|
668 | /* paranoid */ lane.last_id = kernelTLS.this_processor->id;
|
---|
669 | #endif
|
---|
670 |
|
---|
671 |
|
---|
672 | // If list is empty, unlock and retry
|
---|
673 | if( is_empty(lane) ) {
|
---|
674 | #if defined(__CFA_WITH_VERIFY__)
|
---|
675 | /* paranoid */ verify(lane.last_id == kernelTLS.this_processor->id);
|
---|
676 | /* paranoid */ lane.last_id = -1u;
|
---|
677 | #endif
|
---|
678 |
|
---|
679 | __atomic_unlock(&lane.lock);
|
---|
680 | return 0p;
|
---|
681 | }
|
---|
682 |
|
---|
683 | // Actually pop the list
|
---|
684 | struct $thread * thrd;
|
---|
685 | bool emptied;
|
---|
686 | [thrd, emptied] = pop(lane);
|
---|
687 |
|
---|
688 | /* paranoid */ verify(thrd);
|
---|
689 | /* paranoid */ verify(lane.last_id == kernelTLS.this_processor->id);
|
---|
690 | /* paranoid */ verify(lane.lock);
|
---|
691 |
|
---|
692 | // If this was the last element in the lane
|
---|
693 | if(emptied) {
|
---|
694 | // Update the global count
|
---|
695 | __atomic_fetch_sub( &used.count, 1z, __ATOMIC_SEQ_CST);
|
---|
696 |
|
---|
697 | // Update the bit mask
|
---|
698 | mask_clear((__cfa_readyQ_mask_t *)used.mask, w, STRICT);
|
---|
699 | }
|
---|
700 |
|
---|
701 | #if defined(__CFA_WITH_VERIFY__)
|
---|
702 | /* paranoid */ verify(lane.last_id == kernelTLS.this_processor->id);
|
---|
703 | /* paranoid */ lane.last_id = -1u;
|
---|
704 | #endif
|
---|
705 |
|
---|
706 | // For statistics, check the count before we release the lock
|
---|
707 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
708 | int num = __atomic_load_n( &used.count, __ATOMIC_RELAXED );
|
---|
709 | #endif
|
---|
710 |
|
---|
711 | // Unlock and return
|
---|
712 | __atomic_unlock(&lane.lock);
|
---|
713 |
|
---|
714 | // Update statistics
|
---|
715 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
716 | tls.pick.pop.success++;
|
---|
717 | tls.used.value += num;
|
---|
718 | tls.used.count += 1;
|
---|
719 | #endif
|
---|
720 |
|
---|
721 | // return the popped thread
|
---|
722 | return thrd;
|
---|
723 | }
|
---|
724 |
|
---|
725 | // Pop from the ready queue from a given cluster
|
---|
726 | __attribute__((hot)) $thread * pop(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
727 | /* paranoid */ verify( lanes.count > 0 );
|
---|
728 |
|
---|
729 | // As long as the list is not empty, try finding a lane that isn't empty and pop from it
|
---|
730 | while( __atomic_load_n( &used.count, __ATOMIC_RELAXED ) != 0) {
|
---|
731 | #if !defined(__CFA_READQ_NO_BITMASK__)
|
---|
732 | // If using bit masks
|
---|
733 | #if !defined(__CFA_NO_SCHED_STATS__)
|
---|
734 | tls.pick.pop.maskrds++;
|
---|
735 | #endif
|
---|
736 |
|
---|
737 | // Pick two lists at random
|
---|
738 | unsigned ri = __tls_rand();
|
---|
739 | unsigned rj = __tls_rand();
|
---|
740 |
|
---|
741 | // Find which __cfa_readyQ_mask_t the two lists belong
|
---|
742 | unsigned num = ((__atomic_load_n( &lanes.count, __ATOMIC_RELAXED ) - 1) >> 6) + 1;
|
---|
743 | unsigned wdxi = (ri >> 6u) % num;
|
---|
744 | unsigned wdxj = (rj >> 6u) % num;
|
---|
745 |
|
---|
746 | // Get the actual __cfa_readyQ_mask_t
|
---|
747 | size_t maski = __atomic_load_n( &used.mask[wdxi], __ATOMIC_RELAXED );
|
---|
748 | size_t maskj = __atomic_load_n( &used.mask[wdxj], __ATOMIC_RELAXED );
|
---|
749 |
|
---|
750 | // If both of these masks are empty, retry
|
---|
751 | if(maski == 0 && maskj == 0) continue;
|
---|
752 |
|
---|
