| 1 | //
 | 
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
 | 
|---|
| 5 | // file "LICENCE" distributed with Cforall.
 | 
|---|
| 6 | //
 | 
|---|
| 7 | // ready_queue.cfa --
 | 
|---|
| 8 | //
 | 
|---|
| 9 | // Author           : Thierry Delisle
 | 
|---|
| 10 | // Created On       : Mon Nov dd 16:29:18 2019
 | 
|---|
| 11 | // Last Modified By :
 | 
|---|
| 12 | // Last Modified On :
 | 
|---|
| 13 | // Update Count     :
 | 
|---|
| 14 | //
 | 
|---|
| 15 | 
 | 
|---|
| 16 | #define __cforall_thread__
 | 
|---|
| 17 | #define _GNU_SOURCE
 | 
|---|
| 18 | 
 | 
|---|
| 19 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__
 | 
|---|
| 20 | 
 | 
|---|
| 21 | 
 | 
|---|
| 22 | #define USE_RELAXED_FIFO
 | 
|---|
| 23 | // #define USE_WORK_STEALING
 | 
|---|
| 24 | // #define USE_CPU_WORK_STEALING
 | 
|---|
| 25 | 
 | 
|---|
| 26 | #include "bits/defs.hfa"
 | 
|---|
| 27 | #include "device/cpu.hfa"
 | 
|---|
| 28 | #include "kernel_private.hfa"
 | 
|---|
| 29 | 
 | 
|---|
| 30 | #include "stdlib.hfa"
 | 
|---|
| 31 | #include "math.hfa"
 | 
|---|
| 32 | 
 | 
|---|
| 33 | #include <errno.h>
 | 
|---|
| 34 | #include <unistd.h>
 | 
|---|
| 35 | 
 | 
|---|
| 36 | extern "C" {
 | 
|---|
| 37 |         #include <sys/syscall.h>  // __NR_xxx
 | 
|---|
| 38 | }
 | 
|---|
| 39 | 
 | 
|---|
| 40 | #include "ready_subqueue.hfa"
 | 
|---|
| 41 | 
 | 
|---|
| 42 | static const size_t cache_line_size = 64;
 | 
|---|
| 43 | 
 | 
|---|
| 44 | #if !defined(__CFA_NO_STATISTICS__)
 | 
|---|
| 45 |         #define __STATS(...) __VA_ARGS__
 | 
|---|
| 46 | #else
 | 
|---|
| 47 |         #define __STATS(...)
 | 
|---|
| 48 | #endif
 | 
|---|
| 49 | 
 | 
|---|
| 50 | // No overriden function, no environment variable, no define
 | 
|---|
| 51 | // fall back to a magic number
 | 
|---|
| 52 | #ifndef __CFA_MAX_PROCESSORS__
 | 
|---|
| 53 |         #define __CFA_MAX_PROCESSORS__ 1024
 | 
|---|
| 54 | #endif
 | 
|---|
| 55 | 
 | 
|---|
| 56 | #if   defined(USE_CPU_WORK_STEALING)
 | 
|---|
| 57 |         #define READYQ_SHARD_FACTOR 2
 | 
|---|
| 58 | #elif defined(USE_RELAXED_FIFO)
 | 
|---|
| 59 |         #define BIAS 4
 | 
|---|
| 60 |         #define READYQ_SHARD_FACTOR 4
 | 
|---|
| 61 |         #define SEQUENTIAL_SHARD 1
 | 
|---|
| 62 | #elif defined(USE_WORK_STEALING)
 | 
|---|
| 63 |         #define READYQ_SHARD_FACTOR 2
 | 
|---|
| 64 |         #define SEQUENTIAL_SHARD 2
 | 
|---|
| 65 | #else
 | 
|---|
| 66 |         #error no scheduling strategy selected
 | 
|---|
| 67 | #endif
 | 
|---|
| 68 | 
 | 
|---|
| 69 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats));
 | 
|---|
| 70 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats));
 | 
|---|
| 71 | static inline struct thread$ * search(struct cluster * cltr);
 | 
|---|
| 72 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred);
 | 
|---|
| 73 | 
 | 
|---|
| 74 | 
 | 
|---|
| 75 | // returns the maximum number of processors the RWLock support
 | 
|---|
| 76 | __attribute__((weak)) unsigned __max_processors() {
 | 
|---|
| 77 |         const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
 | 
|---|
| 78 |         if(!max_cores_s) {
 | 
|---|
| 79 |                 __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
 | 
|---|
| 80 |                 return __CFA_MAX_PROCESSORS__;
 | 
|---|
| 81 |         }
 | 
|---|
| 82 | 
 | 
|---|
| 83 |         char * endptr = 0p;
 | 
|---|
| 84 |         long int max_cores_l = strtol(max_cores_s, &endptr, 10);
 | 
|---|
| 85 |         if(max_cores_l < 1 || max_cores_l > 65535) {
 | 
|---|
| 86 |                 __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
 | 
|---|
| 87 |                 return __CFA_MAX_PROCESSORS__;
 | 
|---|
| 88 |         }
 | 
|---|
| 89 |         if('\0' != *endptr) {
 | 
|---|
| 90 |                 __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
 | 
|---|
| 91 |                 return __CFA_MAX_PROCESSORS__;
 | 
|---|
| 92 |         }
 | 
|---|
| 93 | 
 | 
|---|
| 94 |         return max_cores_l;
 | 
|---|
| 95 | }
 | 
|---|
| 96 | 
 | 
|---|
| 97 | #if   defined(CFA_HAVE_LINUX_LIBRSEQ)
 | 
|---|
| 98 |         // No forward declaration needed
 | 
|---|
| 99 |         #define __kernel_rseq_register rseq_register_current_thread
 | 
|---|
| 100 |         #define __kernel_rseq_unregister rseq_unregister_current_thread
 | 
|---|
| 101 | #elif defined(CFA_HAVE_LINUX_RSEQ_H)
 | 
|---|
| 102 |         void __kernel_raw_rseq_register  (void);
 | 
|---|
| 103 |         void __kernel_raw_rseq_unregister(void);
 | 
|---|
| 104 | 
 | 
|---|
| 105 |         #define __kernel_rseq_register __kernel_raw_rseq_register
 | 
|---|
| 106 |         #define __kernel_rseq_unregister __kernel_raw_rseq_unregister
 | 
|---|
| 107 | #else
 | 
|---|
| 108 |         // No forward declaration needed
 | 
|---|
| 109 |         // No initialization needed
 | 
|---|
| 110 |         static inline void noop(void) {}
 | 
|---|
| 111 | 
 | 
|---|
| 112 |         #define __kernel_rseq_register noop
 | 
|---|
| 113 |         #define __kernel_rseq_unregister noop
 | 
|---|
| 114 | #endif
 | 
|---|
| 115 | 
 | 
|---|
| 116 | //=======================================================================
 | 
|---|
| 117 | // Cluster wide reader-writer lock
 | 
|---|
| 118 | //=======================================================================
 | 
|---|
| 119 | void  ?{}(__scheduler_RWLock_t & this) {
 | 
|---|
| 120 |         this.max   = __max_processors();
 | 
|---|
| 121 |         this.alloc = 0;
 | 
|---|
| 122 |         this.ready = 0;
 | 
|---|
| 123 |         this.data  = alloc(this.max);
 | 
|---|
| 124 |         this.write_lock  = false;
 | 
|---|
| 125 | 
 | 
|---|
| 126 |         /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
 | 
|---|
| 127 |         /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
 | 
|---|
| 128 | 
 | 
|---|
| 129 | }
 | 
|---|
| 130 | void ^?{}(__scheduler_RWLock_t & this) {
 | 
|---|
| 131 |         free(this.data);
 | 
|---|
| 132 | }
 | 
|---|
| 133 | 
 | 
|---|
| 134 | 
 | 
|---|
| 135 | //=======================================================================
 | 
|---|
| 136 | // Lock-Free registering/unregistering of threads
 | 
|---|
| 137 | unsigned register_proc_id( void ) with(*__scheduler_lock) {
 | 
|---|
| 138 |         __kernel_rseq_register();
 | 
|---|
| 139 | 
 | 
|---|
| 140 |         __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc);
 | 
|---|
| 141 |         bool * handle = (bool *)&kernelTLS().sched_lock;
 | 
|---|
| 142 | 
 | 
|---|
| 143 |         // Step - 1 : check if there is already space in the data
 | 
|---|
| 144 |         uint_fast32_t s = ready;
 | 
|---|
| 145 | 
 | 
|---|
| 146 |         // Check among all the ready
 | 
|---|
| 147 |         for(uint_fast32_t i = 0; i < s; i++) {
 | 
|---|
| 148 |                 bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems
 | 
|---|
| 149 |                 /* paranoid */ verify( handle != *cell );
 | 
|---|
| 150 | 
 | 
|---|
| 151 |                 bool * null = 0p; // Re-write every loop since compare thrashes it
 | 
|---|
| 152 |                 if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null
 | 
|---|
| 153 |                         && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
 | 
|---|
| 154 |                         /* paranoid */ verify(i < ready);
 | 
|---|
| 155 |                         /* paranoid */ verify( (kernelTLS().sched_id = i, true) );
 | 
|---|
| 156 |                         return i;
 | 
|---|
| 157 |                 }
 | 
|---|
| 158 |         }
 | 
|---|
| 159 | 
 | 
|---|
| 160 |         if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max);
 | 
|---|
| 161 | 
 | 
|---|
| 162 |         // Step - 2 : F&A to get a new spot in the array.
