| 1 | //
|
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
|
|---|
| 3 | //
|
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
|
|---|
| 5 | // file "LICENCE" distributed with Cforall.
|
|---|
| 6 | //
|
|---|
| 7 | // ready_queue.cfa --
|
|---|
| 8 | //
|
|---|
| 9 | // Author : Thierry Delisle
|
|---|
| 10 | // Created On : Mon Nov dd 16:29:18 2019
|
|---|
| 11 | // Last Modified By :
|
|---|
| 12 | // Last Modified On :
|
|---|
| 13 | // Update Count :
|
|---|
| 14 | //
|
|---|
| 15 |
|
|---|
| 16 | #define __cforall_thread__
|
|---|
| 17 | #define _GNU_SOURCE
|
|---|
| 18 |
|
|---|
| 19 | // #define __CFA_DEBUG_PRINT_READY_QUEUE__
|
|---|
| 20 |
|
|---|
| 21 |
|
|---|
| 22 | #define USE_RELAXED_FIFO
|
|---|
| 23 | // #define USE_WORK_STEALING
|
|---|
| 24 |
|
|---|
| 25 | #include "bits/defs.hfa"
|
|---|
| 26 | #include "device/cpu.hfa"
|
|---|
| 27 | #include "kernel_private.hfa"
|
|---|
| 28 |
|
|---|
| 29 | #include "stdlib.hfa"
|
|---|
| 30 | #include "math.hfa"
|
|---|
| 31 |
|
|---|
| 32 | #include <errno.h>
|
|---|
| 33 | #include <unistd.h>
|
|---|
| 34 |
|
|---|
| 35 | extern "C" {
|
|---|
| 36 | #include <sys/syscall.h> // __NR_xxx
|
|---|
| 37 | }
|
|---|
| 38 |
|
|---|
| 39 | #include "ready_subqueue.hfa"
|
|---|
| 40 |
|
|---|
| 41 | static const size_t cache_line_size = 64;
|
|---|
| 42 |
|
|---|
| 43 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 44 | #define __STATS(...) __VA_ARGS__
|
|---|
| 45 | #else
|
|---|
| 46 | #define __STATS(...)
|
|---|
| 47 | #endif
|
|---|
| 48 |
|
|---|
| 49 | // No overriden function, no environment variable, no define
|
|---|
| 50 | // fall back to a magic number
|
|---|
| 51 | #ifndef __CFA_MAX_PROCESSORS__
|
|---|
| 52 | #define __CFA_MAX_PROCESSORS__ 1024
|
|---|
| 53 | #endif
|
|---|
| 54 |
|
|---|
| 55 | #if defined(USE_CPU_WORK_STEALING)
|
|---|
| 56 | #define READYQ_SHARD_FACTOR 2
|
|---|
| 57 | #elif defined(USE_RELAXED_FIFO)
|
|---|
| 58 | #define BIAS 4
|
|---|
| 59 | #define READYQ_SHARD_FACTOR 4
|
|---|
| 60 | #define SEQUENTIAL_SHARD 1
|
|---|
| 61 | #elif defined(USE_WORK_STEALING)
|
|---|
| 62 | #define READYQ_SHARD_FACTOR 2
|
|---|
| 63 | #define SEQUENTIAL_SHARD 2
|
|---|
| 64 | #else
|
|---|
| 65 | #error no scheduling strategy selected
|
|---|
| 66 | #endif
|
|---|
| 67 |
|
|---|
| 68 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats));
|
|---|
| 69 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats));
|
|---|
| 70 | static inline struct $thread * search(struct cluster * cltr);
|
|---|
| 71 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred);
|
|---|
| 72 |
|
|---|
| 73 |
|
|---|
| 74 | // returns the maximum number of processors the RWLock support
|
|---|
| 75 | __attribute__((weak)) unsigned __max_processors() {
|
|---|
| 76 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
|
|---|
| 77 | if(!max_cores_s) {
|
|---|
| 78 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
|
|---|
| 79 | return __CFA_MAX_PROCESSORS__;
|
|---|
| 80 | }
|
|---|
| 81 |
|
|---|
| 82 | char * endptr = 0p;
|
|---|
| 83 | long int max_cores_l = strtol(max_cores_s, &endptr, 10);
|
|---|
| 84 | if(max_cores_l < 1 || max_cores_l > 65535) {
|
|---|
| 85 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
|
|---|
| 86 | return __CFA_MAX_PROCESSORS__;
|
|---|
| 87 | }
|
|---|
| 88 | if('\0' != *endptr) {
|
|---|
| 89 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
|
|---|
| 90 | return __CFA_MAX_PROCESSORS__;
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | return max_cores_l;
|
|---|
| 94 | }
|
|---|
| 95 |
|
|---|
| 96 | #if defined(CFA_HAVE_LINUX_LIBRSEQ)
|
|---|
| 97 | // No forward declaration needed
|
|---|
| 98 | #define __kernel_rseq_register rseq_register_current_thread
|
|---|
| 99 | #define __kernel_rseq_unregister rseq_unregister_current_thread
|
|---|
| 100 | #elif defined(CFA_HAVE_LINUX_RSEQ_H)
|
|---|
| 101 | void __kernel_raw_rseq_register (void);
|
|---|
| 102 | void __kernel_raw_rseq_unregister(void);
|
|---|
| 103 |
|
|---|
| 104 | #define __kernel_rseq_register __kernel_raw_rseq_register
|
|---|
| 105 | #define __kernel_rseq_unregister __kernel_raw_rseq_unregister
|
|---|
| 106 | #else
|
|---|
| 107 | // No forward declaration needed
|
|---|
| 108 | // No initialization needed
|
|---|
| 109 | static inline void noop(void) {}
|
|---|
| 110 |
|
|---|
| 111 | #define __kernel_rseq_register noop
|
|---|
| 112 | #define __kernel_rseq_unregister noop
|
|---|
| 113 | #endif
|
|---|
| 114 |
|
|---|
| 115 | //=======================================================================
