1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // ready_queue.cfa -- |
---|
8 | // |
---|
9 | // Author : Thierry Delisle |
---|
10 | // Created On : Mon Nov dd 16:29:18 2019 |
---|
11 | // Last Modified By : |
---|
12 | // Last Modified On : |
---|
13 | // Update Count : |
---|
14 | // |
---|
15 | |
---|
16 | #define __cforall_thread__ |
---|
17 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__ |
---|
18 | |
---|
19 | |
---|
20 | #define USE_RELAXED_FIFO |
---|
21 | // #define USE_WORK_STEALING |
---|
22 | |
---|
23 | #include "bits/defs.hfa" |
---|
24 | #include "kernel_private.hfa" |
---|
25 | |
---|
26 | #define _GNU_SOURCE |
---|
27 | #include "stdlib.hfa" |
---|
28 | #include "math.hfa" |
---|
29 | |
---|
30 | #include <unistd.h> |
---|
31 | |
---|
32 | #include "ready_subqueue.hfa" |
---|
33 | |
---|
34 | static const size_t cache_line_size = 64; |
---|
35 | |
---|
36 | #if !defined(__CFA_NO_STATISTICS__) |
---|
37 | #define __STATS(...) __VA_ARGS__ |
---|
38 | #else |
---|
39 | #define __STATS(...) |
---|
40 | #endif |
---|
41 | |
---|
42 | // No overriden function, no environment variable, no define |
---|
43 | // fall back to a magic number |
---|
44 | #ifndef __CFA_MAX_PROCESSORS__ |
---|
45 | #define __CFA_MAX_PROCESSORS__ 1024 |
---|
46 | #endif |
---|
47 | |
---|
48 | #if defined(USE_RELAXED_FIFO) |
---|
49 | #define BIAS 4 |
---|
50 | #define READYQ_SHARD_FACTOR 4 |
---|
51 | #define SEQUENTIAL_SHARD 1 |
---|
52 | #elif defined(USE_WORK_STEALING) |
---|
53 | #define READYQ_SHARD_FACTOR 2 |
---|
54 | #define SEQUENTIAL_SHARD 2 |
---|
55 | #else |
---|
56 | #error no scheduling strategy selected |
---|
57 | #endif |
---|
58 | |
---|
59 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)); |
---|
60 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)); |
---|
61 | static inline struct $thread * search(struct cluster * cltr); |
---|
62 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred); |
---|
63 | |
---|
64 | |
---|
65 | // returns the maximum number of processors the RWLock support |
---|
66 | __attribute__((weak)) unsigned __max_processors() { |
---|
67 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS"); |
---|
68 | if(!max_cores_s) { |
---|
69 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n"); |
---|
70 | return __CFA_MAX_PROCESSORS__; |
---|
71 | } |
---|
72 | |
---|
73 | char * endptr = 0p; |
---|
74 | long int max_cores_l = strtol(max_cores_s, &endptr, 10); |
---|
75 | if(max_cores_l < 1 || max_cores_l > 65535) { |
---|
76 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l); |
---|
77 | return __CFA_MAX_PROCESSORS__; |
---|
78 | } |
---|
79 | if('\0' != *endptr) { |
---|
80 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s); |
---|
81 | return __CFA_MAX_PROCESSORS__; |
---|
82 | } |
---|
83 | |
---|
84 | return max_cores_l; |
---|
85 | } |
---|
86 | |
---|
87 | //======================================================================= |
---|
88 | // Cluster wide reader-writer lock |
---|
89 | //======================================================================= |
---|
90 | void ?{}(__scheduler_RWLock_t & this) { |
---|
91 | this.max = __max_processors(); |
---|
92 | this.alloc = 0; |
---|
93 | this.ready = 0; |
---|
94 | this.data = alloc(this.max); |
---|
95 | this.write_lock = false; |
---|
96 | |
---|
97 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc)); |
---|
98 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready)); |
---|
99 | |
---|
100 | } |
---|
101 | void ^?{}(__scheduler_RWLock_t & this) { |
---|
102 | free(this.data); |
---|
103 | } |
---|
104 | |
---|
105 | |
---|
106 | //======================================================================= |
---|
107 | // Lock-Free registering/unregistering of threads |
---|
108 | unsigned register_proc_id( void ) with(*__scheduler_lock) { |
---|
109 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc); |
---|
110 | bool * handle = (bool *)&kernelTLS().sched_lock; |
---|
111 | |
---|
112 | // Step - 1 : check if there is already space in the data |
