source: libcfa/src/concurrency/ready_queue.cfa@ 0794365

ast-experimental
Last change on this file since 0794365 was f5f2768, checked in by Peter A. Buhr <pabuhr@…>, 3 years ago

make _GNU_SOURCE default, change IO to use SOCKADDR_ARG and CONST_SOCKADDR_ARG, move sys/socket.h to first include because of anonymous naming problem

  • Property mode set to 100644
File size: 8.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// ready_queue.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Mon Nov dd 16:29:18 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17
18// #define __CFA_DEBUG_PRINT_READY_QUEUE__
19
20
21#define USE_AWARE_STEALING
22
23#include "bits/defs.hfa"
24#include "device/cpu.hfa"
25#include "kernel/cluster.hfa"
26#include "kernel/private.hfa"
27
28// #include <errno.h>
29// #include <unistd.h>
30
31#include "ready_subqueue.hfa"
32
33static const size_t cache_line_size = 64;
34
35#if !defined(__CFA_NO_STATISTICS__)
36 #define __STATS(...) __VA_ARGS__
37#else
38 #define __STATS(...)
39#endif
40
41static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats));
42static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats));
43static inline struct thread$ * search(struct cluster * cltr);
44
45//=======================================================================
46// Cforall Ready Queue used for scheduling
47//=======================================================================
48// void ?{}(__ready_queue_t & this) with (this) {
49// lanes.data = 0p;
50// lanes.tscs = 0p;
51// lanes.caches = 0p;
52// lanes.count = 0;
53// }
54
55// void ^?{}(__ready_queue_t & this) with (this) {
56// free(lanes.data);
57// free(lanes.tscs);
58// free(lanes.caches);
59// }
60
61//-----------------------------------------------------------------------
62__attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, unpark_hint hint) with (cltr->sched) {
63 struct processor * const proc = kernelTLS().this_processor;
64 const bool external = (!proc) || (cltr != proc->cltr);
65 const bool remote = hint == UNPARK_REMOTE;
66 const size_t lanes_count = readyQ.count;
67
68 /* paranoid */ verify( __shard_factor.readyq > 0 );
69 /* paranoid */ verify( lanes_count > 0 );
70
71 unsigned i;
72 if( external || remote ) {
73 // Figure out where thread was last time and make sure it's valid
74 /* paranoid */ verify(thrd->preferred >= 0);
75 unsigned start = thrd->preferred * __shard_factor.readyq;
76 if(start < lanes_count) {
77 do {
78 unsigned r = __tls_rand();
79 i = start + (r % __shard_factor.readyq);
80 /* paranoid */ verify( i < lanes_count );
81 // If we can't lock it retry
82 } while( !__atomic_try_acquire( &readyQ.data[i].l.lock ) );
83 } else {
84 do {
85 i = __tls_rand() % lanes_count;
86 } while( !__atomic_try_acquire( &readyQ.data[i].l.lock ) );
87 }
88 } else {
89 do {
90 unsigned r = proc->rdq.its++;
91 i = proc->rdq.id + (r % __shard_factor.readyq);
92 /* paranoid */ verify( i < lanes_count );
93 // If we can't lock it retry
94 } while( !__atomic_try_acquire( &readyQ.data[i].l.lock ) );
95 }
96
97 // Actually push it
98 push(readyQ.data[i], thrd);
99
100 // Unlock and return
101 __atomic_unlock( &readyQ.data[i].l.lock );
102
103 #if !defined(__CFA_NO_STATISTICS__)
104 if(unlikely(external || remote)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
105 else __tls_stats()->ready.push.local.success++;
106 #endif
107}
108
109__attribute__((hot)) struct thread$ * pop_fast(struct cluster * cltr) with (cltr->sched) {
110 const size_t lanes_count = readyQ.count;
111
112 /* paranoid */ verify( __shard_factor.readyq > 0 );
113 /* paranoid */ verify( lanes_count > 0 );
114 /* paranoid */ verify( kernelTLS().this_processor );
115 /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes_count );
116
117 struct processor * const proc = kernelTLS().this_processor;
118 unsigned this = proc->rdq.id;
119 /* paranoid */ verify( this < lanes_count );
120 __cfadbg_print_safe(ready_queue, "Kernel : pop from %u\n", this);
121
122 // Figure out the current cache is
123 const unsigned this_cache = cache_id(cltr, this / __shard_factor.readyq);
124 const unsigned long long ctsc = rdtscl();
125
126 if(proc->rdq.target == UINT_MAX) {
127 uint64_t chaos = __tls_rand();
128 unsigned ext = chaos & 0xff;
129 unsigned other = (chaos >> 8) % (lanes_count);
130
131 if(ext < 3 || __atomic_load_n(&caches[other / __shard_factor.readyq].id, __ATOMIC_RELAXED) == this_cache) {
132 proc->rdq.target = other;
133 }
134 }
135 else {
136 const unsigned target = proc->rdq.target;