|
|---|
| 116 | // Cluster wide reader-writer lock
|
|---|
| 117 | //=======================================================================
|
|---|
| 118 | void ?{}(__scheduler_RWLock_t & this) {
|
|---|
| 119 | this.max = __max_processors();
|
|---|
| 120 | this.alloc = 0;
|
|---|
| 121 | this.ready = 0;
|
|---|
| 122 | this.data = alloc(this.max);
|
|---|
| 123 | this.write_lock = false;
|
|---|
| 124 |
|
|---|
| 125 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
|
|---|
| 126 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
|
|---|
| 127 |
|
|---|
| 128 | }
|
|---|
| 129 | void ^?{}(__scheduler_RWLock_t & this) {
|
|---|
| 130 | free(this.data);
|
|---|
| 131 | }
|
|---|
| 132 |
|
|---|
| 133 |
|
|---|
| 134 | //=======================================================================
|
|---|
| 135 | // Lock-Free registering/unregistering of threads
|
|---|
| 136 | unsigned register_proc_id( void ) with(*__scheduler_lock) {
|
|---|
| 137 | __kernel_rseq_register();
|
|---|
| 138 |
|
|---|
| 139 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc);
|
|---|
| 140 | bool * handle = (bool *)&kernelTLS().sched_lock;
|
|---|
| 141 |
|
|---|
| 142 | // Step - 1 : check if there is already space in the data
|
|---|
| 143 | uint_fast32_t s = ready;
|
|---|
| 144 |
|
|---|
| 145 | // Check among all the ready
|
|---|
| 146 | for(uint_fast32_t i = 0; i < s; i++) {
|
|---|
| 147 | bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems
|
|---|
| 148 | /* paranoid */ verify( handle != *cell );
|
|---|
| 149 |
|
|---|
| 150 | bool * null = 0p; // Re-write every loop since compare thrashes it
|
|---|
| 151 | if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null
|
|---|
| 152 | && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
|
|---|
| 153 | /* paranoid */ verify(i < ready);
|
|---|
| 154 | /* paranoid */ verify( (kernelTLS().sched_id = i, true) );
|
|---|
| 155 | return i;
|
|---|
| 156 | }
|
|---|
| 157 | }
|
|---|
| 158 |
|
|---|
| 159 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
|---|
| 160 |
|
|---|
| 161 | // Step - 2 : F&A to get a new spot in the array.
|
|---|
| 162 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
|
|---|
| 163 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max);
|
|---|
| 164 |
|
|---|
| 165 | // Step - 3 : Mark space as used and then publish it.
|
|---|
| 166 | data[n] = handle;
|
|---|
| 167 | while() {
|
|---|
| 168 | unsigned copy = n;
|
|---|
| 169 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
|
|---|
| 170 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
|
|---|
| 171 | break;
|
|---|
| 172 | Pause();
|
|---|
| 173 | }
|
|---|
| 174 |
|
|---|
| 175 | __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n);
|
|---|
| 176 |
|
|---|
| 177 | // Return new spot.
|
|---|
| 178 | /* paranoid */ verify(n < ready);
|
|---|
| 179 | /* paranoid */ verify( (kernelTLS().sched_id = n, true) );
|
|---|
| 180 | return n;
|
|---|
| 181 | }
|
|---|
| 182 |
|
|---|
| 183 | void unregister_proc_id( unsigned id ) with(*__scheduler_lock) {
|
|---|
| 184 | /* paranoid */ verify(id < ready);
|
|---|
| 185 | /* paranoid */ verify(id == kernelTLS().sched_id);
|
|---|
| 186 | /* paranoid */ verify(data[id] == &kernelTLS().sched_lock);
|
|---|
| 187 |
|
|---|
| 188 | bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems
|
|---|
| 189 |
|
|---|
| 190 | __atomic_store_n(cell, 0p, __ATOMIC_RELEASE);
|
|---|
| 191 |
|
|---|
| 192 | __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc);
|
|---|
| 193 |
|
|---|
| 194 | __kernel_rseq_unregister();
|
|---|
| 195 | }
|
|---|
| 196 |
|
|---|
| 197 | //-----------------------------------------------------------------------
|
|---|
| 198 | // Writer side : acquire when changing the ready queue, e.g. adding more
|
|---|
| 199 | // queues or removing them.
|
|---|
| 200 | uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) {
|
|---|
| 201 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 202 | /* paranoid */ verify( ! kernelTLS().sched_lock );
|
|---|
| 203 |
|
|---|
| 204 | // Step 1 : lock global lock
|
|---|
| 205 | // It is needed to avoid processors that register mid Critical-Section
|
|---|
| 206 | // to simply lock their own lock and enter.
|
|---|
| 207 | __atomic_acquire( &write_lock );
|
|---|
| 208 |
|
|---|
| 209 | // Step 2 : lock per-proc lock
|
|---|
| 210 | // Processors that are currently being registered aren't counted
|
|---|
| 211 | // but can't be in read_lock or in the critical section.