---|
113 | uint_fast32_t s = ready; |
---|
114 | |
---|
115 | // Check among all the ready |
---|
116 | for(uint_fast32_t i = 0; i < s; i++) { |
---|
117 | bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems |
---|
118 | /* paranoid */ verify( handle != *cell ); |
---|
119 | |
---|
120 | bool * null = 0p; // Re-write every loop since compare thrashes it |
---|
121 | if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null |
---|
122 | && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { |
---|
123 | /* paranoid */ verify(i < ready); |
---|
124 | /* paranoid */ verify( (kernelTLS().sched_id = i, true) ); |
---|
125 | return i; |
---|
126 | } |
---|
127 | } |
---|
128 | |
---|
129 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max); |
---|
130 | |
---|
131 | // Step - 2 : F&A to get a new spot in the array. |
---|
132 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST); |
---|
133 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max); |
---|
134 | |
---|
135 | // Step - 3 : Mark space as used and then publish it. |
---|
136 | data[n] = handle; |
---|
137 | while() { |
---|
138 | unsigned copy = n; |
---|
139 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n |
---|
140 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) |
---|
141 | break; |
---|
142 | Pause(); |
---|
143 | } |
---|
144 | |
---|
145 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n); |
---|
146 | |
---|
147 | // Return new spot. |
---|
148 | /* paranoid */ verify(n < ready); |
---|
149 | /* paranoid */ verify( (kernelTLS().sched_id = n, true) ); |
---|
150 | return n; |
---|
151 | } |
---|
152 | |
---|
153 | void unregister_proc_id( unsigned id ) with(*__scheduler_lock) { |
---|
154 | /* paranoid */ verify(id < ready); |
---|
155 | /* paranoid */ verify(id == kernelTLS().sched_id); |
---|
156 | /* paranoid */ verify(data[id] == &kernelTLS().sched_lock); |
---|
157 | |
---|
158 | bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems |
---|
159 | |
---|
160 | __atomic_store_n(cell, 0p, __ATOMIC_RELEASE); |
---|
161 | |
---|
162 | __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc); |
---|
163 | } |
---|
164 | |
---|
165 | //----------------------------------------------------------------------- |
---|
166 | // Writer side : acquire when changing the ready queue, e.g. adding more |
---|
167 | // queues or removing them. |
---|
168 | uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) { |
---|
169 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
170 | /* paranoid */ verify( ! kernelTLS().sched_lock ); |
---|
171 | |
---|
172 | // Step 1 : lock global lock |
---|
173 | // It is needed to avoid processors that register mid Critical-Section |
---|
174 | // to simply lock their own lock and enter. |
---|
175 | __atomic_acquire( &write_lock ); |
---|
176 | |
---|
177 | // Step 2 : lock per-proc lock |
---|
178 | // Processors that are currently being registered aren't counted |
---|
179 | // but can't be in read_lock or in the critical section. |
---|
180 | // All other processors are counted |
---|
181 | uint_fast32_t s = ready; |
---|
182 | for(uint_fast32_t i = 0; i < s; i++) { |
---|
183 | volatile bool * llock = data[i]; |
---|
184 | if(llock) __atomic_acquire( llock ); |
---|
185 | } |
---|
186 | |
---|
187 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
188 | return s; |
---|
189 | } |
---|
190 | |
---|
191 | void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) { |
---|
192 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
193 | |
---|
194 | // Step 1 : release local locks |
---|
195 | // This must be done while the global lock is held to avoid |
---|
196 | // threads that where created mid critical section |
---|
197 | // to race to lock their local locks and have the writer |
---|
198 | // immidiately unlock them |
---|
199 | // Alternative solution : return s in write_lock and pass it to write_unlock |
---|
200 | for(uint_fast32_t i = 0; i < last_s; i++) { |
---|
201 | volatile bool * llock = data[i]; |
---|