137 __cfadbg_print_safe(ready_queue, "Kernel : %u considering helping %u, tcsc %llu\n", this, target, readyQ.tscs[target].t.tv);
138 /* paranoid */ verify( readyQ.tscs[target].t.tv != ULLONG_MAX );
139 if(target < lanes_count) {
140 const __readyQ_avg_t cutoff = calc_cutoff(ctsc, proc->rdq.id, lanes_count, cltr->sched.readyQ.data, cltr->sched.readyQ.tscs, __shard_factor.readyq, true);
141 const __readyQ_avg_t age = moving_average(ctsc, readyQ.tscs[target].t.tv, readyQ.tscs[target].t.ma, false);
142 __cfadbg_print_safe(ready_queue, "Kernel : Help attempt on %u from %u, age %'llu vs cutoff %'llu, %s\n", target, this, age, cutoff, age > cutoff ? "yes" : "no");
143 if(age > cutoff) {
144 thread$ * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
145 if(t) return t;
146 }
147 }
148 proc->rdq.target = UINT_MAX;
149 }
150
151 for(__shard_factor.readyq) {
152 unsigned i = this + (proc->rdq.itr++ % __shard_factor.readyq);
153 if(thread$ * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
154 }
155
156 // All lanes where empty return 0p
157 return 0p;
158
159}
160__attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) {
161 unsigned i = __tls_rand() % (cltr->sched.readyQ.count);
162 return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
163}
164__attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) {
165 return search(cltr);
166}
167
168//=======================================================================
169// Various Ready Queue utilities
170//=======================================================================
171// these function work the same or almost the same
172// whether they are using work-stealing or relaxed fifo scheduling
173
174//-----------------------------------------------------------------------
175// try to pop from a lane given by index w
176static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->sched) {
177 /* paranoid */ verify( w < readyQ.count );
178 __STATS( stats.attempt++; )
179
180 // Get relevant elements locally
181 __intrusive_lane_t & lane = readyQ.data[w];
182
183 // If list looks empty retry
184 if( is_empty(lane) ) {
185 return 0p;
186 }
187
188 // If we can't get the lock retry
189 if( !__atomic_try_acquire(&lane.l.lock) ) {
190 return 0p;
191 }
192
193 // If list is empty, unlock and retry
194 if( is_empty(lane) ) {
195 __atomic_unlock(&lane.l.lock);
196 return 0p;
197 }
198
199 // Actually pop the list
200 struct thread$ * thrd;
201 unsigned long long ts_prev = ts(lane);
202 unsigned long long ts_next;
203 [thrd, ts_next] = pop(lane);
204
205 /* paranoid */ verify(thrd);
206 /* paranoid */ verify(ts_next);
207 /* paranoid */ verify(lane.l.lock);
208
209 // Unlock and return
210 __atomic_unlock(&lane.l.lock);
211
212 // Update statistics
213 __STATS( stats.success++; )
214
215 touch_tsc(readyQ.tscs, w, ts_prev, ts_next, true);
216
217 thrd->preferred = w / __shard_factor.readyq;
218
219 // return the popped thread
220 return thrd;
221}
222
223//-----------------------------------------------------------------------
224// try to pop from any lanes making sure you don't miss any threads push
225// before the start of the function
226static inline struct thread$ * search(struct cluster * cltr) {
227 const size_t lanes_count = cltr->sched.readyQ.count;
228 /* paranoid */ verify( lanes_count > 0 );
229 unsigned count = __atomic_load_n( &lanes_count, __ATOMIC_RELAXED );
230 unsigned offset = __tls_rand();
231 for(i; count) {
232 unsigned idx = (offset + i) % count;
233 struct thread$ * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search));
234 if(thrd) {
235 return thrd;
236 }
237 }
238
239 // All lanes where empty return 0p
240 return 0p;
241}
242
243//-----------------------------------------------------------------------
244// get preferred ready for new thread
245unsigned ready_queue_new_preferred() {
246 unsigned pref = UINT_MAX;
247 if(struct thread$ * thrd = publicTLS_get( this_thread )) {
248 pref = thrd->preferred;
249 }
250
251 return pref;
252}
253
254//-----------------------------------------------------------------------
255// Given 2 indexes, pick the list with the oldest push an try to pop from it
256static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->sched) {
257 // Pick the bet list
258 int w = i;
259 if( __builtin_expect(!is_empty(readyQ.data[j]), true) ) {
260 w = (ts(readyQ.data[i]) < ts(readyQ.data[j])) ? i : j;
261 }
262
263 return try_pop(cltr, w __STATS(, stats));
264}
Note: See TracBrowser for help on using the repository browser.