753 | // Pick one of the non-zero bits in the masks and get the bit indexes
|
---|
754 | unsigned bi = rand_bit(ri, maski);
|
---|
755 | unsigned bj = rand_bit(rj, maskj);
|
---|
756 |
|
---|
757 | // some checks
|
---|
758 | /* paranoid */ verifyf(bi < 64, "%zu %u", maski, bi);
|
---|
759 | /* paranoid */ verifyf(bj < 64, "%zu %u", maskj, bj);
|
---|
760 |
|
---|
761 | // get the general list index
|
---|
762 | unsigned i = bi | (wdxi << 6);
|
---|
763 | unsigned j = bj | (wdxj << 6);
|
---|
764 |
|
---|
765 | // some more checks
|
---|
766 | /* paranoid */ verifyf(i < lanes.count, "%u", wdxi << 6);
|
---|
767 | /* paranoid */ verifyf(j < lanes.count, "%u", wdxj << 6);
|
---|
768 |
|
---|
769 | // try popping from the 2 picked lists
|
---|
770 | struct $thread * thrd = try_pop(cltr, i, j);
|
---|
771 | if(thrd) return thrd;
|
---|
772 | #else
|
---|
773 | // Pick two lists at random
|
---|
774 | int i = __tls_rand() % __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
775 | int j = __tls_rand() % __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
---|
776 |
|
---|
777 | // try popping from the 2 picked lists
|
---|
778 | struct $thread * thrd = try_pop(cltr, i, j);
|
---|
779 | if(thrd) return thrd;
|
---|
780 | #endif
|
---|
781 | }
|
---|
782 |
|
---|
783 | // All lanes where empty return 0p
|
---|
784 | return 0p;
|
---|
785 | }
|
---|
786 |
|
---|
787 | //-----------------------------------------------------------------------
|
---|
788 |
|
---|
789 | static void check( __ready_queue_t & q ) with (q) {
|
---|
790 | #if defined(__CFA_WITH_VERIFY__)
|
---|
791 | {
|
---|
792 | int idx = 0;
|
---|
793 | for( w ; __cfa_lane_mask_size ) {
|
---|
794 | for( b ; 8 * sizeof(__cfa_readyQ_mask_t) ) {
|
---|
795 | bool is_empty = idx < lanes.count ? (ts(lanes.data[idx]) == 0) : true;
|
---|
796 | bool should_be_empty = 0 == (used.mask[w] & (1z << b));
|
---|
797 | assertf(should_be_empty == is_empty, "Inconsistent list %d, mask expect : %d, actual is got %d", idx, should_be_empty, (bool)is_empty);
|
---|
798 | assert(__cfa_max_lanes > idx);
|
---|
799 | idx++;
|
---|
800 | }
|
---|
801 | }
|
---|
802 | }
|
---|
803 |
|
---|
804 | {
|
---|
805 | for( idx ; lanes.count ) {
|
---|
806 | __intrusive_lane_t & sl = lanes.data[idx];
|
---|
807 | assert(!lanes.data[idx].lock);
|
---|
808 |
|
---|
809 | assert(head(sl)->link.prev == 0p );
|
---|
810 | assert(head(sl)->link.next->link.prev == head(sl) );
|
---|
811 | assert(tail(sl)->link.next == 0p );
|
---|
812 | assert(tail(sl)->link.prev->link.next == tail(sl) );
|
---|
813 |
|
---|
814 | if(sl.before.link.ts == 0l) {
|
---|
815 | assert(tail(sl)->link.prev == head(sl));
|
---|
816 | assert(head(sl)->link.next == tail(sl));
|
---|
817 | } else {
|
---|
818 | assert(tail(sl)->link.prev != head(sl));
|
---|
819 | assert(head(sl)->link.next != tail(sl));
|
---|
820 | }
|
---|
821 | }
|
---|
822 | }
|
---|
823 | #endif
|
---|
824 | }
|
---|
825 |
|
---|
826 | // Call this function of the intrusive list was moved using memcpy
|
---|
827 | // fixes the list so that the pointers back to anchors aren't left dangling
|
---|
828 | static inline void fix(__intrusive_lane_t & ll) {
|
---|
829 | // if the list is not empty then follow he pointer and fix its reverse
|
---|
830 | if(!is_empty(ll)) {
|
---|
831 | head(ll)->link.next->link.prev = head(ll);
|
---|
832 | tail(ll)->link.prev->link.next = tail(ll);
|
---|
833 | }
|
---|
834 | // Otherwise just reset the list
|