 | 
|---|
| 163 |         uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
 | 
|---|
| 164 |         if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max);
 | 
|---|
| 165 | 
 | 
|---|
| 166 |         // Step - 3 : Mark space as used and then publish it.
 | 
|---|
| 167 |         data[n] = handle;
 | 
|---|
| 168 |         while() {
 | 
|---|
| 169 |                 unsigned copy = n;
 | 
|---|
| 170 |                 if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
 | 
|---|
| 171 |                         && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
 | 
|---|
| 172 |                         break;
 | 
|---|
| 173 |                 Pause();
 | 
|---|
| 174 |         }
 | 
|---|
| 175 | 
 | 
|---|
| 176 |         __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n);
 | 
|---|
| 177 | 
 | 
|---|
| 178 |         // Return new spot.
 | 
|---|
| 179 |         /* paranoid */ verify(n < ready);
 | 
|---|
| 180 |         /* paranoid */ verify( (kernelTLS().sched_id = n, true) );
 | 
|---|
| 181 |         return n;
 | 
|---|
| 182 | }
 | 
|---|
| 183 | 
 | 
|---|
| 184 | void unregister_proc_id( unsigned id ) with(*__scheduler_lock) {
 | 
|---|
| 185 |         /* paranoid */ verify(id < ready);
 | 
|---|
| 186 |         /* paranoid */ verify(id == kernelTLS().sched_id);
 | 
|---|
| 187 |         /* paranoid */ verify(data[id] == &kernelTLS().sched_lock);
 | 
|---|
| 188 | 
 | 
|---|
| 189 |         bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems
 | 
|---|
| 190 | 
 | 
|---|
| 191 |         __atomic_store_n(cell, 0p, __ATOMIC_RELEASE);
 | 
|---|
| 192 | 
 | 
|---|
| 193 |         __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc);
 | 
|---|
| 194 | 
 | 
|---|
| 195 |         __kernel_rseq_unregister();
 | 
|---|
| 196 | }
 | 
|---|
| 197 | 
 | 
|---|
| 198 | //-----------------------------------------------------------------------
 | 
|---|
| 199 | // Writer side : acquire when changing the ready queue, e.g. adding more
 | 
|---|
| 200 | //  queues or removing them.
 | 
|---|
| 201 | uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) {
 | 
|---|
| 202 |         /* paranoid */ verify( ! __preemption_enabled() );
 | 
|---|
| 203 |         /* paranoid */ verify( ! kernelTLS().sched_lock );
 | 
|---|
| 204 | 
 | 
|---|
| 205 |         // Step 1 : lock global lock
 | 
|---|
| 206 |         // It is needed to avoid processors that register mid Critical-Section
 | 
|---|
| 207 |         //   to simply lock their own lock and enter.
 | 
|---|
| 208 |         __atomic_acquire( &write_lock );
 | 
|---|
| 209 | 
 | 
|---|
| 210 |         // Step 2 : lock per-proc lock
 | 
|---|
| 211 |         // Processors that are currently being registered aren't counted
 | 
|---|
| 212 |         //   but can't be in read_lock or in the critical section.
 | 
|---|
| 213 |         // All other processors are counted
 | 
|---|
| 214 |         uint_fast32_t s = ready;
 | 
|---|
| 215 |         for(uint_fast32_t i = 0; i < s; i++) {
 | 
|---|
| 216 |                 volatile bool * llock = data[i];
 | 
|---|
| 217 |                 if(llock) __atomic_acquire( llock );
 | 
|---|
| 218 |         }
 | 
|---|
| 219 | 
 | 
|---|
| 220 |         /* paranoid */ verify( ! __preemption_enabled() );
 | 
|---|
| 221 |         return s;
 | 
|---|
| 222 | }
 | 
|---|
| 223 | 
 | 
|---|
| 224 | void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) {
 | 
|---|
| 225 |         /* paranoid */ verify( ! __preemption_enabled() );
 | 
|---|
| 226 | 
 | 
|---|
| 227 |         // Step 1 : release local locks
 | 
|---|
| 228 |         // This must be done while the global lock is held to avoid
 | 
|---|
| 229 |         //   threads that where created mid critical section
 | 
|---|
| 230 |         //   to race to lock their local locks and have the writer
 | 
|---|
| 231 |         //   immidiately unlock them
 | 
|---|
| 232 |         // Alternative solution : return s in write_lock and pass it to write_unlock
 | 
|---|
| 233 |         for(uint_fast32_t i = 0; i < last_s; i++) {
 | 
|---|
| 234 |                 volatile bool * llock = data[i];
 | 
|---|
| 235 |                 if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE);
 | 
|---|
| 236 |         }
 | 
|---|
| 237 | 
 | 
|---|
| 238 |         // Step 2 : release global lock
 | 
|---|
| 239 |         /*paranoid*/ assert(true == write_lock);
 | 
|---|
| 240 |         __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE);
 | 
|---|
| 241 | 
 | 
|---|
| 242 |         /* paranoid */ verify( ! __preemption_enabled() );
 | 
|---|
| 243 | }
 | 
|---|
| 244 | 
 | 
|---|
| 245 | //=======================================================================
 | 
|---|
| 246 | // Cforall Ready Queue used for scheduling
 | 
|---|
| 247 | //=======================================================================
 | 
|---|
| 248 | void ?{}(__ready_queue_t & this) with (this) {
 | 
|---|
| 249 |         #if defined(USE_CPU_WORK_STEALING)
 | 
|---|
| 250 |                 lanes.count = cpu_info.hthrd_count * READYQ_SHARD_FACTOR;
 | 
|---|
| 251 |                 lanes.data = alloc( lanes.count );
 | 
|---|
| 252 |                 lanes.tscs = alloc( lanes.count );
 | 
|---|
| 253 | 
 | 
|---|
| 254 |                 for( idx; (size_t)lanes.count ) {
 | 
|---|
| 255 |                         (lanes.data[idx]){};
 | 
|---|
| 256 |                         lanes.tscs[idx].tv = rdtscl();
 | 
|---|
| 257 |                 }
 | 
|---|
| 258 |         #else
 | 
|---|
| 259 |                 lanes.data  = 0p;
 | 
|---|
