source: libcfa/src/concurrency/ready_queue.cfa @ a3769cc

ADTast-experimentalenumforall-pointer-decaypthread-emulationqualifiedEnum
Last change on this file since a3769cc was c86ee4c, checked in by Thierry Delisle <tdelisle@…>, 3 years ago

Merge branch 'master' of plg.uwaterloo.ca:software/cfa/cfa-cc

  • Property mode set to 100644
File size: 31.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// ready_queue.cfa --
8//
9// Author           : Thierry Delisle
10// Created On       : Mon Nov dd 16:29:18 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count     :
14//
15
16#define __cforall_thread__
17#define _GNU_SOURCE
18
19// #define __CFA_DEBUG_PRINT_READY_QUEUE__
20
21
22#define USE_RELAXED_FIFO
23// #define USE_WORK_STEALING
24// #define USE_CPU_WORK_STEALING
25
26#include "bits/defs.hfa"
27#include "device/cpu.hfa"
28#include "kernel_private.hfa"
29
30#include "stdlib.hfa"
31#include "math.hfa"
32
33#include <errno.h>
34#include <unistd.h>
35
36extern "C" {
37        #include <sys/syscall.h>  // __NR_xxx
38}
39
40#include "ready_subqueue.hfa"
41
42static const size_t cache_line_size = 64;
43
44#if !defined(__CFA_NO_STATISTICS__)
45        #define __STATS(...) __VA_ARGS__
46#else
47        #define __STATS(...)
48#endif
49
50// No overriden function, no environment variable, no define
51// fall back to a magic number
52#ifndef __CFA_MAX_PROCESSORS__
53        #define __CFA_MAX_PROCESSORS__ 1024
54#endif
55
56#if   defined(USE_CPU_WORK_STEALING)
57        #define READYQ_SHARD_FACTOR 2
58#elif defined(USE_RELAXED_FIFO)
59        #define BIAS 4
60        #define READYQ_SHARD_FACTOR 4
61        #define SEQUENTIAL_SHARD 1
62#elif defined(USE_WORK_STEALING)
63        #define READYQ_SHARD_FACTOR 2
64        #define SEQUENTIAL_SHARD 2
65#else
66        #error no scheduling strategy selected
67#endif
68
69static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats));
70static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats));
71static inline struct thread$ * search(struct cluster * cltr);
72static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred);
73
74
75// returns the maximum number of processors the RWLock support
76__attribute__((weak)) unsigned __max_processors() {
77        const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
78        if(!max_cores_s) {
79                __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
80                return __CFA_MAX_PROCESSORS__;
81        }
82
83        char * endptr = 0p;
84        long int max_cores_l = strtol(max_cores_s, &endptr, 10);
85        if(max_cores_l < 1 || max_cores_l > 65535) {
86                __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
87                return __CFA_MAX_PROCESSORS__;
88        }
89        if('\0' != *endptr) {
90                __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
91                return __CFA_MAX_PROCESSORS__;
92        }
93
94        return max_cores_l;
95}
96
97#if   defined(CFA_HAVE_LINUX_LIBRSEQ)
98        // No forward declaration needed
99        #define __kernel_rseq_register rseq_register_current_thread
100        #define __kernel_rseq_unregister rseq_unregister_current_thread
101#elif defined(CFA_HAVE_LINUX_RSEQ_H)
102        void __kernel_raw_rseq_register  (void);
103        void __kernel_raw_rseq_unregister(void);
104
105        #define __kernel_rseq_register __kernel_raw_rseq_register
106        #define __kernel_rseq_unregister __kernel_raw_rseq_unregister
107#else
108        // No forward declaration needed
109        // No initialization needed
110        static inline void noop(void) {}
111
112        #define __kernel_rseq_register noop
113        #define __kernel_rseq_unregister noop
114#endif
115
116//=======================================================================
117// Cluster wide reader-writer lock
118//=======================================================================
119void  ?{}(__scheduler_RWLock_t & this) {
120        this.max   = __max_processors();
121        this.alloc = 0;
122        this.ready = 0;
123        this.data  = alloc(this.max);
124        this.write_lock  = false;
125
126        /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
127        /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
128
129}
130void ^?{}(__scheduler_RWLock_t & this) {
131        free(this.data);
132}
133
134
135//=======================================================================
136// Lock-Free registering/unregistering of threads
137unsigned register_proc_id( void ) with(*__scheduler_lock) {
138        __kernel_rseq_register();
139
140        __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc);
141        bool * handle = (bool *)&kernelTLS().sched_lock;
142
143        // Step - 1 : check if there is already space in the data
144        uint_fast32_t s = ready;
145
146        // Check among all the ready
147        for(uint_fast32_t i = 0; i < s; i++) {
148                bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems
149                /* paranoid */ verify( handle != *cell );
150
151                bool * null = 0p; // Re-write every loop since compare thrashes it
152                if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null
153                        && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
154                        /* paranoid */ verify(i < ready);
155                        /* paranoid */ verify( (kernelTLS().sched_id = i, true) );
156                        return i;
157                }
158        }
159
160        if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max);
161
162        // Step - 2 : F&A to get a new spot in the array.