---|
835 | else {
|
---|
836 | verify(tail(ll)->link.next == 0p);
|
---|
837 | tail(ll)->link.prev = head(ll);
|
---|
838 | head(ll)->link.next = tail(ll);
|
---|
839 | verify(head(ll)->link.prev == 0p);
|
---|
840 | }
|
---|
841 | }
|
---|
842 |
|
---|
843 | // Grow the ready queue
|
---|
844 | void ready_queue_grow (struct cluster * cltr) {
|
---|
845 | // Lock the RWlock so no-one pushes/pops while we are changing the queue
|
---|
846 | uint_fast32_t last_size = ready_mutate_lock( *cltr );
|
---|
847 |
|
---|
848 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
|
---|
849 |
|
---|
850 | // Make sure that everything is consistent
|
---|
851 | /* paranoid */ check( cltr->ready_queue );
|
---|
852 |
|
---|
853 | // grow the ready queue
|
---|
854 | with( cltr->ready_queue ) {
|
---|
855 | size_t ncount = lanes.count;
|
---|
856 |
|
---|
857 | // Check that we have some space left
|
---|
858 | if(ncount + 4 >= __cfa_max_lanes) abort("Program attempted to create more than maximum number of Ready Queues (%zu)", __cfa_max_lanes);
|
---|
859 |
|
---|
860 | // increase count
|
---|
861 | ncount += 4;
|
---|
862 |
|
---|
863 | // Allocate new array (uses realloc and memcpies the data)
|
---|
864 | lanes.data = alloc(lanes.data, ncount);
|
---|
865 |
|
---|
866 | // Fix the moved data
|
---|
867 | for( idx; (size_t)lanes.count ) {
|
---|
868 | fix(lanes.data[idx]);
|
---|
869 | }
|
---|
870 |
|
---|
871 | // Construct new data
|
---|
872 | for( idx; (size_t)lanes.count ~ ncount) {
|
---|
873 | (lanes.data[idx]){};
|
---|
874 | }
|
---|
875 |
|
---|
876 | // Update original
|
---|
877 | lanes.count = ncount;
|
---|
878 |
|
---|
879 | // fields in 'used' don't need to change when growing
|
---|
880 | }
|
---|
881 |
|
---|
882 | // Make sure that everything is consistent
|
---|
883 | /* paranoid */ check( cltr->ready_queue );
|
---|
884 |
|
---|
885 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
|
---|
886 |
|
---|
887 | // Unlock the RWlock
|
---|
888 | ready_mutate_unlock( *cltr, last_size );
|
---|
889 | }
|
---|
890 |
|
---|
891 | // Shrink the ready queue
|
---|
892 | void ready_queue_shrink(struct cluster * cltr) {
|
---|
893 | // Lock the RWlock so no-one pushes/pops while we are changing the queue
|
---|
894 | uint_fast32_t last_size = ready_mutate_lock( *cltr );
|
---|
895 |
|
---|
896 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
|
---|
897 |
|
---|
898 | // Make sure that everything is consistent
|
---|
899 | /* paranoid */ check( cltr->ready_queue );
|
---|
900 |
|
---|
901 | with( cltr->ready_queue ) {
|
---|
902 | // Make sure that the total thread count stays the same
|
---|
903 | #if defined(__CFA_WITH_VERIFY__)
|
---|
904 | size_t nthreads = 0;
|
---|
905 | for( idx; (size_t)lanes.count ) {
|
---|
906 | nthreads += lanes.data[idx].count;
|
---|
907 | }
|
---|
908 | #endif
|
---|
909 |
|
---|
910 | size_t ocount = lanes.count;
|
---|
911 | // Check that we have some space left
|
---|
912 | if(ocount < 8) abort("Program attempted to destroy more Ready Queues than were created");
|
---|
913 |
|
---|
914 | // reduce the actual count so push doesn't use the old queues
|
---|
915 | lanes.count -= 4;
|
---|
916 | verify(ocount > lanes.count);
|
---|
917 |
|
---|
918 | // for printing count the number of displaced threads
|
---|
919 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
---|
920 | __attribute__((unused)) size_t displaced = 0;
|
---|
921 | #endif
|
---|