202 | if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE); |
---|
203 | } |
---|
204 | |
---|
205 | // Step 2 : release global lock |
---|
206 | /*paranoid*/ assert(true == write_lock); |
---|
207 | __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE); |
---|
208 | |
---|
209 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
210 | } |
---|
211 | |
---|
212 | //======================================================================= |
---|
213 | // Cforall Ready Queue used for scheduling |
---|
214 | //======================================================================= |
---|
215 | void ?{}(__ready_queue_t & this) with (this) { |
---|
216 | lanes.data = 0p; |
---|
217 | lanes.tscs = 0p; |
---|
218 | lanes.count = 0; |
---|
219 | } |
---|
220 | |
---|
221 | void ^?{}(__ready_queue_t & this) with (this) { |
---|
222 | verify( SEQUENTIAL_SHARD == lanes.count ); |
---|
223 | free(lanes.data); |
---|
224 | free(lanes.tscs); |
---|
225 | } |
---|
226 | |
---|
227 | //----------------------------------------------------------------------- |
---|
228 | #if defined(USE_RELAXED_FIFO) |
---|
229 | //----------------------------------------------------------------------- |
---|
230 | // get index from random number with or without bias towards queues |
---|
231 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred) { |
---|
232 | unsigned i; |
---|
233 | bool local; |
---|
234 | unsigned rlow = r % BIAS; |
---|
235 | unsigned rhigh = r / BIAS; |
---|
236 | if((0 != rlow) && preferred >= 0) { |
---|
237 | // (BIAS - 1) out of BIAS chances |
---|
238 | // Use perferred queues |
---|
239 | i = preferred + (rhigh % READYQ_SHARD_FACTOR); |
---|
240 | local = true; |
---|
241 | } |
---|
242 | else { |
---|
243 | // 1 out of BIAS chances |
---|
244 | // Use all queues |
---|
245 | i = rhigh; |
---|
246 | local = false; |
---|
247 | } |
---|
248 | return [i, local]; |
---|
249 | } |
---|
250 | |
---|
251 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) { |
---|
252 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr); |
---|
253 | |
---|
254 | const bool external = (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr); |
---|
255 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count ); |
---|
256 | |
---|
257 | bool local; |
---|
258 | int preferred = external ? -1 : kernelTLS().this_processor->rdq.id; |
---|
259 | |
---|
260 | // Try to pick a lane and lock it |
---|
261 | unsigned i; |
---|
262 | do { |
---|
263 | // Pick the index of a lane |
---|
264 | unsigned r = __tls_rand_fwd(); |
---|
265 | [i, local] = idx_from_r(r, preferred); |
---|
266 | |
---|
267 | i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED ); |
---|
268 | |
---|
269 | #if !defined(__CFA_NO_STATISTICS__) |
---|
270 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED); |
---|
271 | else if(local) __tls_stats()->ready.push.local.attempt++; |
---|
272 | else __tls_stats()->ready.push.share.attempt++; |
---|
273 | #endif |
---|
274 | |
---|
275 | // If we can't lock it retry |
---|
276 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) ); |
---|
277 | |
---|
278 | // Actually push it |
---|
279 | push(lanes.data[i], thrd); |
---|
280 | |
---|
281 | // Unlock and return |
---|
282 | __atomic_unlock( &lanes.data[i].lock ); |
---|
283 | |
---|
284 | // Mark the current index in the tls rng instance as having an item |
---|
285 | __tls_rand_advance_bck(); |
---|
286 | |
---|
287 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first); |
---|
288 | |
---|
289 | // Update statistics |
---|
290 | #if !defined(__CFA_NO_STATISTICS__) |
---|
291 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED); |
---|
292 | else if(local) __tls_stats()->ready.push.local.success++; |
---|
293 | else __tls_stats()->ready.push.share.success++; |
---|
294 | #endif |
---|
295 | } |
---|
296 | |
---|
297 | // Pop from the ready queue from a given cluster |
---|
298 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) { |
---|
299 | /* paranoid */ verify( lanes.count > 0 ); |
---|
300 | /* paranoid */ verify( kernelTLS().this_processor ); |