|
|---|
| 212 | // All other processors are counted
|
|---|
| 213 | uint_fast32_t s = ready;
|
|---|
| 214 | for(uint_fast32_t i = 0; i < s; i++) {
|
|---|
| 215 | volatile bool * llock = data[i];
|
|---|
| 216 | if(llock) __atomic_acquire( llock );
|
|---|
| 217 | }
|
|---|
| 218 |
|
|---|
| 219 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 220 | return s;
|
|---|
| 221 | }
|
|---|
| 222 |
|
|---|
| 223 | void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) {
|
|---|
| 224 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 225 |
|
|---|
| 226 | // Step 1 : release local locks
|
|---|
| 227 | // This must be done while the global lock is held to avoid
|
|---|
| 228 | // threads that where created mid critical section
|
|---|
| 229 | // to race to lock their local locks and have the writer
|
|---|
| 230 | // immidiately unlock them
|
|---|
| 231 | // Alternative solution : return s in write_lock and pass it to write_unlock
|
|---|
| 232 | for(uint_fast32_t i = 0; i < last_s; i++) {
|
|---|
| 233 | volatile bool * llock = data[i];
|
|---|
| 234 | if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE);
|
|---|
| 235 | }
|
|---|
| 236 |
|
|---|
| 237 | // Step 2 : release global lock
|
|---|
| 238 | /*paranoid*/ assert(true == write_lock);
|
|---|
| 239 | __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE);
|
|---|
| 240 |
|
|---|
| 241 | /* paranoid */ verify( ! __preemption_enabled() );
|
|---|
| 242 | }
|
|---|
| 243 |
|
|---|
| 244 | //=======================================================================
|
|---|
| 245 | // Cforall Ready Queue used for scheduling
|
|---|
| 246 | //=======================================================================
|
|---|
| 247 | void ?{}(__ready_queue_t & this) with (this) {
|
|---|
| 248 | #if defined(USE_CPU_WORK_STEALING)
|
|---|
| 249 | lanes.count = cpu_info.hthrd_count * READYQ_SHARD_FACTOR;
|
|---|
| 250 | lanes.data = alloc( lanes.count );
|
|---|
| 251 | lanes.tscs = alloc( lanes.count );
|
|---|
| 252 |
|
|---|
| 253 | for( idx; (size_t)lanes.count ) {
|
|---|
| 254 | (lanes.data[idx]){};
|
|---|
| 255 | lanes.tscs[idx].tv = rdtscl();
|
|---|
| 256 | }
|
|---|
| 257 | #else
|
|---|
| 258 | lanes.data = 0p;
|
|---|
| 259 | lanes.tscs = 0p;
|
|---|
| 260 | lanes.count = 0;
|
|---|
| 261 | #endif
|
|---|
| 262 | }
|
|---|
| 263 |
|
|---|
| 264 | void ^?{}(__ready_queue_t & this) with (this) {
|
|---|
| 265 | #if !defined(USE_CPU_WORK_STEALING)
|
|---|
| 266 | verify( SEQUENTIAL_SHARD == lanes.count );
|
|---|
| 267 | #endif
|
|---|
| 268 |
|
|---|
| 269 | free(lanes.data);
|
|---|
| 270 | free(lanes.tscs);
|
|---|
| 271 | }
|
|---|
| 272 |
|
|---|
| 273 | //-----------------------------------------------------------------------
|
|---|
| 274 | #if defined(USE_CPU_WORK_STEALING)
|
|---|
| 275 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) {
|
|---|
| 276 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
|---|
| 277 |
|
|---|
| 278 | processor * const proc = kernelTLS().this_processor;
|
|---|
| 279 | const bool external = !push_local || (!proc) || (cltr != proc->cltr);
|
|---|
| 280 |
|
|---|
| 281 | const int cpu = __kernel_getcpu();
|
|---|
| 282 | /* paranoid */ verify(cpu >= 0);
|
|---|
| 283 | /* paranoid */ verify(cpu < cpu_info.hthrd_count);
|
|---|
| 284 | /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 285 |
|
|---|
| 286 | const cpu_map_entry_t & map = cpu_info.llc_map[cpu];
|
|---|
| 287 | /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 288 | /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 289 | /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %u lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR);
|
|---|
| 290 |
|
|---|
| 291 | const int start = map.self * READYQ_SHARD_FACTOR;
|
|---|
| 292 | unsigned i;
|
|---|
| 293 | do {
|
|---|
| 294 | unsigned r;
|
|---|
| 295 | if(unlikely(external)) { r = __tls_rand(); }
|
|---|
| 296 | else { r = proc->rdq.its++; }
|
|---|
| 297 | i = start + (r % READYQ_SHARD_FACTOR);
|
|---|
| 298 | // If we can't lock it retry
|
|---|
| 299 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 300 |
|
|---|
| 301 | // Actually push it
|
|---|
| 302 | push(lanes.data[i], thrd);
|
|---|
| 303 |
|
|---|
| 304 | // Unlock and return
|
|---|
| 305 | __atomic_unlock( &lanes.data[i].lock );
|
|---|
| 306 |
|
|---|
| 307 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 308 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
|---|
| 309 | else __tls_stats()->ready.push.local.success++;
|
|---|
| 310 | #endif
|
|---|
| 311 |
|
|---|
| 312 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
|---|
| 313 |
|
|---|
| 314 | }
|
|---|
| 315 |
|
|---|
| 316 | // Pop from the ready queue from a given cluster
|
|---|
| 317 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 318 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 319 | /* paranoid */ verify( kernelTLS().this_processor );
|
|---|
| 320 |
|
|---|
| 321 | const int cpu = __kernel_getcpu();
|
|---|
| 322 | /* paranoid */ verify(cpu >= 0);
|
|---|
| 323 | /* paranoid */ verify(cpu < cpu_info.hthrd_count);
|
|---|
| 324 | /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 325 |
|
|---|
| 326 | const cpu_map_entry_t & map = cpu_info.llc_map[cpu];
|
|---|
| 327 | /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 328 | /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count);