163        uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
164        if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max);
165
166        // Step - 3 : Mark space as used and then publish it.
167        data[n] = handle;
168        while() {
169                unsigned copy = n;
170                if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
171                        && __atomic_compare_exchange_n(&ready, &copy, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
172                        break;
173                Pause();
174        }
175
176        __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n);
177
178        // Return new spot.
179        /* paranoid */ verify(n < ready);
180        /* paranoid */ verify( (kernelTLS().sched_id = n, true) );
181        return n;
182}
183
184void unregister_proc_id( unsigned id ) with(*__scheduler_lock) {
185        /* paranoid */ verify(id < ready);
186        /* paranoid */ verify(id == kernelTLS().sched_id);
187        /* paranoid */ verify(data[id] == &kernelTLS().sched_lock);
188
189        bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems
190
191        __atomic_store_n(cell, 0p, __ATOMIC_RELEASE);
192
193        __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc);
194
195        __kernel_rseq_unregister();
196}
197
198//-----------------------------------------------------------------------
199// Writer side : acquire when changing the ready queue, e.g. adding more
200//  queues or removing them.
201uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) {
202        /* paranoid */ verify( ! __preemption_enabled() );
203        /* paranoid */ verify( ! kernelTLS().sched_lock );
204
205        // Step 1 : lock global lock
206        // It is needed to avoid processors that register mid Critical-Section
207        //   to simply lock their own lock and enter.
208        __atomic_acquire( &write_lock );
209
210        // Step 2 : lock per-proc lock
211        // Processors that are currently being registered aren't counted
212        //   but can't be in read_lock or in the critical section.
213        // All other processors are counted
214        uint_fast32_t s = ready;
215        for(uint_fast32_t i = 0; i < s; i++) {
216                volatile bool * llock = data[i];
217                if(llock) __atomic_acquire( llock );
218        }
219
220        /* paranoid */ verify( ! __preemption_enabled() );
221        return s;
222}
223
224void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) {
225        /* paranoid */ verify( ! __preemption_enabled() );
226
227        // Step 1 : release local locks
228        // This must be done while the global lock is held to avoid
229        //   threads that where created mid critical section
230        //   to race to lock their local locks and have the writer
231        //   immidiately unlock them
232        // Alternative solution : return s in write_lock and pass it to write_unlock
233        for(uint_fast32_t i = 0; i < last_s; i++) {
234                volatile bool * llock = data[i];
235                if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE);
236        }
237
238        // Step 2 : release global lock
239        /*paranoid*/ assert(true == write_lock);
240        __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE);
241
242        /* paranoid */ verify( ! __preemption_enabled() );
243}
244
245//=======================================================================
246// Cforall Ready Queue used for scheduling
247//=======================================================================
248void ?{}(__ready_queue_t & this) with (this) {
249        #if defined(USE_CPU_WORK_STEALING)
250                lanes.count = cpu_info.hthrd_count * READYQ_SHARD_FACTOR;
251                lanes.data = alloc( lanes.count );
252                lanes.tscs = alloc( lanes.count );
253
254                for( idx; (size_t)lanes.count ) {
255                        (lanes.data[idx]){};
256                        lanes.tscs[idx].tv = rdtscl();
257                }
258        #else
259                lanes.data  = 0p;
260                lanes.tscs  = 0p;
261                lanes.count = 0;
262        #endif
263}
264