---|
301 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count ); |
---|
302 | |
---|
303 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED ); |
---|
304 | int preferred = kernelTLS().this_processor->rdq.id; |
---|
305 | |
---|
306 | |
---|
307 | // As long as the list is not empty, try finding a lane that isn't empty and pop from it |
---|
308 | for(25) { |
---|
309 | // Pick two lists at random |
---|
310 | unsigned ri = __tls_rand_bck(); |
---|
311 | unsigned rj = __tls_rand_bck(); |
---|
312 | |
---|
313 | unsigned i, j; |
---|
314 | __attribute__((unused)) bool locali, localj; |
---|
315 | [i, locali] = idx_from_r(ri, preferred); |
---|
316 | [j, localj] = idx_from_r(rj, preferred); |
---|
317 | |
---|
318 | i %= count; |
---|
319 | j %= count; |
---|
320 | |
---|
321 | // try popping from the 2 picked lists |
---|
322 | struct $thread * thrd = try_pop(cltr, i, j __STATS(, *(locali || localj ? &__tls_stats()->ready.pop.local : &__tls_stats()->ready.pop.help))); |
---|
323 | if(thrd) { |
---|
324 | return thrd; |
---|
325 | } |
---|
326 | } |
---|
327 | |
---|
328 | // All lanes where empty return 0p |
---|
329 | return 0p; |
---|
330 | } |
---|
331 | |
---|
332 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) { return pop_fast(cltr); } |
---|
333 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) { |
---|
334 | return search(cltr); |
---|
335 | } |
---|
336 | #endif |
---|
337 | #if defined(USE_WORK_STEALING) |
---|
338 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) { |
---|
339 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr); |
---|
340 | |
---|
341 | // #define USE_PREFERRED |
---|
342 | #if !defined(USE_PREFERRED) |
---|
343 | const bool external = (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr); |
---|
344 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count ); |
---|
345 | #else |
---|
346 | unsigned preferred = thrd->preferred; |
---|
347 | const bool external = (!kernelTLS().this_processor) || preferred == -1u || thrd->curr_cluster != cltr; |
---|
348 | /* paranoid */ verifyf(external || preferred < lanes.count, "Invalid preferred queue %u for %u lanes", preferred, lanes.count ); |
---|
349 | |
---|
350 | unsigned r = preferred % READYQ_SHARD_FACTOR; |
---|
351 | const unsigned start = preferred - r; |
---|
352 | #endif |
---|
353 | |
---|
354 | // Try to pick a lane and lock it |
---|
355 | unsigned i; |
---|
356 | do { |
---|
357 | #if !defined(__CFA_NO_STATISTICS__) |
---|
358 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED); |
---|
359 | else __tls_stats()->ready.push.local.attempt++; |
---|
360 | #endif |
---|
361 | |
---|
362 | if(unlikely(external)) { |
---|
363 | i = __tls_rand() % lanes.count; |
---|
364 | } |
---|
365 | else { |
---|
366 | #if !defined(USE_PREFERRED) |
---|
367 | processor * proc = kernelTLS().this_processor; |
---|
368 | unsigned r = proc->rdq.its++; |
---|
369 | i = proc->rdq.id + (r % READYQ_SHARD_FACTOR); |
---|
370 | #else |
---|
371 | i = start + (r++ % READYQ_SHARD_FACTOR); |
---|
372 | #endif |
---|
373 | } |
---|
374 | // If we can't lock it retry |
---|
375 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) ); |
---|
376 | |
---|
377 | // Actually push it |
---|
378 | push(lanes.data[i], thrd); |
---|
379 | |
---|
380 | // Unlock and return |
---|
381 | __atomic_unlock( &lanes.data[i].lock ); |
---|
382 | |
---|
383 | #if !defined(__CFA_NO_STATISTICS__) |
---|
384 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED); |
---|
385 | else __tls_stats()->ready.push.local.success++; |
---|
386 | #endif |
---|
387 | |
---|
388 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first); |
---|
389 | } |
---|
390 | |
---|
391 | // Pop from the ready queue from a given cluster |
---|
392 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) { |
---|
393 | /* paranoid */ verify( lanes.count > 0 ); |
---|
394 | /* paranoid */ verify( kernelTLS().this_processor ); |
---|
395 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count ); |
---|