|
|---|
| 329 | /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %u lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR);
|
|---|
| 330 |
|
|---|
| 331 | processor * const proc = kernelTLS().this_processor;
|
|---|
| 332 | const int start = map.self * READYQ_SHARD_FACTOR;
|
|---|
| 333 |
|
|---|
| 334 | // Did we already have a help target
|
|---|
| 335 | if(proc->rdq.target == -1u) {
|
|---|
| 336 | // if We don't have a
|
|---|
| 337 | unsigned long long min = ts(lanes.data[start]);
|
|---|
| 338 | for(i; READYQ_SHARD_FACTOR) {
|
|---|
| 339 | unsigned long long tsc = ts(lanes.data[start + i]);
|
|---|
| 340 | if(tsc < min) min = tsc;
|
|---|
| 341 | }
|
|---|
| 342 | proc->rdq.cutoff = min;
|
|---|
| 343 | proc->rdq.target = (map.start * READYQ_SHARD_FACTOR) + (__tls_rand() % (map.count* READYQ_SHARD_FACTOR));
|
|---|
| 344 | }
|
|---|
| 345 | else {
|
|---|
| 346 | const unsigned long long bias = 0; //2_500_000_000;
|
|---|
| 347 | const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff;
|
|---|
| 348 | {
|
|---|
| 349 | unsigned target = proc->rdq.target;
|
|---|
| 350 | proc->rdq.target = -1u;
|
|---|
| 351 | if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) {
|
|---|
| 352 | $thread * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
|
|---|
| 353 | proc->rdq.last = target;
|
|---|
| 354 | if(t) return t;
|
|---|
| 355 | }
|
|---|
| 356 | }
|
|---|
| 357 |
|
|---|
| 358 | unsigned last = proc->rdq.last;
|
|---|
| 359 | if(last != -1u && lanes.tscs[last].tv < cutoff && ts(lanes.data[last]) < cutoff) {
|
|---|
| 360 | $thread * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.help));
|
|---|
| 361 | if(t) return t;
|
|---|
| 362 | }
|
|---|
| 363 | else {
|
|---|
| 364 | proc->rdq.last = -1u;
|
|---|
| 365 | }
|
|---|
| 366 | }
|
|---|
| 367 |
|
|---|
| 368 | for(READYQ_SHARD_FACTOR) {
|
|---|
| 369 | unsigned i = start + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
|
|---|
| 370 | if($thread * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
|
|---|
| 371 | }
|
|---|
| 372 |
|
|---|
| 373 | // All lanes where empty return 0p
|
|---|
| 374 | return 0p;
|
|---|
| 375 | }
|
|---|
| 376 |
|
|---|
| 377 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 378 | processor * const proc = kernelTLS().this_processor;
|
|---|
| 379 | unsigned last = proc->rdq.last;
|
|---|
| 380 |
|
|---|
| 381 | unsigned i = __tls_rand() % lanes.count;
|
|---|
| 382 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
|
|---|
| 383 | }
|
|---|
| 384 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) {
|
|---|
| 385 | return search(cltr);
|
|---|
| 386 | }
|
|---|
| 387 | #endif
|
|---|
| 388 | #if defined(USE_RELAXED_FIFO)
|
|---|
| 389 | //-----------------------------------------------------------------------
|
|---|
| 390 | // get index from random number with or without bias towards queues
|
|---|
| 391 | static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred) {
|
|---|
| 392 | unsigned i;
|
|---|
| 393 | bool local;
|
|---|
| 394 | unsigned rlow = r % BIAS;
|
|---|
| 395 | unsigned rhigh = r / BIAS;
|
|---|
| 396 | if((0 != rlow) && preferred >= 0) {
|
|---|
| 397 | // (BIAS - 1) out of BIAS chances
|
|---|
| 398 | // Use perferred queues
|
|---|
| 399 | i = preferred + (rhigh % READYQ_SHARD_FACTOR);
|
|---|
| 400 | local = true;
|
|---|
| 401 | }
|
|---|
| 402 | else {
|
|---|
| 403 | // 1 out of BIAS chances
|
|---|
| 404 | // Use all queues
|
|---|
| 405 | i = rhigh;
|
|---|
| 406 | local = false;
|
|---|
| 407 | }
|
|---|
| 408 | return [i, local];
|
|---|
| 409 | }
|
|---|
| 410 |
|
|---|
| 411 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) {
|
|---|
| 412 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
|---|
| 413 |
|
|---|
| 414 | const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
|
|---|
| 415 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 416 |
|
|---|
| 417 | bool local;
|
|---|
| 418 | int preferred = external ? -1 : kernelTLS().this_processor->rdq.id;
|
|---|
| 419 |
|
|---|
| 420 | // Try to pick a lane and lock it
|
|---|
| 421 | unsigned i;
|
|---|
| 422 | do {
|
|---|
| 423 | // Pick the index of a lane
|
|---|
| 424 | unsigned r = __tls_rand_fwd();
|
|---|
| 425 | [i, local] = idx_from_r(r, preferred);
|
|---|
| 426 |
|
|---|
| 427 | i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
|---|
| 428 |
|
|---|
| 429 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 430 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
|
|---|
| 431 | else if(local) __tls_stats()->ready.push.local.attempt++;
|
|---|
| 432 | else __tls_stats()->ready.push.share.attempt++;
|
|---|
| 433 | #endif
|
|---|
| 434 |
|
|---|
| 435 | // If we can't lock it retry
|
|---|
| 436 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 437 |
|
|---|
| 438 | // Actually push it
|
|---|
| 439 | push(lanes.data[i], thrd);
|
|---|
| 440 |
|
|---|
| 441 | // Unlock and return
|
|---|
| 442 | __atomic_unlock( &lanes.data[i].lock );
|
|---|
| 443 |
|
|---|
| 444 | // Mark the current index in the tls rng instance as having an item
|
|---|
| 445 | __tls_rand_advance_bck();
|
|---|
| 446 |
|
|---|
| 447 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
|---|
| 448 |
|
|---|
| 449 | // Update statistics
|
|---|