265void ^?{}(__ready_queue_t & this) with (this) {
266        #if !defined(USE_CPU_WORK_STEALING)
267                verify( SEQUENTIAL_SHARD == lanes.count );
268        #endif
269
270        free(lanes.data);
271        free(lanes.tscs);
272}
273
274//-----------------------------------------------------------------------
275#if defined(USE_CPU_WORK_STEALING)
276        __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, bool push_local) with (cltr->ready_queue) {
277                __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
278
279                processor * const proc = kernelTLS().this_processor;
280                const bool external = !push_local || (!proc) || (cltr != proc->cltr);
281
282                const int cpu = __kernel_getcpu();
283                /* paranoid */ verify(cpu >= 0);
284                /* paranoid */ verify(cpu < cpu_info.hthrd_count);
285                /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count);
286
287                const cpu_map_entry_t & map = cpu_info.llc_map[cpu];
288                /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count);
289                /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count);
290                /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %zu lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR);
291
292                const int start = map.self * READYQ_SHARD_FACTOR;
293                unsigned i;
294                do {
295                        unsigned r;
296                        if(unlikely(external)) { r = __tls_rand(); }
297                        else { r = proc->rdq.its++; }
298                        i = start + (r % READYQ_SHARD_FACTOR);
299                        // If we can't lock it retry
300                } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
301
302                // Actually push it
303                push(lanes.data[i], thrd);
304
305                // Unlock and return
306                __atomic_unlock( &lanes.data[i].lock );
307
308                #if !defined(__CFA_NO_STATISTICS__)
309                        if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
310                        else __tls_stats()->ready.push.local.success++;
311                #endif
312
313                __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
314
315        }
316
317        // Pop from the ready queue from a given cluster
318        __attribute__((hot)) thread$ * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
319                /* paranoid */ verify( lanes.count > 0 );
320                /* paranoid */ verify( kernelTLS().this_processor );
321
322                const int cpu = __kernel_getcpu();
323                /* paranoid */ verify(cpu >= 0);
324                /* paranoid */ verify(cpu < cpu_info.hthrd_count);
325                /* paranoid */ verify(cpu * READYQ_SHARD_FACTOR < lanes.count);
326
327                const cpu_map_entry_t & map = cpu_info.llc_map[cpu];
328                /* paranoid */ verify(map.start * READYQ_SHARD_FACTOR < lanes.count);
329                /* paranoid */ verify(map.self * READYQ_SHARD_FACTOR < lanes.count);
330                /* paranoid */ verifyf((map.start + map.count) * READYQ_SHARD_FACTOR <= lanes.count, "have %zu lanes but map can go up to %u", lanes.count, (map.start + map.count) * READYQ_SHARD_FACTOR);
331
332                processor * const proc = kernelTLS().this_processor;
333                const int start = map.self * READYQ_SHARD_FACTOR;
334
335                // Did we already have a help target
336                if(proc->rdq.target == -1u) {
337                        // if We don't have a
338                        unsigned long long min = ts(lanes.data[start]);
339                        for(i; READYQ_SHARD_FACTOR) {
340                                unsigned long long tsc = ts(lanes.data[start + i]);
341                                if(tsc < min) min = tsc;
342                        }
343                        proc->rdq.cutoff = min;
344
345                        /* paranoid */ verify(lanes.count < 65536); // The following code assumes max 65536 cores.
346                        /* paranoid */ verify(map.count < 65536); // The following code assumes max 65536 cores.