396 | |
---|
397 | processor * proc = kernelTLS().this_processor; |
---|
398 | |
---|
399 | if(proc->rdq.target == -1u) { |
---|
400 | _Static_assert(READYQ_SHARD_FACTOR == 2); |
---|
401 | unsigned idx1 = proc->rdq.id + 0; |
---|
402 | unsigned idx2 = proc->rdq.id + 1; |
---|
403 | unsigned long long tsc1 = ts(lanes.data[idx1]); |
---|
404 | unsigned long long tsc2 = ts(lanes.data[idx2]); |
---|
405 | proc->rdq.target = __tls_rand() % lanes.count; |
---|
406 | |
---|
407 | // WARNING: std::min is polymorphic and therefore causes 500% slowdown instead of the expected 2% |
---|
408 | proc->rdq.cutoff = tsc1 < tsc2 ? tsc1 : tsc2; |
---|
409 | } |
---|
410 | else { |
---|
411 | unsigned target = proc->rdq.target; |
---|
412 | proc->rdq.target = -1u; |
---|
413 | if(lanes.tscs[target].tv < proc->rdq.cutoff) { |
---|
414 | $thread * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help)); |
---|
415 | if(t) return t; |
---|
416 | } |
---|
417 | } |
---|
418 | |
---|
419 | for(READYQ_SHARD_FACTOR) { |
---|
420 | unsigned i = proc->rdq.id + (proc->rdq.itr++ % READYQ_SHARD_FACTOR); |
---|
421 | if($thread * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t; |
---|
422 | } |
---|
423 | return 0p; |
---|
424 | } |
---|
425 | |
---|
426 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) with (cltr->ready_queue) { |
---|
427 | unsigned i = __tls_rand() % lanes.count; |
---|
428 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal)); |
---|
429 | } |
---|
430 | |
---|
431 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) with (cltr->ready_queue) { |
---|
432 | return search(cltr); |
---|
433 | } |
---|
434 | #endif |
---|
435 | |
---|
436 | //======================================================================= |
---|
437 | // Various Ready Queue utilities |
---|
438 | //======================================================================= |
---|
439 | // these function work the same or almost the same |
---|
440 | // whether they are using work-stealing or relaxed fifo scheduling |
---|
441 | |
---|
442 | //----------------------------------------------------------------------- |
---|
443 | // try to pop from a lane given by index w |
---|
444 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) { |
---|
445 | __STATS( stats.attempt++; ) |
---|
446 | |
---|
447 | // Get relevant elements locally |
---|
448 | __intrusive_lane_t & lane = lanes.data[w]; |
---|
449 | |
---|
450 | // If list looks empty retry |
---|
451 | if( is_empty(lane) ) { |
---|
452 | __STATS( stats.espec++; ) |
---|
453 | return 0p; |
---|
454 | } |
---|
455 | |
---|
456 | // If we can't get the lock retry |
---|
457 | if( !__atomic_try_acquire(&lane.lock) ) { |
---|
458 | __STATS( stats.elock++; ) |
---|
459 | return 0p; |
---|
460 | } |
---|
461 | |
---|
462 | // If list is empty, unlock and retry |
---|
463 | if( is_empty(lane) ) { |
---|
464 | __atomic_unlock(&lane.lock); |
---|
465 | __STATS( stats.eempty++; ) |
---|
466 | return 0p; |
---|
467 | } |
---|
468 | |
---|
469 | // Actually pop the list |
---|
470 | struct $thread * thrd; |
---|
471 | unsigned long long tsv; |
---|
472 | [thrd, tsv] = pop(lane); |
---|
473 | |
---|
474 | /* paranoid */ verify(thrd); |
---|
475 | /* paranoid */ verify(lane.lock); |
---|
476 | |
---|
477 | // Unlock and return |
---|
478 | __atomic_unlock(&lane.lock); |
---|
479 | |
---|
480 | // Update statistics |
---|
481 | __STATS( stats.success++; ) |
---|
482 | |
---|
483 | #if defined(USE_WORK_STEALING) |
---|
484 | lanes.tscs[w].tv = tsv; |
---|
485 | #endif |
---|
486 | |
---|
487 | thrd->preferred = w; |
---|
488 | |
---|
489 | // return the popped thread |
---|
490 | return thrd; |
---|
491 | } |
---|
492 | |
---|
493 | //----------------------------------------------------------------------- |
---|
494 | // try to pop from any lanes making sure you don't miss any threads push |
---|
495 | // before the start of the function |
---|
496 | static inline struct $thread * search(struct cluster * cltr) with (cltr->ready_queue) { |
---|