| 450 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 451 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
|---|
| 452 | else if(local) __tls_stats()->ready.push.local.success++;
|
|---|
| 453 | else __tls_stats()->ready.push.share.success++;
|
|---|
| 454 | #endif
|
|---|
| 455 | }
|
|---|
| 456 |
|
|---|
| 457 | // Pop from the ready queue from a given cluster
|
|---|
| 458 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 459 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 460 | /* paranoid */ verify( kernelTLS().this_processor );
|
|---|
| 461 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 462 |
|
|---|
| 463 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
|---|
| 464 | int preferred = kernelTLS().this_processor->rdq.id;
|
|---|
| 465 |
|
|---|
| 466 |
|
|---|
| 467 | // As long as the list is not empty, try finding a lane that isn't empty and pop from it
|
|---|
| 468 | for(25) {
|
|---|
| 469 | // Pick two lists at random
|
|---|
| 470 | unsigned ri = __tls_rand_bck();
|
|---|
| 471 | unsigned rj = __tls_rand_bck();
|
|---|
| 472 |
|
|---|
| 473 | unsigned i, j;
|
|---|
| 474 | __attribute__((unused)) bool locali, localj;
|
|---|
| 475 | [i, locali] = idx_from_r(ri, preferred);
|
|---|
| 476 | [j, localj] = idx_from_r(rj, preferred);
|
|---|
| 477 |
|
|---|
| 478 | i %= count;
|
|---|
| 479 | j %= count;
|
|---|
| 480 |
|
|---|
| 481 | // try popping from the 2 picked lists
|
|---|
| 482 | struct $thread * thrd = try_pop(cltr, i, j __STATS(, *(locali || localj ? &__tls_stats()->ready.pop.local : &__tls_stats()->ready.pop.help)));
|
|---|
| 483 | if(thrd) {
|
|---|
| 484 | return thrd;
|
|---|
| 485 | }
|
|---|
| 486 | }
|
|---|
| 487 |
|
|---|
| 488 | // All lanes where empty return 0p
|
|---|
| 489 | return 0p;
|
|---|
| 490 | }
|
|---|
| 491 |
|
|---|
| 492 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) { return pop_fast(cltr); }
|
|---|
| 493 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) {
|
|---|
| 494 | return search(cltr);
|
|---|
| 495 | }
|
|---|
| 496 | #endif
|
|---|
| 497 | #if defined(USE_WORK_STEALING)
|
|---|
| 498 | __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd, bool push_local) with (cltr->ready_queue) {
|
|---|
| 499 | __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
|
|---|
| 500 |
|
|---|
| 501 | // #define USE_PREFERRED
|
|---|
| 502 | #if !defined(USE_PREFERRED)
|
|---|
| 503 | const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
|
|---|
| 504 | /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 505 | #else
|
|---|
| 506 | unsigned preferred = thrd->preferred;
|
|---|
| 507 | const bool external = push_local || (!kernelTLS().this_processor) || preferred == -1u || thrd->curr_cluster != cltr;
|
|---|
| 508 | /* paranoid */ verifyf(external || preferred < lanes.count, "Invalid preferred queue %u for %u lanes", preferred, lanes.count );
|
|---|
| 509 |
|
|---|
| 510 | unsigned r = preferred % READYQ_SHARD_FACTOR;
|
|---|
| 511 | const unsigned start = preferred - r;
|
|---|
| 512 | #endif
|
|---|
| 513 |
|
|---|
| 514 | // Try to pick a lane and lock it
|
|---|
| 515 | unsigned i;
|
|---|
| 516 | do {
|
|---|
| 517 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 518 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
|
|---|
| 519 | else __tls_stats()->ready.push.local.attempt++;
|
|---|
| 520 | #endif
|
|---|
| 521 |
|
|---|
| 522 | if(unlikely(external)) {
|
|---|
| 523 | i = __tls_rand() % lanes.count;
|
|---|
| 524 | }
|
|---|
| 525 | else {
|
|---|
| 526 | #if !defined(USE_PREFERRED)
|
|---|
| 527 | processor * proc = kernelTLS().this_processor;
|
|---|
| 528 | unsigned r = proc->rdq.its++;
|
|---|
| 529 | i = proc->rdq.id + (r % READYQ_SHARD_FACTOR);
|
|---|
| 530 | #else
|
|---|
| 531 | i = start + (r++ % READYQ_SHARD_FACTOR);
|
|---|
| 532 | #endif
|
|---|
| 533 | }
|
|---|
| 534 | // If we can't lock it retry
|
|---|
| 535 | } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
|
|---|
| 536 |
|
|---|
| 537 | // Actually push it
|
|---|
| 538 | push(lanes.data[i], thrd);
|
|---|
| 539 |
|
|---|
| 540 | // Unlock and return
|
|---|
| 541 | __atomic_unlock( &lanes.data[i].lock );
|
|---|
| 542 |
|
|---|
| 543 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 544 | if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
|
|---|
| 545 | else __tls_stats()->ready.push.local.success++;
|
|---|
| 546 | #endif
|
|---|
| 547 |
|
|---|
| 548 | __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
|
|---|
| 549 | }
|
|---|
| 550 |
|
|---|
| 551 | // Pop from the ready queue from a given cluster
|
|---|
| 552 | __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 553 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 554 | /* paranoid */ verify( kernelTLS().this_processor );
|
|---|
| 555 | /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
|
|---|
| 556 |
|
|---|
| 557 | processor * proc = kernelTLS().this_processor;
|
|---|
| 558 |
|
|---|
| 559 | if(proc->rdq.target == -1u) {
|
|---|
| 560 | unsigned long long min = ts(lanes.data[proc->rdq.id]);
|
|---|
| 561 | for(int i = 0; i < READYQ_SHARD_FACTOR; i++) {
|
|---|
| 562 | unsigned long long tsc = ts(lanes.data[proc->rdq.id + i]);
|
|---|
| 563 | if(tsc < min) min = tsc;
|
|---|
| 564 | }
|
|---|
| 565 | proc->rdq.cutoff = min;
|
|---|
| 566 | proc->rdq.target = __tls_rand() % lanes.count;