| 260 |                 lanes.tscs  = 0p;
 | 
|---|
| 261 |                 lanes.count = 0;
 | 
|---|
| 262 |         #endif
 | 
|---|
| 263 | }
 | 
|---|
| 264 | 
 | 
|---|
| 265 | void ^?{}(__ready_queue_t & this) with (this) {
 | 
|---|
| 266 |         #if !defined(USE_CPU_WORK_STEALING)
 | 
|---|
| 267 |                 verify( SEQUENTIAL_SHARD == lanes.count );
 | 
|---|
| 268 |         #endif
 | 
|---|
| 269 | 
 | 
|---|
| 270 |         free(lanes.data);
 | 
|---|
| 271 |         free(lanes.tscs);
 | 
|---|
| 272 | }
 | 
|---|
| 273 | 
 | 
|---|
| 274 | //-----------------------------------------------------------------------
 | 
|---|
| 275 | #if defined(USE_CPU_WORK_STEALING)
 | 
|---|
| 276 |         __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, bool push_local) with (cltr->ready_queue) {
 | 
|---|
| 277 |                 __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
 | 
|---|
| 278 | 
 | 
|---|
| 279 |                 processor * const proc = kernelTLS().this_processor;
 | 
|---|
| 280 |                 const bool external = !push_local || (!proc) || (cltr != proc->cltr);
 | 
|---|
| 281 | 
 | 
|---|
| 282 |                 const int cpu = __kernel_getcpu();
 | 
|---|
| 283 |                 /* paranoid */ verify(cpu >= 0);
 | 
|---|
| 284 |                 /* paranoid */ verify(cpu < cpu_info.hthrd_count);
 | 
|---|
| 285 |                 /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count);
 | 
|---|
| 286 | 
 | 
|---|
| 287 |                 const cpu_map_entry_t & map = cpu_info.llc_map[cpu];
 | 
|---|
| 288 |                 /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count);
 | 
|---|
| 289 |                 /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count);
 | 
|---|
| 290 |                 /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %zu lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR);
 | 
|---|
| 291 | 
 | 
|---|
| 292 |                 const int start = map.self * READYQ_SHARD_FACTOR;
 | 
|---|
| 293 |                 unsigned i;
 | 
|---|
| 294 |                 do {
 | 
|---|
| 295 |                         unsigned r;
 | 
|---|
| 296 |                         if(unlikely(external)) { r = __tls_rand(); }
 | 
|---|
| 297 |                         else { r = proc->rdq.its++; }
 | 
|---|
| 298 |                         i = start + (r % READYQ_SHARD_FACTOR);
 | 
|---|
| 299 |                         // If we can't lock it retry
 | 
|---|
| 300 |                 } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
 | 
|---|
| 301 | 
 | 
|---|
| 302 |                 // Actually push it
 | 
|---|
| 303 |                 push(lanes.data[i], thrd);
 | 
|---|
| 304 | 
 | 
|---|
| 305 |                 // Unlock and return
 | 
|---|
| 306 |                 __atomic_unlock( &lanes.data[i].lock );
 | 
|---|
| 307 | 
 | 
|---|
| 308 |                 #if !defined(__CFA_NO_STATISTICS__)
 | 
|---|
| 309 |                         if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
 | 
|---|
| 310 |                         else __tls_stats()->ready.push.local.success++;
 | 
|---|
| 311 |                 #endif
 | 
|---|
| 312 | 
 | 
|---|
| 313 |                 __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
 | 
|---|
| 314 | 
 | 
|---|
| 315 |         }
 | 
|---|
| 316 | 
 | 
|---|
| 317 |         // Pop from the ready queue from a given cluster
 | 
|---|
| 318 |         __attribute__((hot)) thread$ * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
 | 
|---|
| 319 |                 /* paranoid */ verify( lanes.count > 0 );
 | 
|---|
| 320 |                 /* paranoid */ verify( kernelTLS().this_processor );
 | 
|---|
| 321 | 
 | 
|---|
| 322 |                 const int cpu = __kernel_getcpu();
 | 
|---|
| 323 |                 /* paranoid */ verify(cpu >= 0);
 | 
|---|
| 324 |                 /* paranoid */ verify(cpu < cpu_info.hthrd_count);
 | 
|---|
| 325 |                 /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count);
 | 
|---|
| 326 | 
 | 
|---|
| 327 |                 const cpu_map_entry_t & map = cpu_info.llc_map[cpu];
 | 
|---|
| 328 |                 /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count);
 | 
|---|
| 329 |                 /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count);
 | 
|---|
| 330 |                 /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %zu lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR);
 | 
|---|
| 331 | 
 | 
|---|
| 332 |                 processor * const proc = kernelTLS().this_processor;
 | 
|---|
| 333 |                 const int start = map.self * READYQ_SHARD_FACTOR;
 | 
|---|
| 334 | 
 | 
|---|
| 335 |                 // Did we already have a help target
 | 
|---|
| 336 |                 if(proc->rdq.target == -1u) {
 | 
|---|
| 337 |                         // if We don't have a
 | 
|---|
| 338 |                         unsigned long long min = ts(lanes.data[start]);
 | 
|---|
| 339 |                         for(i; READYQ_SHARD_FACTOR) {
 | 
|---|
| 340 |                                 unsigned long long tsc = ts(lanes.data[start + i]);
 | 
|---|
| 341 |                                 if(tsc < min) min = tsc;
 | 
|---|
| 342 |                         }
 | 
|---|
| 343 |                         proc->rdq.cutoff = min;
 | 
|---|
| 344 | 
 | 
|---|
| 345 |                         /* paranoid */ verify(lanes.count < 65536); // The following code assumes max 65536 cores.
 | 
|---|
| 346 |                         /* paranoid */ verify(map.count < 65536); // The following code assumes max 65536 cores.