347
348                        if(0 == (__tls_rand() % 10_000)) {
349                                proc->rdq.target = __tls_rand() % lanes.count;
350                        } else {
351                                unsigned cpu_chaos = map.start + (__tls_rand() % map.count);
352                                proc->rdq.target = (cpu_chaos * READYQ_SHARD_FACTOR) + (__tls_rand() % READYQ_SHARD_FACTOR);
353                                /* paranoid */ verify(proc->rdq.target >= (map.start * READYQ_SHARD_FACTOR));
354                                /* paranoid */ verify(proc->rdq.target <  ((map.start + map.count) * READYQ_SHARD_FACTOR));
355                        }
356
357                        /* paranoid */ verify(proc->rdq.target != -1u);
358                }
359                else {
360                        const unsigned long long bias = 0; //2_500_000_000;
361                        const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff;
362                        {
363                                unsigned target = proc->rdq.target;
364                                proc->rdq.target = -1u;
365                                if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) {
366                                        thread$ * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
367                                        proc->rdq.last = target;
368                                        if(t) return t;
369                                }
370                        }
371
372                        unsigned last = proc->rdq.last;
373                        if(last != -1u && lanes.tscs[last].tv < cutoff && ts(lanes.data[last]) < cutoff) {
374                                thread$ * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.help));
375                                if(t) return t;
376                        }
377                        else {
378                                proc->rdq.last = -1u;
379                        }
380                }
381
382                for(READYQ_SHARD_FACTOR) {
383                        unsigned i = start + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
384                        if(thread$ * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
385                }
386
387                // All lanes where empty return 0p
388                return 0p;
389        }
390
391        __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
392                processor * const proc = kernelTLS().this_processor;
393                unsigned last = proc->rdq.last;
394                if(last != -1u) {
395                        struct thread$ * t = try_pop(cltr, last __STATS(, __tls_stats()->ready.pop.steal));
396                        if(t) return t;
397                        proc->rdq.last = -1u;
398                }
399
400                unsigned i = __tls_rand() % lanes.count;
401                return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
402        }
403        __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) {
404                return search(cltr);
405        }
406#endif
407#if defined(USE_RELAXED_FIFO)
408        //-----------------------------------------------------------------------
409        // get index from random number with or without bias towards queues
410        static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred) {
411                unsigned i;
412                bool local;
413                unsigned rlow  = r % BIAS;
414                unsigned rhigh = r / BIAS;
415                if((0 != rlow) && preferred >= 0) {
416                        // (BIAS - 1) out of BIAS chances
417                        // Use perferred queues
418                        i = preferred + (rhigh % READYQ_SHARD_FACTOR);
419                        local = true;
420                }
421                else {
422                        // 1 out of BIAS chances
423                        // Use all queues
424                        i = rhigh;
425                        local = false;
426                }
427                return [i, local];
428        }
429
430        __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, bool push_local) with (cltr->ready_queue) {
431                __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
432
433                const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
434                /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
435
436                bool local;
437                int preferred = external ? -1 : kernelTLS().this_processor->rdq.id;
438
439                // Try to pick a lane and lock it
440                unsigned i;
441                do {
442                        // Pick the index of a lane
443                        unsigned r = __tls_rand_fwd();
444                        [i, local] = idx_from_r(r, preferred);
445
446                        i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
447
448                        #if !defined(__CFA_NO_STATISTICS__)
449                                if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
450                                else if(local) __tls_stats()->ready.push.local.attempt++;
451                                else __tls_stats()->ready.push.share.attempt++;
452                        #endif
453
454                        // If we can't lock it retry
455                } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
456
457                // Actually push it
458                push(lanes.data[i], thrd);
459
460                // Unlock and return
461                __atomic_unlock( &lanes.data[i].lock );
462
463                // Mark the current index in the tls rng instance as having an item
464                __tls_rand_advance_bck();
465
466                __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
467
468                // Update statistics
469                #if !defined(__CFA_NO_STATISTICS__)
470                        if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
471                        else if(local) __tls_stats()->ready.push.local.success++;
472                        else __tls_stats()->ready.push.share.success++;
473                #endif
474        }
475
476        // Pop from the ready queue from a given cluster
477        __attribute__((hot)) thread$ * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