|
|---|
| 567 | }
|
|---|
| 568 | else {
|
|---|
| 569 | unsigned target = proc->rdq.target;
|
|---|
| 570 | proc->rdq.target = -1u;
|
|---|
| 571 | const unsigned long long bias = 0; //2_500_000_000;
|
|---|
| 572 | const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff;
|
|---|
| 573 | if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) {
|
|---|
| 574 | $thread * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
|
|---|
| 575 | if(t) return t;
|
|---|
| 576 | }
|
|---|
| 577 | }
|
|---|
| 578 |
|
|---|
| 579 | for(READYQ_SHARD_FACTOR) {
|
|---|
| 580 | unsigned i = proc->rdq.id + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
|
|---|
| 581 | if($thread * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
|
|---|
| 582 | }
|
|---|
| 583 | return 0p;
|
|---|
| 584 | }
|
|---|
| 585 |
|
|---|
| 586 | __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 587 | unsigned i = __tls_rand() % lanes.count;
|
|---|
| 588 | return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
|
|---|
| 589 | }
|
|---|
| 590 |
|
|---|
| 591 | __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 592 | return search(cltr);
|
|---|
| 593 | }
|
|---|
| 594 | #endif
|
|---|
| 595 |
|
|---|
| 596 | //=======================================================================
|
|---|
| 597 | // Various Ready Queue utilities
|
|---|
| 598 | //=======================================================================
|
|---|
| 599 | // these function work the same or almost the same
|
|---|
| 600 | // whether they are using work-stealing or relaxed fifo scheduling
|
|---|
| 601 |
|
|---|
| 602 | //-----------------------------------------------------------------------
|
|---|
| 603 | // try to pop from a lane given by index w
|
|---|
| 604 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
|
|---|
| 605 | __STATS( stats.attempt++; )
|
|---|
| 606 |
|
|---|
| 607 | // Get relevant elements locally
|
|---|
| 608 | __intrusive_lane_t & lane = lanes.data[w];
|
|---|
| 609 |
|
|---|
| 610 | // If list looks empty retry
|
|---|
| 611 | if( is_empty(lane) ) {
|
|---|
| 612 | return 0p;
|
|---|
| 613 | }
|
|---|
| 614 |
|
|---|
| 615 | // If we can't get the lock retry
|
|---|
| 616 | if( !__atomic_try_acquire(&lane.lock) ) {
|
|---|
| 617 | return 0p;
|
|---|
| 618 | }
|
|---|
| 619 |
|
|---|
| 620 | // If list is empty, unlock and retry
|
|---|
| 621 | if( is_empty(lane) ) {
|
|---|
| 622 | __atomic_unlock(&lane.lock);
|
|---|
| 623 | return 0p;
|
|---|
| 624 | }
|
|---|
| 625 |
|
|---|
| 626 | // Actually pop the list
|
|---|
| 627 | struct $thread * thrd;
|
|---|
| 628 | unsigned long long tsv;
|
|---|
| 629 | [thrd, tsv] = pop(lane);
|
|---|
| 630 |
|
|---|
| 631 | /* paranoid */ verify(thrd);
|
|---|
| 632 | /* paranoid */ verify(tsv);
|
|---|
| 633 | /* paranoid */ verify(lane.lock);
|
|---|
| 634 |
|
|---|
| 635 | // Unlock and return
|
|---|
| 636 | __atomic_unlock(&lane.lock);
|
|---|
| 637 |
|
|---|
| 638 | // Update statistics
|
|---|
| 639 | __STATS( stats.success++; )
|
|---|
| 640 |
|
|---|
| 641 | #if defined(USE_WORK_STEALING)
|
|---|
| 642 | lanes.tscs[w].tv = tsv;
|
|---|
| 643 | #endif
|
|---|
| 644 |
|
|---|
| 645 | thrd->preferred = w;
|
|---|
| 646 |
|
|---|
| 647 | // return the popped thread
|
|---|
| 648 | return thrd;
|
|---|
| 649 | }
|
|---|
| 650 |
|
|---|
| 651 | //-----------------------------------------------------------------------
|
|---|
| 652 | // try to pop from any lanes making sure you don't miss any threads push
|
|---|
| 653 | // before the start of the function
|
|---|
| 654 | static inline struct $thread * search(struct cluster * cltr) with (cltr->ready_queue) {
|
|---|
| 655 | /* paranoid */ verify( lanes.count > 0 );
|
|---|
| 656 | unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
|
|---|
| 657 | unsigned offset = __tls_rand();
|
|---|
| 658 | for(i; count) {
|
|---|
| 659 | unsigned idx = (offset + i) % count;
|
|---|
| 660 | struct $thread * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search));
|
|---|
| 661 | if(thrd) {
|
|---|
| 662 | return thrd;
|
|---|
| 663 | }
|
|---|
| 664 | }
|
|---|
| 665 |
|
|---|
| 666 | // All lanes where empty return 0p
|
|---|
| 667 | return 0p;
|
|---|
| 668 | }
|
|---|
| 669 |
|
|---|
| 670 | //-----------------------------------------------------------------------
|
|---|
| 671 | // Check that all the intrusive queues in the data structure are still consistent
|
|---|
| 672 | static void check( __ready_queue_t & q ) with (q) {
|
|---|
| 673 | #if defined(__CFA_WITH_VERIFY__)
|
|---|
| 674 | {
|
|---|
| 675 | for( idx ; lanes.count ) {
|
|---|
| 676 | __intrusive_lane_t & sl = lanes.data[idx];
|
|---|
| 677 | assert(!lanes.data[idx].lock);
|
|---|
| 678 |
|
|---|
| 679 | if(is_empty(sl)) {
|
|---|
| 680 | assert( sl.anchor.next == 0p );
|
|---|
| 681 | assert( sl.anchor.ts == -1llu );
|
|---|
| 682 | assert( mock_head(sl) == sl.prev );
|
|---|
| 683 | } else {
|
|---|
| 684 | assert( sl.anchor.next != 0p );
|
|---|
| 685 | assert( sl.anchor.ts != -1llu );
|
|---|
| 686 | assert( mock_head(sl) != sl.prev );
|
|---|
| 687 | }
|
|---|
| 688 | }
|
|---|
| 689 | }
|
|---|
| 690 | #endif
|
|---|
| 691 | }
|
|---|
| 692 |
|
|---|
| 693 | //-----------------------------------------------------------------------
|
|---|
| 694 | // Given 2 indexes, pick the list with the oldest push an try to pop from it