 | 
|---|
| 347 |                         uint64_t chaos = __tls_rand();
 | 
|---|
| 348 |                         uint64_t high_chaos = (chaos >> 32);
 | 
|---|
| 349 |                         uint64_t  mid_chaos = (chaos >> 16) & 0xffff;
 | 
|---|
| 350 |                         uint64_t  low_chaos = chaos & 0xffff;
 | 
|---|
| 351 | 
 | 
|---|
| 352 |                         unsigned me = map.self;
 | 
|---|
| 353 |                         unsigned cpu_chaos = map.start + (mid_chaos % map.count);
 | 
|---|
| 354 |                         bool global = cpu_chaos == me;
 | 
|---|
| 355 | 
 | 
|---|
| 356 |                         if(global) {
 | 
|---|
| 357 |                                 proc->rdq.target = high_chaos % lanes.count;
 | 
|---|
| 358 |                         } else {
 | 
|---|
| 359 |                                 proc->rdq.target = (cpu_chaos * READYQ_SHARD_FACTOR) + (low_chaos % READYQ_SHARD_FACTOR);
 | 
|---|
| 360 |                                 /* paranoid */ verify(proc->rdq.target >= (map.start * READYQ_SHARD_FACTOR));
 | 
|---|
| 361 |                                 /* paranoid */ verify(proc->rdq.target <  ((map.start + map.count) * READYQ_SHARD_FACTOR));
 | 
|---|
| 362 |                         }
 | 
|---|
| 363 | 
 | 
|---|
| 364 |                         /* paranoid */ verify(proc->rdq.target != -1u);
 | 
|---|
| 365 |                 }
 | 
|---|
| 366 |                 else {
 | 
|---|
| 367 |                         const unsigned long long bias = 0; //2_500_000_000;
 | 
|---|
| 368 |                         const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff;
 | 
|---|
| 369 |                         {
 | 
|---|
| 370 |                                 unsigned target = proc->rdq.target;
 | 
|---|
| 371 |                                 proc->rdq.target = -1u;
 | 
|---|
| 372 |                                 if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) {
 | 
|---|
| 373 |                                         thread$ * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
 | 
|---|
| 374 |                                         proc->rdq.last = target;
 | 
|---|
| 375 |                                         if(t) return t;
 | 
|---|
| 376 |                                 }
 | 
|---|
| 377 |                         }
 | 
|---|
| 378 | 
 | 
|---|
| 379 |                         unsigned last = proc->rdq.last;
 | 
|---|
| 380 |                         if(last != -1u && lanes.tscs[last].tv < cutoff && ts(lanes.data[last]) < cutoff) {
 | 
|---|
| 381 |                                 thread$ * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.help));
 | 
|---|
| 382 |                                 if(t) return t;
 | 
|---|
| 383 |                         }
 | 
|---|
| 384 |                         else {
 | 
|---|
| 385 |                                 proc->rdq.last = -1u;
 | 
|---|
| 386 |                         }
 | 
|---|
| 387 |                 }
 | 
|---|
| 388 | 
 | 
|---|
| 389 |                 for(READYQ_SHARD_FACTOR) {
 | 
|---|
| 390 |                         unsigned i = start + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
 | 
|---|
| 391 |                         if(thread$ * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
 | 
|---|
| 392 |                 }
 | 
|---|
| 393 | 
 | 
|---|
| 394 |                 // All lanes where empty return 0p
 | 
|---|
| 395 |                 return 0p;
 | 
|---|
| 396 |         }
 | 
|---|
| 397 | 
 | 
|---|
| 398 |         __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
 | 
|---|
| 399 |                 processor * const proc = kernelTLS().this_processor;
 | 
|---|
| 400 |                 unsigned last = proc->rdq.last;
 | 
|---|
| 401 |                 if(last != -1u) {
 | 
|---|
| 402 |                         struct thread$ * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.steal));
 | 
|---|
| 403 |                         if(t) return t;
 | 
|---|
| 404 |                         proc->rdq.last = -1u;
 | 
|---|
| 405 |                 }
 | 
|---|
| 406 | 
 | 
|---|
| 407 |                 unsigned i = __tls_rand() % lanes.count;
 | 
|---|
| 408 |                 return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
 | 
|---|
| 409 |         }
 | 
|---|
| 410 |         __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) {
 | 
|---|
| 411 |                 return search(cltr);
 | 
|---|
| 412 |         }
 | 
|---|
| 413 | #endif
 | 
|---|
| 414 | #if defined(USE_RELAXED_FIFO)
 | 
|---|
| 415 |         //-----------------------------------------------------------------------
 | 
|---|
| 416 |         // get index from random number with or without bias towards queues
 | 
|---|
| 417 |         static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred) {
 | 
|---|
| 418 |                 unsigned i;
 | 
|---|
| 419 |                 bool local;
 | 
|---|
| 420 |                 unsigned rlow  = r % BIAS;
 | 
|---|
| 421 |                 unsigned rhigh = r / BIAS;
 | 
|---|
| 422 |                 if((0 != rlow) && preferred >= 0) {
 | 
|---|
| 423 |                         // (BIAS - 1) out of BIAS chances
 | 
|---|
| 424 |                         // Use perferred queues
 | 
|---|
| 425 |                         i = preferred + (rhigh % READYQ_SHARD_FACTOR);
 | 
|---|
| 426 |                         local = true;
 | 
|---|
| 427 |                 }
 | 
|---|
| 428 |                 else {
 | 
|---|
| 429 |                         // 1 out of BIAS chances
 | 
|---|
| 430 |                         // Use all queues
 | 
|---|
| 431 |                         i = rhigh;
 | 
|---|
| 432 |                         local = false;
 | 
|---|
| 433 |                 }
 | 
|---|
| 434 |                 return [i, local];
 | 
|---|
| 435 |         }
 | 
|---|
| 436 | 
 | 
|---|
| 437 |         __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, bool push_local) with (cltr->ready_queue) {
 | 
|---|
| 438 |                 __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
 | 
|---|
| 439 | 
 | 
|---|
| 440 |                 const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
 | 
|---|
| 441 |                 /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
 | 
|---|
| 442 | 
 | 
|---|
| 443 |                 bool local;
 | 
|---|
| 444 |                 int preferred = external ? -1 : kernelTLS().this_processor->rdq.id;
 | 
|---|
| 445 | 
 | 
|---|
| 446 |                 // Try to pick a lane and lock it
 | 
|---|
| 447 |                 unsigned i;
 | 
|---|
| 448 |                 do {
 | 
|---|
| 449 |                         // Pick the index of a lane
 | 
|---|
| 450 |                         unsigned r = __tls_rand_fwd();
 | 
|---|
| 451 |                         [i, local] = idx_from_r(r, preferred);
 | 
|---|
| 452 | 
 | 
|---|
| 453 |                         i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
 | 
|---|
| 454 | 
 | 
|---|
| 455 |                         #if !defined(__CFA_NO_STATISTICS__)
 | 
|---|
| 456 |                                 if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
 | 
|---|
| 457 |                                 else if(local) __tls_stats()->ready.push.local.attempt++;
 | 
|---|
| 458 |                                 else __tls_stats()->ready.push.share.attempt++;
 | 
|---|
| 459 |                         #endif
 | 
|---|
| 460 | 
 | 
|---|
| 461 |                         // If we can't lock it retry
 | 
|---|
| 462 |                 } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