922 |
|
---|
923 | // redistribute old data
|
---|
924 | for( idx; (size_t)lanes.count ~ ocount) {
|
---|
925 | // Lock is not strictly needed but makes checking invariants much easier
|
---|
926 | __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
|
---|
927 | verify(locked);
|
---|
928 |
|
---|
929 | // As long as we can pop from this lane to push the threads somewhere else in the queue
|
---|
930 | while(!is_empty(lanes.data[idx])) {
|
---|
931 | struct $thread * thrd;
|
---|
932 | __attribute__((unused)) bool _;
|
---|
933 | [thrd, _] = pop(lanes.data[idx]);
|
---|
934 |
|
---|
935 | push(cltr, thrd);
|
---|
936 |
|
---|
937 | // for printing count the number of displaced threads
|
---|
938 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
---|
939 | displaced++;
|
---|
940 | #endif
|
---|
941 | }
|
---|
942 |
|
---|
943 | mask_clear((__cfa_readyQ_mask_t *)used.mask, idx, NOCHECK);
|
---|
944 |
|
---|
945 | // Unlock the lane
|
---|
946 | __atomic_unlock(&lanes.data[idx].lock);
|
---|
947 |
|
---|
948 | // TODO print the queue statistics here
|
---|
949 |
|
---|
950 | ^(lanes.data[idx]){};
|
---|
951 | }
|
---|
952 |
|
---|
953 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
|
---|
954 |
|
---|
955 | // recompute the used.count instead of maintaining it
|
---|
956 | used.count = 0;
|
---|
957 | for( i ; __cfa_lane_mask_size ) {
|
---|
958 | used.count += __builtin_popcountl(used.mask[i]);
|
---|
959 | }
|
---|
960 |
|
---|
961 | // Allocate new array (uses realloc and memcpies the data)
|
---|
962 | lanes.data = alloc(lanes.data, lanes.count);
|
---|
963 |
|
---|
964 | // Fix the moved data
|
---|
965 | for( idx; (size_t)lanes.count ) {
|
---|
966 | fix(lanes.data[idx]);
|
---|
967 | }
|
---|
968 |
|
---|
969 | // Make sure that the total thread count stayed the same
|
---|
970 | #if defined(__CFA_WITH_VERIFY__)
|
---|
971 | for( idx; (size_t)lanes.count ) {
|
---|
972 | nthreads -= lanes.data[idx].count;
|
---|
973 | }
|
---|
974 | verifyf(nthreads == 0, "Shrinking changed number of threads");
|
---|
975 | #endif
|
---|
976 | }
|
---|
977 |
|
---|
978 | // Make sure that everything is consistent
|
---|
979 | /* paranoid */ check( cltr->ready_queue );
|
---|
980 |
|
---|
981 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
|
---|
982 |
|
---|
983 | // Unlock the RWlock
|
---|
984 | ready_mutate_unlock( *cltr, last_size );
|
---|
985 | }
|
---|
986 |
|
---|
987 | //-----------------------------------------------------------------------
|
---|
988 |
|
---|
989 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
990 | void stats_tls_tally(struct cluster * cltr) with (cltr->ready_queue) {
|
---|
991 | __atomic_fetch_add( &global_stats.pick.push.attempt, tls.pick.push.attempt, __ATOMIC_SEQ_CST );
|
---|
992 | __atomic_fetch_add( &global_stats.pick.push.success, tls.pick.push.success, __ATOMIC_SEQ_CST );
|
---|
993 | __atomic_fetch_add( &global_stats.pick.pop .maskrds, tls.pick.pop .maskrds, __ATOMIC_SEQ_CST );
|
---|
994 | __atomic_fetch_add( &global_stats.pick.pop .attempt, tls.pick.pop .attempt, __ATOMIC_SEQ_CST );
|
---|
995 | __atomic_fetch_add( &global_stats.pick.pop .success, tls.pick.pop .success, __ATOMIC_SEQ_CST );
|
---|
996 |
|
---|
997 | __atomic_fetch_add( &global_stats.used.value, tls.used.value, __ATOMIC_SEQ_CST );
|
---|
998 | __atomic_fetch_add( &global_stats.used.count, tls.used.count, __ATOMIC_SEQ_CST );
|
---|
999 | }
|
---|
1000 | #endif
|
---|