478                /* paranoid */ verify( lanes.count > 0 );
479                /* paranoid */ verify( kernelTLS().this_processor );
480                /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
481
482                unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
483                int preferred = kernelTLS().this_processor->rdq.id;
484
485
486                // As long as the list is not empty, try finding a lane that isn't empty and pop from it
487                for(25) {
488                        // Pick two lists at random
489                        unsigned ri = __tls_rand_bck();
490                        unsigned rj = __tls_rand_bck();
491
492                        unsigned i, j;
493                        __attribute__((unused)) bool locali, localj;
494                        [i, locali] = idx_from_r(ri, preferred);
495                        [j, localj] = idx_from_r(rj, preferred);
496
497                        i %= count;
498                        j %= count;
499
500                        // try popping from the 2 picked lists
501                        struct thread$ * thrd = try_pop(cltr, i, j __STATS(, *(locali || localj ? &__tls_stats()->ready.pop.local : &__tls_stats()->ready.pop.help)));
502                        if(thrd) {
503                                return thrd;
504                        }
505                }
506
507                // All lanes where empty return 0p
508                return 0p;
509        }
510
511        __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) { return pop_fast(cltr); }
512        __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) {
513                return search(cltr);
514        }
515#endif
516#if defined(USE_WORK_STEALING)
517        __attribute__((hot)) void push(struct cluster * cltr, struct thread$ * thrd, bool push_local) with (cltr->ready_queue) {
518                __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
519
520                // #define USE_PREFERRED
521                #if !defined(USE_PREFERRED)
522                const bool external = !push_local || (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
523                /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
524                #else
525                        unsigned preferred = thrd->preferred;
526                        const bool external = push_local || (!kernelTLS().this_processor) || preferred == -1u || thrd->curr_cluster != cltr;
527                        /* paranoid */ verifyf(external || preferred < lanes.count, "Invalid preferred queue %u for %u lanes", preferred, lanes.count );
528
529                        unsigned r = preferred % READYQ_SHARD_FACTOR;
530                        const unsigned start = preferred - r;
531                #endif
532
533                // Try to pick a lane and lock it
534                unsigned i;
535                do {
536                        #if !defined(__CFA_NO_STATISTICS__)
537                                if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
538                                else __tls_stats()->ready.push.local.attempt++;
539                        #endif
540
541                        if(unlikely(external)) {
542                                i = __tls_rand() % lanes.count;
543                        }
544                        else {
545                                #if !defined(USE_PREFERRED)
546                                        processor * proc = kernelTLS().this_processor;
547                                        unsigned r = proc->rdq.its++;
548                                        i =  proc->rdq.id + (r % READYQ_SHARD_FACTOR);
549                                #else
550                                        i = start + (r++ % READYQ_SHARD_FACTOR);
551                                #endif
552                        }
553                        // If we can't lock it retry
554                } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
555
556                // Actually push it
557                push(lanes.data[i], thrd);
558
559                // Unlock and return
560                __atomic_unlock( &lanes.data[i].lock );
561
562                #if !defined(__CFA_NO_STATISTICS__)
563                        if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
564                        else __tls_stats()->ready.push.local.success++;
565                #endif
566
567                __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
568        }
569
570        // Pop from the ready queue from a given cluster
571        __attribute__((hot)) thread$ * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
572                /* paranoid */ verify( lanes.count > 0 );
573                /* paranoid */ verify( kernelTLS().this_processor );
574                /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
575
576                processor * proc = kernelTLS().this_processor;
577
578                if(proc->rdq.target == -1u) {
579                        unsigned long long min = ts(lanes.data[proc->rdq.id]);
580                        for(int i = 0; i < READYQ_SHARD_FACTOR; i++) {
581                                unsigned long long tsc = ts(lanes.data[proc->rdq.id + i]);
582                                if(tsc < min) min = tsc;
583                        }
584                        proc->rdq.cutoff = min;
585                        proc->rdq.target = __tls_rand() % lanes.count;
586                }
587                else {
588                        unsigned target = proc->rdq.target;
589                        proc->rdq.target = -1u;
590                        const unsigned long long bias = 0; //2_500_000_000;
591                        const unsigned long long cutoff = proc->rdq.cutoff > bias ? proc->rdq.cutoff - bias : proc->rdq.cutoff;
592                        if(lanes.tscs[target].tv < cutoff && ts(lanes.data[target]) < cutoff) {
593                                thread$ * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
594                                if(t) return t;
595                        }
596                }
597
598                for(READYQ_SHARD_FACTOR) {
599                        unsigned i = proc->rdq.id + (proc->rdq.itr++ % READYQ_SHARD_FACTOR);
600                        if(thread$ * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
601                }
602                return 0p;