 | 
|---|
| 463 | 
 | 
|---|
| 464 |                 // Actually push it
 | 
|---|
| 465 |                 push(lanes.data[i], thrd);
 | 
|---|
| 466 | 
 | 
|---|
| 467 |                 // Unlock and return
 | 
|---|
| 468 |                 __atomic_unlock( &lanes.data[i].lock );
 | 
|---|
| 469 | 
 | 
|---|
| 470 |                 // Mark the current index in the tls rng instance as having an item
 | 
|---|
| 471 |                 __tls_rand_advance_bck();
 | 
|---|
| 472 | 
 | 
|---|
| 473 |                 __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
 | 
|---|
| 474 | 
 | 
|---|
| 475 |                 // Update statistics
 | 
|---|
| 476 |                 #if !defined(__CFA_NO_STATISTICS__)
 | 
|---|
| 477 |                         if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
 | 
|---|
| 478 |                         else if(local) __tls_stats()->ready.push.local.success++;
 | 
|---|
| 479 |                         else __tls_stats()->ready.push.share.success++;
 | 
|---|
| 480 |                 #endif
 | 
|---|
| 481 |         }
 | 
|---|
| 482 | 
 | 
|---|
| 483 |         // Pop from the ready queue from a given cluster
 | 
|---|
| 484 |         __attribute__((hot)) thread$ * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
 | 
|---|
| 485 |                 /* paranoid */ verify( lanes.count > 0 );
 | 
|---|
| 486 |                 /* paranoid */ verify( kernelTLS().this_processor );
 | 
|---|
| 487 |                 /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
 | 
|---|
| 488 | 
 | 
|---|
| 489 |                 unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
 | 
|---|
| 490 |                 int preferred = kernelTLS().this_processor->rdq.id;
 | 
|---|
| 491 | 
 | 
|---|
| 492 | 
 | 
|---|
| 493 |                 // As long as the list is not empty, try finding a lane that isn't empty and pop from it
 | 
|---|
| 494 |                 for(25) {
 | 
|---|
| 495 |                         // Pick two lists at random
 | 
|---|
| 496 |                         unsigned ri = __tls_rand_bck();
 | 
|---|
| 497 |                         unsigned rj = __tls_rand_bck();
 | 
|---|
| 498 | 
 | 
|---|
| 499 |                         unsigned i, j;
 | 
|---|
| 500 |                         __attribute__((unused)) bool locali, localj;
 | 
|---|
| 501 |                         [i, locali] = idx_from_r(ri, preferred);
 | 
|---|
| 502 |                         [j, localj] = idx_from_r(rj, preferred);
 | 
|---|
| 503 | 
 | 
|---|
| 504 |                         i %= count;
 | 
|---|
| 505 |                         j %= count;
 | 
|---|
| 506 | 
 | 
|---|
| 507 |                         // try popping from the 2 picked lists
 | 
|---|
| 508 |                         struct thread$ * thrd = try_pop(cltr, i, j __STATS(, *(locali || localj ? &__tls_stats()->ready.pop.local : &__tls_stats()->ready.pop.help)));
 | 
|---|
| 509 |                         if(thrd) {
 | 
|---|
| 510 |                                 return thrd;
 | 
|---|
| 511 |                         }
 | 
|---|
| 512 |                 }
 | 
|---|
| 513 | 
 | 
|---|
| 514 |                 // All lanes where empty return 0p
 | 
|---|
| 515 |                 return 0p;
 | 
|---|
| 516 |         }
 | 
|---|
| 517 | 
 | 
|---|
| 518 |         __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) { return pop_fast(cltr); }
 | 
|---|
| 519 |         __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) {
 | 
|---|
| 520 |                 return search(cltr);
 | 
|---|
| 521 |         }
 | 
|---|
| 522 | #endif
 | 
|---|
| 523 | #if defined(USE_WORK_STEALING)
 | 
|---|
| 524 |         __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, bool push_local) with (cltr->ready_queue) {
 | 
|---|
| 525 |                 __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
 | 
|---|
| 526 | 
 | 
|---|
| 527 |                 // #define USE_PREFERRED
 | 
|---|
| 528 |                 #if !defined(USE_PREFERRED)
 | 
|---|
| 529 |                 const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
 | 
|---|
| 530 |                 /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
 | 
|---|
| 531 |                 #else
 | 
|---|
| 532 |                         unsigned preferred = thrd->preferred;
 | 
|---|
| 533 |                         const bool external = push_local || (!kernelTLS().this_processor) || preferred == -1u || thrd->curr_cluster != cltr;
 | 
|---|
| 534 |                         /* paranoid */ verifyf(external || preferred < lanes.count, "Invalid preferred queue %u for %u lanes", preferred, lanes.count );
 | 
|---|
| 535 | 
 | 
|---|
| 536 |                         unsigned r = preferred % READYQ_SHARD_FACTOR;
 | 
|---|
| 537 |                         const unsigned start = preferred - r;
 | 
|---|
| 538 |                 #endif
 | 
|---|
| 539 | 
 | 
|---|
| 540 |                 // Try to pick a lane and lock it
 | 
|---|
| 541 |                 unsigned i;
 | 
|---|
| 542 |                 do {
 | 
|---|
| 543 |                         #if !defined(__CFA_NO_STATISTICS__)
 | 
|---|
| 544 |                                 if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
 | 
|---|
| 545 |                                 else __tls_stats()->ready.push.local.attempt++;
 | 
|---|
| 546 |                         #endif
 | 
|---|
| 547 | 
 | 
|---|
| 548 |                         if(unlikely(external)) {
 | 
|---|
| 549 |                                 i = __tls_rand() % lanes.count;
 | 
|---|
| 550 |                         }
 | 
|---|
| 551 |                         else {
 | 
|---|
| 552 |                                 #if !defined(USE_PREFERRED)
 | 
|---|
| 553 |                                         processor * proc = kernelTLS().this_processor;
 | 
|---|
| 554 |                                         unsigned r = proc->rdq.its++;
 | 
|---|
| 555 |                                         i =  proc->rdq.id + (r % READYQ_SHARD_FACTOR);
 | 
|---|
| 556 |                                 #else
 | 
|---|
| 557 |                                         i = start + (r++ % READYQ_SHARD_FACTOR);
 | 
|---|
| 558 |                                 #endif
 | 
|---|
| 559 |                         }
 | 
|---|
| 560 |                         // If we can't lock it retry
 | 
|---|
| 561 |                 } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
 | 
|---|
| 562 | 
 | 
|---|
| 563 |                 // Actually push it
 | 
|---|
| 564 |                 push(lanes.data[i], thrd);
 | 
|---|
| 565 | 
 | 
|---|
| 566 |                 // Unlock and return
 | 
|---|
| 567 |                 __atomic_unlock( &lanes.data[i].lock );
 | 
|---|
| 568 | 
 | 
|---|
| 569 |                 #if !defined(__CFA_NO_STATISTICS__)
 | 
|---|
| 570 |                         if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
 | 
|---|
| 571 |                         else __tls_stats()->ready.push.local.success++;
 | 
|---|
| 572 |                 #endif
 | 
|---|
| 573 | 
 | 
|---|
| 574 |                 __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
 | 
|---|
| 575 |         }
 | 
|---|
| 576 | 
 | 
|---|
| 577 |         // Pop from the ready queue from a given cluster
 | 
|---|
| 578 |         __attribute__((hot)) thread$ * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
 | 
|---|
| 579 |                 /* paranoid */ verify( lanes.count > 0 );
 | 
|---|
| 580 |                 /* paranoid */ verify( kernelTLS().this_processor );
 | 
|---|
| 581 |                 /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