|
|---|
| 695 | static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
|
|---|
| 696 | // Pick the bet list
|
|---|
| 697 | int w = i;
|
|---|
| 698 | if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
|
|---|
| 699 | w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
|
|---|
| 700 | }
|
|---|
| 701 |
|
|---|
| 702 | return try_pop(cltr, w __STATS(, stats));
|
|---|
| 703 | }
|
|---|
| 704 |
|
|---|
| 705 | // Call this function of the intrusive list was moved using memcpy
|
|---|
| 706 | // fixes the list so that the pointers back to anchors aren't left dangling
|
|---|
| 707 | static inline void fix(__intrusive_lane_t & ll) {
|
|---|
| 708 | if(is_empty(ll)) {
|
|---|
| 709 | verify(ll.anchor.next == 0p);
|
|---|
| 710 | ll.prev = mock_head(ll);
|
|---|
| 711 | }
|
|---|
| 712 | }
|
|---|
| 713 |
|
|---|
| 714 | static void assign_list(unsigned & value, dlist(processor) & list, unsigned count) {
|
|---|
| 715 | processor * it = &list`first;
|
|---|
| 716 | for(unsigned i = 0; i < count; i++) {
|
|---|
| 717 | /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count);
|
|---|
| 718 | it->rdq.id = value;
|
|---|
| 719 | it->rdq.target = -1u;
|
|---|
| 720 | value += READYQ_SHARD_FACTOR;
|
|---|
| 721 | it = &(*it)`next;
|
|---|
| 722 | }
|
|---|
| 723 | }
|
|---|
| 724 |
|
|---|
| 725 | static void reassign_cltr_id(struct cluster * cltr) {
|
|---|
| 726 | unsigned preferred = 0;
|
|---|
| 727 | assign_list(preferred, cltr->procs.actives, cltr->procs.total - cltr->procs.idle);
|
|---|
| 728 | assign_list(preferred, cltr->procs.idles , cltr->procs.idle );
|
|---|
| 729 | }
|
|---|
| 730 |
|
|---|
| 731 | static void fix_times( struct cluster * cltr ) with( cltr->ready_queue ) {
|
|---|
| 732 | #if defined(USE_WORK_STEALING)
|
|---|
| 733 | lanes.tscs = alloc(lanes.count, lanes.tscs`realloc);
|
|---|
| 734 | for(i; lanes.count) {
|
|---|
| 735 | unsigned long long tsc1 = ts(lanes.data[i]);
|
|---|
| 736 | unsigned long long tsc2 = rdtscl()
|
|---|
| 737 | lanes.tscs[i].tv = min(tsc1, tsc2);
|
|---|
| 738 | }
|
|---|
| 739 | #endif
|
|---|
| 740 | }
|
|---|
| 741 |
|
|---|
| 742 | #if defined(USE_CPU_WORK_STEALING)
|
|---|
| 743 | // ready_queue size is fixed in this case
|
|---|
| 744 | void ready_queue_grow(struct cluster * cltr) {}
|
|---|
| 745 | void ready_queue_shrink(struct cluster * cltr) {}
|
|---|
| 746 | #else
|
|---|
| 747 | // Grow the ready queue
|
|---|
| 748 | void ready_queue_grow(struct cluster * cltr) {
|
|---|
| 749 | size_t ncount;
|
|---|
| 750 | int target = cltr->procs.total;
|
|---|
| 751 |
|
|---|
| 752 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 753 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
|
|---|
| 754 |
|
|---|
| 755 | // Make sure that everything is consistent
|
|---|
| 756 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 757 |
|
|---|
| 758 | // grow the ready queue
|
|---|
| 759 | with( cltr->ready_queue ) {
|
|---|
| 760 | // Find new count
|
|---|
| 761 | // Make sure we always have atleast 1 list
|
|---|
| 762 | if(target >= 2) {
|
|---|
| 763 | ncount = target * READYQ_SHARD_FACTOR;
|
|---|
| 764 | } else {
|
|---|
| 765 | ncount = SEQUENTIAL_SHARD;
|
|---|
| 766 | }
|
|---|
| 767 |
|
|---|
| 768 | // Allocate new array (uses realloc and memcpies the data)
|
|---|
| 769 | lanes.data = alloc( ncount, lanes.data`realloc );
|
|---|
| 770 |
|
|---|
| 771 | // Fix the moved data
|
|---|
| 772 | for( idx; (size_t)lanes.count ) {
|
|---|
| 773 | fix(lanes.data[idx]);
|
|---|
| 774 | }
|
|---|
| 775 |
|
|---|
| 776 | // Construct new data
|
|---|
| 777 | for( idx; (size_t)lanes.count ~ ncount) {
|
|---|
| 778 | (lanes.data[idx]){};
|
|---|
| 779 | }
|
|---|
| 780 |
|
|---|
| 781 | // Update original
|
|---|
| 782 | lanes.count = ncount;
|
|---|
| 783 | }
|
|---|
| 784 |
|
|---|
| 785 | fix_times(cltr);
|
|---|
| 786 |
|
|---|
| 787 | reassign_cltr_id(cltr);
|
|---|
| 788 |
|
|---|
| 789 | // Make sure that everything is consistent
|
|---|
| 790 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 791 |
|
|---|
| 792 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
|
|---|
| 793 |
|
|---|
| 794 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 795 | }
|
|---|
| 796 |
|
|---|
| 797 | // Shrink the ready queue
|
|---|
| 798 | void ready_queue_shrink(struct cluster * cltr) {
|
|---|
| 799 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 800 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
|
|---|
| 801 |
|
|---|
| 802 | // Make sure that everything is consistent
|
|---|
| 803 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 804 |
|
|---|
| 805 | int target = cltr->procs.total;
|
|---|
| 806 |
|
|---|
| 807 | with( cltr->ready_queue ) {
|
|---|
| 808 | // Remember old count
|
|---|
| 809 | size_t ocount = lanes.count;
|
|---|
| 810 |
|
|---|
| 811 | // Find new count
|
|---|
| 812 | // Make sure we always have atleast 1 list
|
|---|
| 813 | lanes.count = target >= 2 ? target * READYQ_SHARD_FACTOR: SEQUENTIAL_SHARD;
|
|---|
| 814 | /* paranoid */ verify( ocount >= lanes.count );
|
|---|
| 815 | /* paranoid */ verify( lanes.count == target * READYQ_SHARD_FACTOR || target < 2 );
|
|---|
| 816 |
|
|---|
| 817 | // for printing count the number of displaced threads
|
|---|
| 818 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