603        }
604
605        __attribute__((hot)) struct thread$ * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
606                unsigned i = __tls_rand() % lanes.count;
607                return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
608        }
609
610        __attribute__((hot)) struct thread$ * pop_search(struct cluster * cltr) with (cltr->ready_queue) {
611                return search(cltr);
612        }
613#endif
614
615//=======================================================================
616// Various Ready Queue utilities
617//=======================================================================
618// these function work the same or almost the same
619// whether they are using work-stealing or relaxed fifo scheduling
620
621//-----------------------------------------------------------------------
622// try to pop from a lane given by index w
623static inline struct thread$ * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
624        __STATS( stats.attempt++; )
625
626        // Get relevant elements locally
627        __intrusive_lane_t & lane = lanes.data[w];
628
629        // If list looks empty retry
630        if( is_empty(lane) ) {
631                return 0p;
632        }
633
634        // If we can't get the lock retry
635        if( !__atomic_try_acquire(&lane.lock) ) {
636                return 0p;
637        }
638
639        // If list is empty, unlock and retry
640        if( is_empty(lane) ) {
641                __atomic_unlock(&lane.lock);
642                return 0p;
643        }
644
645        // Actually pop the list
646        struct thread$ * thrd;
647        unsigned long long tsv;
648        [thrd, tsv] = pop(lane);
649
650        /* paranoid */ verify(thrd);
651        /* paranoid */ verify(tsv);
652        /* paranoid */ verify(lane.lock);
653
654        // Unlock and return
655        __atomic_unlock(&lane.lock);
656
657        // Update statistics
658        __STATS( stats.success++; )
659
660        #if defined(USE_WORK_STEALING)
661                lanes.tscs[w].tv = tsv;
662        #endif
663
664        thrd->preferred = w;
665
666        // return the popped thread
667        return thrd;
668}
669
670//-----------------------------------------------------------------------
671// try to pop from any lanes making sure you don't miss any threads push
672// before the start of the function
673static inline struct thread$ * search(struct cluster * cltr) with (cltr->ready_queue) {
674        /* paranoid */ verify( lanes.count > 0 );
675        unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
676        unsigned offset = __tls_rand();
677        for(i; count) {
678                unsigned idx = (offset + i) % count;
679                struct thread$ * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search));
680                if(thrd) {
681                        return thrd;
682                }
683        }
684
685        // All lanes where empty return 0p
686        return 0p;
687}
688
689//-----------------------------------------------------------------------
690// Check that all the intrusive queues in the data structure are still consistent
691static void check( __ready_queue_t & q ) with (q) {
692        #if defined(__CFA_WITH_VERIFY__)
693                {
694                        for( idx ; lanes.count ) {
695                                __intrusive_lane_t & sl = lanes.data[idx];
696                                assert(!lanes.data[idx].lock);
697
698                                        if(is_empty(sl)) {
699                                                assert( sl.anchor.next == 0p );
700                                                assert( sl.anchor.ts   == -1llu );
701                                                assert( mock_head(sl)  == sl.prev );
702                                        } else {
703                                                assert( sl.anchor.next != 0p );
704                                                assert( sl.anchor.ts   != -1llu );
705                                                assert( mock_head(sl)  != sl.prev );
706                                        }
707                        }
708                }
709        #endif
710}
711
712//-----------------------------------------------------------------------
713// Given 2 indexes, pick the list with the oldest push an try to pop from it
714static inline struct thread$ * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
715        // Pick the bet list
716        int w = i;
717        if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
718                w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
719        }
720
721        return try_pop(cltr, w __STATS(, stats));
722}
723
724// Call this function of the intrusive list was moved using memcpy
725// fixes the list so that the pointers back to anchors aren't left dangling
726static inline void fix(__intrusive_lane_t & ll) {
727                        if(is_empty(ll)) {
728                                verify(ll.anchor.next == 0p);
729                                ll.prev = mock_head(ll);
730                        }
731}
732
733static void assign_list(unsigned & value, dlist(processor) & list, unsigned count) {
734        processor * it = &list`first;
735        for(unsigned i = 0; i < count; i++) {
736                /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count);
737                it->rdq.id = value;
738                it->rdq.target = -1u;
739                value += READYQ_SHARD_FACTOR;
740                it = &(*it)`next;
741        }
742}
743
744static void reassign_cltr_id(struct cluster * cltr) {
745        unsigned preferred = 0;
746        assign_list(preferred, cltr->procs.actives, cltr->procs.total - cltr->procs.idle);
747        assign_list(preferred, cltr->procs.idles  , cltr->procs.idle );
748}
749
750static void fix_times( struct cluster * cltr ) with( cltr->ready_queue ) {
751        #if defined(USE_WORK_STEALING)
752                lanes.tscs = alloc(lanes.count, lanes.tscs`realloc);
753                for(i; lanes.count) {
754                        unsigned long long tsc1 = ts(lanes.data[i]);
755                        unsigned long long tsc2 = rdtscl();
756                        lanes.tscs[i].tv = min(tsc1, tsc2);
757                }
758        #endif
759}
760
761#if defined(USE_CPU_WORK_STEALING)