 | 
|---|
| 582 | 
 | 
|---|
| 583 |                 processor * proc = kernelTLS().this_processor;
 | 
|---|
| 584 | 
 | 
|---|
| 585 |                 if(proc->rdq.target == -1u) {
 | 
|---|
| 586 |                         unsigned long long min = ts(lanes.data[proc->rdq.id]);
 | 
|---|
| 587 |                         for(int i = 0; i < READYQ_SHARD_FACTOR; i++) {
 | 
|---|
| 588 |                                 unsigned long long tsc = ts(lanes.data[proc->rdq.id + i]);
 | 
|---|
| 589 |                                 if(tsc < min) min = tsc;
 | 
|---|
| 590 |                         }
 | 
|---|
| 591 |                         proc->rdq.cutoff = min;
 | 
|---|
| 592 |                         proc->rdq.target = __tls_rand() % lanes.count;
 | 
|---|
| 593 |                 }
 | 
|---|
| 594 |                 else {
 | 
|---|
| 595 |                         unsigned target = proc->rdq.target;
 | 
|---|
| 596 |                         proc->rdq.target = -1u;
 | 
|---|
| 597 |                         const unsigned long long bias = 0; //2_500_000_000;
 | 
|---|
| 598 |                         const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff;
 | 
|---|
| 599 |                         if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) {
 | 
|---|
| 600 |                                 thread$ * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
 | 
|---|
| 601 |                                 if(t) return t;
 | 
|---|
| 602 |                         }
 | 
|---|
| 603 |                 }
 | 
|---|
| 604 | 
 | 
|---|
| 605 |                 for(READYQ_SHARD_FACTOR) {
 | 
|---|
| 606 |                         unsigned i = proc->rdq.id + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
 | 
|---|
| 607 |                         if(thread$ * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
 | 
|---|
| 608 |                 }
 | 
|---|
| 609 |                 return 0p;
 | 
|---|
| 610 |         }
 | 
|---|
| 611 | 
 | 
|---|
| 612 |         __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
 | 
|---|
| 613 |                 unsigned i = __tls_rand() % lanes.count;
 | 
|---|
| 614 |                 return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
 | 
|---|
| 615 |         }
 | 
|---|
| 616 | 
 | 
|---|
| 617 |         __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) with (cltr->ready_queue) {
 | 
|---|
| 618 |                 return search(cltr);
 | 
|---|
| 619 |         }
 | 
|---|
| 620 | #endif
 | 
|---|
| 621 | 
 | 
|---|
| 622 | //=======================================================================
 | 
|---|
| 623 | // Various Ready Queue utilities
 | 
|---|
| 624 | //=======================================================================
 | 
|---|
| 625 | // these function work the same or almost the same
 | 
|---|
| 626 | // whether they are using work-stealing or relaxed fifo scheduling
 | 
|---|
| 627 | 
 | 
|---|
| 628 | //-----------------------------------------------------------------------
 | 
|---|
| 629 | // try to pop from a lane given by index w
 | 
|---|
| 630 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
 | 
|---|
| 631 |         __STATS( stats.attempt++; )
 | 
|---|
| 632 | 
 | 
|---|
| 633 |         // Get relevant elements locally
 | 
|---|
| 634 |         __intrusive_lane_t & lane = lanes.data[w];
 | 
|---|
| 635 | 
 | 
|---|
| 636 |         // If list looks empty retry
 | 
|---|
| 637 |         if( is_empty(lane) ) {
 | 
|---|
| 638 |                 return 0p;
 | 
|---|
| 639 |         }
 | 
|---|
| 640 | 
 | 
|---|
| 641 |         // If we can't get the lock retry
 | 
|---|
| 642 |         if( !__atomic_try_acquire(&lane.lock) ) {
 | 
|---|
| 643 |                 return 0p;
 | 
|---|
| 644 |         }
 | 
|---|
| 645 | 
 | 
|---|
| 646 |         // If list is empty, unlock and retry
 | 
|---|
| 647 |         if( is_empty(lane) ) {
 | 
|---|
| 648 |                 __atomic_unlock(&lane.lock);
 | 
|---|
| 649 |                 return 0p;
 | 
|---|
| 650 |         }
 | 
|---|
| 651 | 
 | 
|---|
| 652 |         // Actually pop the list
 | 
|---|
| 653 |         struct thread$ * thrd;
 | 
|---|
| 654 |         unsigned long long tsv;
 | 
|---|
| 655 |         [thrd, tsv] = pop(lane);
 | 
|---|
| 656 | 
 | 
|---|
| 657 |         /* paranoid */ verify(thrd);
 | 
|---|
| 658 |         /* paranoid */ verify(tsv);
 | 
|---|
| 659 |         /* paranoid */ verify(lane.lock);
 | 
|---|
| 660 | 
 | 
|---|
| 661 |         // Unlock and return
 | 
|---|
| 662 |         __atomic_unlock(&lane.lock);
 | 
|---|
| 663 | 
 | 
|---|
| 664 |         // Update statistics
 | 
|---|
| 665 |         __STATS( stats.success++; )
 | 
|---|
| 666 | 
 | 
|---|
| 667 |         #if defined(USE_WORK_STEALING)
 | 
|---|
| 668 |                 lanes.tscs[w].tv = tsv;
 | 
|---|
| 669 |         #endif
 | 
|---|
| 670 | 
 | 
|---|
| 671 |         thrd->preferred = w;
 | 
|---|
| 672 | 
 | 
|---|
| 673 |         // return the popped thread
 | 
|---|
| 674 |         return thrd;
 | 
|---|
| 675 | }
 | 
|---|
| 676 | 
 | 
|---|
| 677 | //-----------------------------------------------------------------------
 | 
|---|
| 678 | // try to pop from any lanes making sure you don't miss any threads push
 | 
|---|
| 679 | // before the start of the function
 | 
|---|
| 680 | static inline struct thread$ * search(struct cluster * cltr) with (cltr->ready_queue) {
 | 
|---|
| 681 |         /* paranoid */ verify( lanes.count > 0 );
 | 
|---|
| 682 |         unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
 | 
|---|
| 683 |         unsigned offset = __tls_rand();
 | 
|---|
| 684 |         for(i; count) {
 | 
|---|
| 685 |                 unsigned idx = (offset + i) % count;
 | 
|---|
| 686 |                 struct thread$ * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search));
 | 
|---|
| 687 |                 if(thrd) {
 | 
|---|
| 688 |                         return thrd;
 | 
|---|
| 689 |                 }
 | 
|---|
| 690 |         }
 | 
|---|
| 691 | 
 | 
|---|
| 692 |         // All lanes where empty return 0p
 | 
|---|
| 693 |         return 0p;
 | 
|---|
| 694 | }
 | 
|---|
| 695 | 
 | 
|---|
| 696 | //-----------------------------------------------------------------------
 | 
|---|
| 697 | // Check that all the intrusive queues in the data structure are still consistent
 | 
|---|
| 698 | static void check( __ready_queue_t & q ) with (q) {
 | 
|---|
| 699 |         #if defined(__CFA_WITH_VERIFY__)
 | 
|---|
| 700 |                 {
 | 
|---|
| 701 |                         for( idx ; lanes.count ) {
 | 
|---|
| 702 |                                 __intrusive_lane_t & sl = lanes.data[idx];
 | 
|---|
| 703 |                                 assert(!lanes.data[idx].lock);
 | 
|---|
| 704 | 
 | 
|---|
| 705 |                                         if(is_empty(sl)) {
 | 
|---|
| 706 |                                                 assert( sl.anchor.next == 0p );
 | 
|---|
| 707 |                                                 assert( sl.anchor.ts   == -1llu );
 | 
|---|
| 708 |                                                 assert( mock_head(sl)  == sl.prev );
 | 
|---|
| 709 |                                         } else {
 | 
|---|
| 710 |                                                 assert( sl.anchor.next != 0p );
 | 
|---|
| 711 |                                                 assert( sl.anchor.ts   != -1llu );
 | 
|---|
| 712 |                                                 assert( mock_head(sl)  != sl.prev );
 | 
|---|