497 | /* paranoid */ verify( lanes.count > 0 ); |
---|
498 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED ); |
---|
499 | unsigned offset = __tls_rand(); |
---|
500 | for(i; count) { |
---|
501 | unsigned idx = (offset + i) % count; |
---|
502 | struct $thread * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search)); |
---|
503 | if(thrd) { |
---|
504 | return thrd; |
---|
505 | } |
---|
506 | } |
---|
507 | |
---|
508 | // All lanes where empty return 0p |
---|
509 | return 0p; |
---|
510 | } |
---|
511 | |
---|
512 | //----------------------------------------------------------------------- |
---|
513 | // Check that all the intrusive queues in the data structure are still consistent |
---|
514 | static void check( __ready_queue_t & q ) with (q) { |
---|
515 | #if defined(__CFA_WITH_VERIFY__) |
---|
516 | { |
---|
517 | for( idx ; lanes.count ) { |
---|
518 | __intrusive_lane_t & sl = lanes.data[idx]; |
---|
519 | assert(!lanes.data[idx].lock); |
---|
520 | |
---|
521 | if(is_empty(sl)) { |
---|
522 | assert( sl.anchor.next == 0p ); |
---|
523 | assert( sl.anchor.ts == 0 ); |
---|
524 | assert( mock_head(sl) == sl.prev ); |
---|
525 | } else { |
---|
526 | assert( sl.anchor.next != 0p ); |
---|
527 | assert( sl.anchor.ts != 0 ); |
---|
528 | assert( mock_head(sl) != sl.prev ); |
---|
529 | } |
---|
530 | } |
---|
531 | } |
---|
532 | #endif |
---|
533 | } |
---|
534 | |
---|
535 | //----------------------------------------------------------------------- |
---|
536 | // Given 2 indexes, pick the list with the oldest push an try to pop from it |
---|
537 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) { |
---|
538 | // Pick the bet list |
---|
539 | int w = i; |
---|
540 | if( __builtin_expect(!is_empty(lanes.data[j]), true) ) { |
---|
541 | w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j; |
---|
542 | } |
---|
543 | |
---|
544 | return try_pop(cltr, w __STATS(, stats)); |
---|
545 | } |
---|
546 | |
---|
547 | // Call this function of the intrusive list was moved using memcpy |
---|
548 | // fixes the list so that the pointers back to anchors aren't left dangling |
---|
549 | static inline void fix(__intrusive_lane_t & ll) { |
---|
550 | if(is_empty(ll)) { |
---|
551 | verify(ll.anchor.next == 0p); |
---|
552 | ll.prev = mock_head(ll); |
---|
553 | } |
---|
554 | } |
---|
555 | |
---|
556 | static void assign_list(unsigned & value, dlist(processor, processor) & list, unsigned count) { |
---|
557 | processor * it = &list`first; |
---|
558 | for(unsigned i = 0; i < count; i++) { |
---|
559 | /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count); |
---|
560 | it->rdq.id = value; |
---|
561 | it->rdq.target = -1u; |
---|
562 | value += READYQ_SHARD_FACTOR; |
---|
563 | it = &(*it)`next; |
---|
564 | } |
---|
565 | } |
---|
566 | |
---|
567 | static void reassign_cltr_id(struct cluster * cltr) { |
---|
568 | unsigned preferred = 0; |
---|
569 | assign_list(preferred, cltr->procs.actives, cltr->procs.total - cltr->procs.idle); |
---|
570 | assign_list(preferred, cltr->procs.idles , cltr->procs.idle ); |
---|
571 | } |
---|
572 | |
---|
573 | static void fix_times( struct cluster * cltr ) with( cltr->ready_queue ) { |
---|
574 | #if defined(USE_WORK_STEALING) |
---|
575 | lanes.tscs = alloc(lanes.count, lanes.tscs`realloc); |
---|
576 | for(i; lanes.count) { |
---|
577 | lanes.tscs[i].tv = ts(lanes.data[i]); |
---|
578 | } |
---|
579 | #endif |
---|
580 | } |
---|
581 | |
---|
582 | // Grow the ready queue |
---|
583 | void ready_queue_grow(struct cluster * cltr) { |
---|
584 | size_t ncount; |
---|
585 | int target = cltr->procs.total; |
---|
586 | |
---|
587 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
588 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n"); |
---|
589 | |
---|
590 | // Make sure that everything is consistent |
---|
591 | /* paranoid */ check( cltr->ready_queue ); |
---|
592 | |
---|
593 | // grow the ready queue |
---|
594 | with( cltr->ready_queue ) { |
---|
595 | // Find new count |
---|
596 | // Make sure we always have atleast 1 list |