|---|
| 819 | __attribute__((unused)) size_t displaced = 0;
|
|---|
| 820 | #endif
|
|---|
| 821 |
|
|---|
| 822 | // redistribute old data
|
|---|
| 823 | for( idx; (size_t)lanes.count ~ ocount) {
|
|---|
| 824 | // Lock is not strictly needed but makes checking invariants much easier
|
|---|
| 825 | __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
|
|---|
| 826 | verify(locked);
|
|---|
| 827 |
|
|---|
| 828 | // As long as we can pop from this lane to push the threads somewhere else in the queue
|
|---|
| 829 | while(!is_empty(lanes.data[idx])) {
|
|---|
| 830 | struct $thread * thrd;
|
|---|
| 831 | unsigned long long _;
|
|---|
| 832 | [thrd, _] = pop(lanes.data[idx]);
|
|---|
| 833 |
|
|---|
| 834 | push(cltr, thrd, true);
|
|---|
| 835 |
|
|---|
| 836 | // for printing count the number of displaced threads
|
|---|
| 837 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
|
|---|
| 838 | displaced++;
|
|---|
| 839 | #endif
|
|---|
| 840 | }
|
|---|
| 841 |
|
|---|
| 842 | // Unlock the lane
|
|---|
| 843 | __atomic_unlock(&lanes.data[idx].lock);
|
|---|
| 844 |
|
|---|
| 845 | // TODO print the queue statistics here
|
|---|
| 846 |
|
|---|
| 847 | ^(lanes.data[idx]){};
|
|---|
| 848 | }
|
|---|
| 849 |
|
|---|
| 850 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
|
|---|
| 851 |
|
|---|
| 852 | // Allocate new array (uses realloc and memcpies the data)
|
|---|
| 853 | lanes.data = alloc( lanes.count, lanes.data`realloc );
|
|---|
| 854 |
|
|---|
| 855 | // Fix the moved data
|
|---|
| 856 | for( idx; (size_t)lanes.count ) {
|
|---|
| 857 | fix(lanes.data[idx]);
|
|---|
| 858 | }
|
|---|
| 859 | }
|
|---|
| 860 |
|
|---|
| 861 | fix_times(cltr);
|
|---|
| 862 |
|
|---|
| 863 | reassign_cltr_id(cltr);
|
|---|
| 864 |
|
|---|
| 865 | // Make sure that everything is consistent
|
|---|
| 866 | /* paranoid */ check( cltr->ready_queue );
|
|---|
| 867 |
|
|---|
| 868 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
|
|---|
| 869 | /* paranoid */ verify( ready_mutate_islocked() );
|
|---|
| 870 | }
|
|---|
| 871 | #endif
|
|---|
| 872 |
|
|---|
| 873 | #if !defined(__CFA_NO_STATISTICS__)
|
|---|
| 874 | unsigned cnt(const __ready_queue_t & this, unsigned idx) {
|
|---|
| 875 | /* paranoid */ verify(this.lanes.count > idx);
|
|---|
| 876 | return this.lanes.data[idx].cnt;
|
|---|
| 877 | }
|
|---|
| 878 | #endif
|
|---|
| 879 |
|
|---|
| 880 |
|
|---|
| 881 | #if defined(CFA_HAVE_LINUX_LIBRSEQ)
|
|---|
| 882 | // No definition needed
|
|---|
| 883 | #elif defined(CFA_HAVE_LINUX_RSEQ_H)
|
|---|
| 884 |
|
|---|
| 885 | #if defined( __x86_64 ) || defined( __i386 )
|
|---|
| 886 | #define RSEQ_SIG 0x53053053
|
|---|
| 887 | #elif defined( __ARM_ARCH )
|
|---|
| 888 | #ifdef __ARMEB__
|
|---|
| 889 | #define RSEQ_SIG 0xf3def5e7 /* udf #24035 ; 0x5de3 (ARMv6+) */
|
|---|
| 890 | #else
|
|---|
| 891 | #define RSEQ_SIG 0xe7f5def3 /* udf #24035 ; 0x5de3 */
|
|---|
| 892 | #endif
|
|---|
| 893 | #endif
|
|---|
| 894 |
|
|---|
| 895 | extern void __disable_interrupts_hard();
|
|---|
| 896 | extern void __enable_interrupts_hard();
|
|---|
| 897 |
|
|---|
| 898 | void __kernel_raw_rseq_register (void) {
|
|---|
| 899 | /* paranoid */ verify( __cfaabi_rseq.cpu_id == RSEQ_CPU_ID_UNINITIALIZED );
|
|---|
| 900 |
|
|---|
| 901 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, (sigset_t *)0p, _NSIG / 8);
|
|---|
| 902 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, RSEQ_SIG);
|
|---|
| 903 | if(ret != 0) {
|
|---|
| 904 | int e = errno;
|
|---|
| 905 | switch(e) {
|
|---|
| 906 | case EINVAL: abort("KERNEL ERROR: rseq register invalid argument");
|
|---|
| 907 | case ENOSYS: abort("KERNEL ERROR: rseq register no supported");
|
|---|
| 908 | case EFAULT: abort("KERNEL ERROR: rseq register with invalid argument");
|
|---|
| 909 | case EBUSY : abort("KERNEL ERROR: rseq register already registered");
|
|---|
| 910 | case EPERM : abort("KERNEL ERROR: rseq register sig argument on unregistration does not match the signature received on registration");
|
|---|
| 911 | default: abort("KERNEL ERROR: rseq register unexpected return %d", e);
|
|---|
| 912 | }
|
|---|
| 913 | }
|
|---|
| 914 | }
|
|---|
| 915 |
|
|---|
| 916 | void __kernel_raw_rseq_unregister(void) {
|
|---|
| 917 | /* paranoid */ verify( __cfaabi_rseq.cpu_id >= 0 );
|
|---|
| 918 |
|
|---|
| 919 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, (sigset_t *)0p, _NSIG / 8);
|
|---|
| 920 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, RSEQ_SIG);
|
|---|
| 921 | if(ret != 0) {
|
|---|
| 922 | int e = errno;
|
|---|
| 923 | switch(e) {
|
|---|
| 924 | case EINVAL: abort("KERNEL ERROR: rseq unregister invalid argument");
|
|---|
| 925 | case ENOSYS: abort("KERNEL ERROR: rseq unregister no supported");
|
|---|
| 926 | case EFAULT: abort("KERNEL ERROR: rseq unregister with invalid argument");
|
|---|
| 927 | case EBUSY : abort("KERNEL ERROR: rseq unregister already registered");
|
|---|
| 928 | case EPERM : abort("KERNEL ERROR: rseq unregister sig argument on unregistration does not match the signature received on registration");
|
|---|
| 929 | default: abort("KERNEL ERROR: rseq unregisteunexpected return %d", e);
|
|---|
| 930 | }
|
|---|
| 931 | }
|
|---|
| 932 | }
|
|---|
| 933 | #else
|
|---|
| 934 | // No definition needed
|
|---|
| 935 | #endif
|
|---|