| 713 |                                         }
 | 
|---|
| 714 |                         }
 | 
|---|
| 715 |                 }
 | 
|---|
| 716 |         #endif
 | 
|---|
| 717 | }
 | 
|---|
| 718 | 
 | 
|---|
| 719 | //-----------------------------------------------------------------------
 | 
|---|
| 720 | // Given 2 indexes, pick the list with the oldest push an try to pop from it
 | 
|---|
| 721 | static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
 | 
|---|
| 722 |         // Pick the bet list
 | 
|---|
| 723 |         int w = i;
 | 
|---|
| 724 |         if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
 | 
|---|
| 725 |                 w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
 | 
|---|
| 726 |         }
 | 
|---|
| 727 | 
 | 
|---|
| 728 |         return try_pop(cltr, w __STATS(, stats));
 | 
|---|
| 729 | }
 | 
|---|
| 730 | 
 | 
|---|
| 731 | // Call this function of the intrusive list was moved using memcpy
 | 
|---|
| 732 | // fixes the list so that the pointers back to anchors aren't left dangling
 | 
|---|
| 733 | static inline void fix(__intrusive_lane_t & ll) {
 | 
|---|
| 734 |                         if(is_empty(ll)) {
 | 
|---|
| 735 |                                 verify(ll.anchor.next == 0p);
 | 
|---|
| 736 |                                 ll.prev = mock_head(ll);
 | 
|---|
| 737 |                         }
 | 
|---|
| 738 | }
 | 
|---|
| 739 | 
 | 
|---|
| 740 | static void assign_list(unsigned & value, dlist(processor) & list, unsigned count) {
 | 
|---|
| 741 |         processor * it = &list`first;
 | 
|---|
| 742 |         for(unsigned i = 0; i < count; i++) {
 | 
|---|
| 743 |                 /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count);
 | 
|---|
| 744 |                 it->rdq.id = value;
 | 
|---|
| 745 |                 it->rdq.target = -1u;
 | 
|---|
| 746 |                 value += READYQ_SHARD_FACTOR;
 | 
|---|
| 747 |                 it = &(*it)`next;
 | 
|---|
| 748 |         }
 | 
|---|
| 749 | }
 | 
|---|
| 750 | 
 | 
|---|
| 751 | static void reassign_cltr_id(struct cluster * cltr) {
 | 
|---|
| 752 |         unsigned preferred = 0;
 | 
|---|
| 753 |         assign_list(preferred, cltr->procs.actives, cltr->procs.total - cltr->procs.idle);
 | 
|---|
| 754 |         assign_list(preferred, cltr->procs.idles  , cltr->procs.idle );
 | 
|---|
| 755 | }
 | 
|---|
| 756 | 
 | 
|---|
| 757 | static void fix_times( struct cluster * cltr ) with( cltr->ready_queue ) {
 | 
|---|
| 758 |         #if defined(USE_WORK_STEALING)
 | 
|---|
| 759 |                 lanes.tscs = alloc(lanes.count, lanes.tscs`realloc);
 | 
|---|
| 760 |                 for(i; lanes.count) {
 | 
|---|
| 761 |                         unsigned long long tsc1 = ts(lanes.data[i]);
 | 
|---|
| 762 |                         unsigned long long tsc2 = rdtscl();
 | 
|---|
| 763 |                         lanes.tscs[i].tv = min(tsc1, tsc2);
 | 
|---|
| 764 |                 }
 | 
|---|
| 765 |         #endif
 | 
|---|
| 766 | }
 | 
|---|
| 767 | 
 | 
|---|
| 768 | #if defined(USE_CPU_WORK_STEALING)
 | 
|---|
| 769 |         // ready_queue size is fixed in this case
 | 
|---|
| 770 |         void ready_queue_grow(struct cluster * cltr) {}
 | 
|---|
| 771 |         void ready_queue_shrink(struct cluster * cltr) {}
 | 
|---|
| 772 | #else
 | 
|---|
| 773 |         // Grow the ready queue
 | 
|---|
| 774 |         void ready_queue_grow(struct cluster * cltr) {
 | 
|---|
| 775 |                 size_t ncount;
 | 
|---|
| 776 |                 int target = cltr->procs.total;
 | 
|---|
| 777 | 
 | 
|---|
| 778 |                 /* paranoid */ verify( ready_mutate_islocked() );
 | 
|---|
| 779 |                 __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
 | 
|---|
| 780 | 
 | 
|---|
| 781 |                 // Make sure that everything is consistent
 | 
|---|
| 782 |                 /* paranoid */ check( cltr->ready_queue );
 | 
|---|
| 783 | 
 | 
|---|
| 784 |                 // grow the ready queue
 | 
|---|
| 785 |                 with( cltr->ready_queue ) {
 | 
|---|
| 786 |                         // Find new count
 | 
|---|
| 787 |                         // Make sure we always have atleast 1 list
 | 
|---|
| 788 |                         if(target >= 2) {
 | 
|---|
| 789 |                                 ncount = target * READYQ_SHARD_FACTOR;
 | 
|---|
| 790 |                         } else {
 | 
|---|
| 791 |                                 ncount = SEQUENTIAL_SHARD;
 | 
|---|
| 792 |                         }
 | 
|---|
| 793 | 
 | 
|---|
| 794 |                         // Allocate new array (uses realloc and memcpies the data)
 | 
|---|
| 795 |                         lanes.data = alloc( ncount, lanes.data`realloc );
 | 
|---|
| 796 | 
 | 
|---|
| 797 |                         // Fix the moved data
 | 
|---|
| 798 |                         for( idx; (size_t)lanes.count ) {
 | 
|---|
| 799 |                                 fix(lanes.data[idx]);
 | 
|---|
| 800 |                         }
 | 
|---|
| 801 | 
 | 
|---|
| 802 |                         // Construct new data
 | 
|---|
| 803 |                         for( idx; (size_t)lanes.count ~ ncount) {
 | 
|---|
| 804 |                                 (lanes.data[idx]){};
 | 
|---|
| 805 |                         }
 | 
|---|
| 806 | 
 | 
|---|
| 807 |                         // Update original
 | 
|---|
| 808 |                         lanes.count = ncount;
 | 
|---|
| 809 |                 }
 | 
|---|
| 810 | 
 | 
|---|
| 811 |                 fix_times(cltr);
 | 
|---|
| 812 | 
 | 
|---|
| 813 |                 reassign_cltr_id(cltr);
 | 
|---|
| 814 | 
 | 
|---|
| 815 |                 // Make sure that everything is consistent
 | 
|---|
| 816 |                 /* paranoid */ check( cltr->ready_queue );
 | 
|---|
| 817 | 
 | 
|---|
| 818 |                 __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
 | 
|---|
| 819 | 
 | 
|---|
| 820 |                 /* paranoid */ verify( ready_mutate_islocked() );
 | 
|---|
| 821 |         }
 | 
|---|
| 822 | 
 | 
|---|
| 823 |         // Shrink the ready queue
 | 
|---|
| 824 |         void ready_queue_shrink(struct cluster * cltr) {
 | 
|---|
| 825 |                 /* paranoid */ verify( ready_mutate_islocked() );
 | 
|---|
| 826 |                 __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
 | 
|---|
| 827 | 
 | 
|---|
| 828 |                 // Make sure that everything is consistent
 | 
|---|
| 829 |                 /* paranoid */ check( cltr->ready_queue );
 | 
|---|
| 830 | 
 | 
|---|
| 831 |                 int target = cltr->procs.total;
 | 
|---|
| 832 | 
 | 
|---|
| 833 |                 with( cltr->ready_queue ) {
 | 
|---|
| 834 |                         // Remember old count
 | 
|---|
| 835 |                         size_t ocount = lanes.count;
 | 
|---|
| 836 | 
 | 
|---|
| 837 |                         // Find new count
 | 
|---|
| 838 |                         // Make sure we always have atleast 1 list
 | 
|---|
| 839 |                         lanes.count = target >= 2 ? target * READYQ_SHARD_FACTOR: SEQUENTIAL_SHARD;
 | 
|---|
| 840 |                         /* paranoid */ verify( ocount >= lanes.count );
 | 
|---|
| 841 |                         /* paranoid */ verify( lanes.count == target * READYQ_SHARD_FACTOR || target < 2 );
 | 
|---|
| 842 | 
 | 
|---|
| 843 |                         // for printing count the number of displaced threads
 | 
|---|
| 844 |                         #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
 | 