---|
597 | if(target >= 2) { |
---|
598 | ncount = target * READYQ_SHARD_FACTOR; |
---|
599 | } else { |
---|
600 | ncount = SEQUENTIAL_SHARD; |
---|
601 | } |
---|
602 | |
---|
603 | // Allocate new array (uses realloc and memcpies the data) |
---|
604 | lanes.data = alloc( ncount, lanes.data`realloc ); |
---|
605 | |
---|
606 | // Fix the moved data |
---|
607 | for( idx; (size_t)lanes.count ) { |
---|
608 | fix(lanes.data[idx]); |
---|
609 | } |
---|
610 | |
---|
611 | // Construct new data |
---|
612 | for( idx; (size_t)lanes.count ~ ncount) { |
---|
613 | (lanes.data[idx]){}; |
---|
614 | } |
---|
615 | |
---|
616 | // Update original |
---|
617 | lanes.count = ncount; |
---|
618 | } |
---|
619 | |
---|
620 | fix_times(cltr); |
---|
621 | |
---|
622 | reassign_cltr_id(cltr); |
---|
623 | |
---|
624 | // Make sure that everything is consistent |
---|
625 | /* paranoid */ check( cltr->ready_queue ); |
---|
626 | |
---|
627 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n"); |
---|
628 | |
---|
629 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
630 | } |
---|
631 | |
---|
632 | // Shrink the ready queue |
---|
633 | void ready_queue_shrink(struct cluster * cltr) { |
---|
634 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
635 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n"); |
---|
636 | |
---|
637 | // Make sure that everything is consistent |
---|
638 | /* paranoid */ check( cltr->ready_queue ); |
---|
639 | |
---|
640 | int target = cltr->procs.total; |
---|
641 | |
---|
642 | with( cltr->ready_queue ) { |
---|
643 | // Remember old count |
---|
644 | size_t ocount = lanes.count; |
---|
645 | |
---|
646 | // Find new count |
---|
647 | // Make sure we always have atleast 1 list |
---|
648 | lanes.count = target >= 2 ? target * READYQ_SHARD_FACTOR: SEQUENTIAL_SHARD; |
---|
649 | /* paranoid */ verify( ocount >= lanes.count ); |
---|
650 | /* paranoid */ verify( lanes.count == target * READYQ_SHARD_FACTOR || target < 2 ); |
---|
651 | |
---|
652 | // for printing count the number of displaced threads |
---|
653 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) |
---|
654 | __attribute__((unused)) size_t displaced = 0; |
---|
655 | #endif |
---|
656 | |
---|
657 | // redistribute old data |
---|
658 | for( idx; (size_t)lanes.count ~ ocount) { |
---|
659 | // Lock is not strictly needed but makes checking invariants much easier |
---|
660 | __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock); |
---|
661 | verify(locked); |
---|
662 | |
---|
663 | // As long as we can pop from this lane to push the threads somewhere else in the queue |
---|
664 | while(!is_empty(lanes.data[idx])) { |
---|
665 | struct $thread * thrd; |
---|
666 | unsigned long long _; |
---|
667 | [thrd, _] = pop(lanes.data[idx]); |
---|
668 | |
---|
669 | push(cltr, thrd); |
---|
670 | |
---|
671 | // for printing count the number of displaced threads |
---|
672 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) |
---|
673 | displaced++; |
---|
674 | #endif |
---|
675 | } |
---|
676 | |
---|
677 | // Unlock the lane |
---|
678 | __atomic_unlock(&lanes.data[idx].lock); |
---|
679 | |
---|
680 | // TODO print the queue statistics here |
---|
681 | |
---|
682 | ^(lanes.data[idx]){}; |
---|
683 | } |
---|
684 | |
---|
685 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced); |
---|
686 | |
---|
687 | // Allocate new array (uses realloc and memcpies the data) |
---|
688 | lanes.data = alloc( lanes.count, lanes.data`realloc ); |
---|
689 | |
---|
690 | // Fix the moved data |
---|
691 | for( idx; (size_t)lanes.count ) { |
---|
692 | fix(lanes.data[idx]); |
---|
693 | } |
---|
694 | } |
---|
695 | |
---|
696 | fix_times(cltr); |
---|
697 | |
---|
698 | reassign_cltr_id(cltr); |
---|
699 | |
---|
700 | // Make sure that everything is consistent |
---|
701 | /* paranoid */ check( cltr->ready_queue ); |
---|
702 | |
---|
703 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n"); |
---|
704 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
705 | } |
---|