|---|
| 845 |                                 __attribute__((unused)) size_t displaced = 0;
 | 
|---|
| 846 |                         #endif
 | 
|---|
| 847 | 
 | 
|---|
| 848 |                         // redistribute old data
 | 
|---|
| 849 |                         for( idx; (size_t)lanes.count ~ ocount) {
 | 
|---|
| 850 |                                 // Lock is not strictly needed but makes checking invariants much easier
 | 
|---|
| 851 |                                 __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
 | 
|---|
| 852 |                                 verify(locked);
 | 
|---|
| 853 | 
 | 
|---|
| 854 |                                 // As long as we can pop from this lane to push the threads somewhere else in the queue
 | 
|---|
| 855 |                                 while(!is_empty(lanes.data[idx])) {
 | 
|---|
| 856 |                                         struct thread$ * thrd;
 | 
|---|
| 857 |                                         unsigned long long _;
 | 
|---|
| 858 |                                         [thrd, _] = pop(lanes.data[idx]);
 | 
|---|
| 859 | 
 | 
|---|
| 860 |                                         push(cltr, thrd, true);
 | 
|---|
| 861 | 
 | 
|---|
| 862 |                                         // for printing count the number of displaced threads
 | 
|---|
| 863 |                                         #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
 | 
|---|
| 864 |                                                 displaced++;
 | 
|---|
| 865 |                                         #endif
 | 
|---|
| 866 |                                 }
 | 
|---|
| 867 | 
 | 
|---|
| 868 |                                 // Unlock the lane
 | 
|---|
| 869 |                                 __atomic_unlock(&lanes.data[idx].lock);
 | 
|---|
| 870 | 
 | 
|---|
| 871 |                                 // TODO print the queue statistics here
 | 
|---|
| 872 | 
 | 
|---|
| 873 |                                 ^(lanes.data[idx]){};
 | 
|---|
| 874 |                         }
 | 
|---|
| 875 | 
 | 
|---|
| 876 |                         __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
 | 
|---|
| 877 | 
 | 
|---|
| 878 |                         // Allocate new array (uses realloc and memcpies the data)
 | 
|---|
| 879 |                         lanes.data = alloc( lanes.count, lanes.data`realloc );
 | 
|---|
| 880 | 
 | 
|---|
| 881 |                         // Fix the moved data
 | 
|---|
| 882 |                         for( idx; (size_t)lanes.count ) {
 | 
|---|
| 883 |                                 fix(lanes.data[idx]);
 | 
|---|
| 884 |                         }
 | 
|---|
| 885 |                 }
 | 
|---|
| 886 | 
 | 
|---|
| 887 |                 fix_times(cltr);
 | 
|---|
| 888 | 
 | 
|---|
| 889 |                 reassign_cltr_id(cltr);
 | 
|---|
| 890 | 
 | 
|---|
| 891 |                 // Make sure that everything is consistent
 | 
|---|
| 892 |                 /* paranoid */ check( cltr->ready_queue );
 | 
|---|
| 893 | 
 | 
|---|
| 894 |                 __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
 | 
|---|
| 895 |                 /* paranoid */ verify( ready_mutate_islocked() );
 | 
|---|
| 896 |         }
 | 
|---|
| 897 | #endif
 | 
|---|
| 898 | 
 | 
|---|
| 899 | #if !defined(__CFA_NO_STATISTICS__)
 | 
|---|
| 900 |         unsigned cnt(const __ready_queue_t & this, unsigned idx) {
 | 
|---|
| 901 |                 /* paranoid */ verify(this.lanes.count > idx);
 | 
|---|
| 902 |                 return this.lanes.data[idx].cnt;
 | 
|---|
| 903 |         }
 | 
|---|
| 904 | #endif
 | 
|---|
| 905 | 
 | 
|---|
| 906 | 
 | 
|---|
| 907 | #if   defined(CFA_HAVE_LINUX_LIBRSEQ)
 | 
|---|
| 908 |         // No definition needed
 | 
|---|
| 909 | #elif defined(CFA_HAVE_LINUX_RSEQ_H)
 | 
|---|
| 910 | 
 | 
|---|
| 911 |         #if defined( __x86_64 ) || defined( __i386 )
 | 
|---|
| 912 |                 #define RSEQ_SIG        0x53053053
 | 
|---|
| 913 |         #elif defined( __ARM_ARCH )
 | 
|---|
| 914 |                 #ifdef __ARMEB__
 | 
|---|
| 915 |                 #define RSEQ_SIG    0xf3def5e7      /* udf    #24035    ; 0x5de3 (ARMv6+) */
 | 
|---|
| 916 |                 #else
 | 
|---|
| 917 |                 #define RSEQ_SIG    0xe7f5def3      /* udf    #24035    ; 0x5de3 */
 | 
|---|
| 918 |                 #endif
 | 
|---|
| 919 |         #endif
 | 
|---|
| 920 | 
 | 
|---|
| 921 |         extern void __disable_interrupts_hard();
 | 
|---|
| 922 |         extern void __enable_interrupts_hard();
 | 
|---|
| 923 | 
 | 
|---|
| 924 |         void __kernel_raw_rseq_register  (void) {
 | 
|---|
| 925 |                 /* paranoid */ verify( __cfaabi_rseq.cpu_id == RSEQ_CPU_ID_UNINITIALIZED );
 | 
|---|
| 926 | 
 | 
|---|
| 927 |                 // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, (sigset_t *)0p, _NSIG / 8);
 | 
|---|
| 928 |                 int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, RSEQ_SIG);
 | 
|---|
| 929 |                 if(ret != 0) {
 | 
|---|
| 930 |                         int e = errno;
 | 
|---|
| 931 |                         switch(e) {
 | 
|---|
| 932 |                         case EINVAL: abort("KERNEL ERROR: rseq register invalid argument");
 | 
|---|
| 933 |                         case ENOSYS: abort("KERNEL ERROR: rseq register no supported");
 | 
|---|
| 934 |                         case EFAULT: abort("KERNEL ERROR: rseq register with invalid argument");
 | 
|---|
| 935 |                         case EBUSY : abort("KERNEL ERROR: rseq register already registered");
 | 
|---|
| 936 |                         case EPERM : abort("KERNEL ERROR: rseq register sig  argument  on unregistration does not match the signature received on registration");
 | 
|---|
| 937 |                         default: abort("KERNEL ERROR: rseq register unexpected return %d", e);
 | 
|---|
| 938 |                         }
 | 
|---|
| 939 |                 }
 | 
|---|
| 940 |         }
 | 
|---|
| 941 | 
 | 
|---|
| 942 |         void __kernel_raw_rseq_unregister(void) {
 | 
|---|
| 943 |                 /* paranoid */ verify( __cfaabi_rseq.cpu_id >= 0 );
 | 
|---|
| 944 | 
 | 
|---|
| 945 |                 // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, (sigset_t *)0p, _NSIG / 8);
 | 
|---|
| 946 |                 int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, RSEQ_SIG);
 | 
|---|
| 947 |                 if(ret != 0) {
 | 
|---|
| 948 |                         int e = errno;
 | 
|---|
| 949 |                         switch(e) {
 | 
|---|
| 950 |                         case EINVAL: abort("KERNEL ERROR: rseq unregister invalid argument");
 | 
|---|
| 951 |                         case ENOSYS: abort("KERNEL ERROR: rseq unregister no supported");
 | 
|---|
| 952 |                         case EFAULT: abort("KERNEL ERROR: rseq unregister with invalid argument");
 | 
|---|
| 953 |                         case EBUSY : abort("KERNEL ERROR: rseq unregister already registered");
 | 
|---|
| 954 |                         case EPERM : abort("KERNEL ERROR: rseq unregister sig  argument  on unregistration does not match the signature received on registration");
 | 
|---|
| 955 |                         default: abort("KERNEL ERROR: rseq unregisteunexpected return %d", e);
 | 
|---|
| 956 |                         }
 | 
|---|
| 957 |                 }
 | 
|---|
| 958 |         }
 | 
|---|
| 959 | #else
 | 
|---|
| 960 |         // No definition needed
 | 
|---|
| 961 | #endif
 | 
|---|