762        // ready_queue size is fixed in this case
763        void ready_queue_grow(struct cluster * cltr) {}
764        void ready_queue_shrink(struct cluster * cltr) {}
765#else
766        // Grow the ready queue
767        void ready_queue_grow(struct cluster * cltr) {
768                size_t ncount;
769                int target = cltr->procs.total;
770
771                /* paranoid */ verify( ready_mutate_islocked() );
772                __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
773
774                // Make sure that everything is consistent
775                /* paranoid */ check( cltr->ready_queue );
776
777                // grow the ready queue
778                with( cltr->ready_queue ) {
779                        // Find new count
780                        // Make sure we always have atleast 1 list
781                        if(target >= 2) {
782                                ncount = target * READYQ_SHARD_FACTOR;
783                        } else {
784                                ncount = SEQUENTIAL_SHARD;
785                        }
786
787                        // Allocate new array (uses realloc and memcpies the data)
788                        lanes.data = alloc( ncount, lanes.data`realloc );
789
790                        // Fix the moved data
791                        for( idx; (size_t)lanes.count ) {
792                                fix(lanes.data[idx]);
793                        }
794
795                        // Construct new data
796                        for( idx; (size_t)lanes.count ~ ncount) {
797                                (lanes.data[idx]){};
798                        }
799
800                        // Update original
801                        lanes.count = ncount;
802                }
803
804                fix_times(cltr);
805
806                reassign_cltr_id(cltr);
807
808                // Make sure that everything is consistent
809                /* paranoid */ check( cltr->ready_queue );
810
811                __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
812
813                /* paranoid */ verify( ready_mutate_islocked() );
814        }
815
816        // Shrink the ready queue
817        void ready_queue_shrink(struct cluster * cltr) {
818                /* paranoid */ verify( ready_mutate_islocked() );
819                __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
820
821                // Make sure that everything is consistent
822                /* paranoid */ check( cltr->ready_queue );
823
824                int target = cltr->procs.total;
825
826                with( cltr->ready_queue ) {
827                        // Remember old count
828                        size_t ocount = lanes.count;
829
830                        // Find new count
831                        // Make sure we always have atleast 1 list
832                        lanes.count = target >= 2 ? target * READYQ_SHARD_FACTOR: SEQUENTIAL_SHARD;
833                        /* paranoid */ verify( ocount >= lanes.count );
834                        /* paranoid */ verify( lanes.count == target * READYQ_SHARD_FACTOR || target < 2 );
835
836                        // for printing count the number of displaced threads
837                        #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
838                                __attribute__((unused)) size_t displaced = 0;
839                        #endif
840
841                        // redistribute old data
842                        for( idx; (size_t)lanes.count ~ ocount) {
843                                // Lock is not strictly needed but makes checking invariants much easier
844                                __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
845                                verify(locked);
846
847                                // As long as we can pop from this lane to push the threads somewhere else in the queue
848                                while(!is_empty(lanes.data[idx])) {
849                                        struct thread$ * thrd;
850                                        unsigned long long _;
851                                        [thrd, _] = pop(lanes.data[idx]);
852
853                                        push(cltr, thrd, true);
854
855                                        // for printing count the number of displaced threads
856                                        #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
857                                                displaced++;
858                                        #endif
859                                }
860
861                                // Unlock the lane
862                                __atomic_unlock(&lanes.data[idx].lock);
863
864                                // TODO print the queue statistics here
865
866                                ^(lanes.data[idx]){};
867                        }
868
869                        __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
870
871                        // Allocate new array (uses realloc and memcpies the data)
872                        lanes.data = alloc( lanes.count, lanes.data`realloc );
873
874                        // Fix the moved data
875                        for( idx; (size_t)lanes.count ) {
876                                fix(lanes.data[idx]);
877                        }
878                }
879
880                fix_times(cltr);
881
882                reassign_cltr_id(cltr);
883
884                // Make sure that everything is consistent
885                /* paranoid */ check( cltr->ready_queue );
886
887                __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
888                /* paranoid */ verify( ready_mutate_islocked() );
889        }
890#endif
891
892#if !defined(__CFA_NO_STATISTICS__)
893        unsigned cnt(const __ready_queue_t & this, unsigned idx) {
894                /* paranoid */ verify(this.lanes.count > idx);
895                return this.lanes.data[idx].cnt;
896        }
897#endif
898
899
900#if   defined(CFA_HAVE_LINUX_LIBRSEQ)
901        // No definition needed
902#elif defined(CFA_HAVE_LINUX_RSEQ_H)
903
904        #if defined( __x86_64 ) || defined( __i386 )
905                #define RSEQ_SIG        0x53053053
906        #elif defined( __ARM_ARCH )
907                #ifdef __ARMEB__
908                #define RSEQ_SIG    0xf3def5e7      /* udf    #24035    ; 0x5de3 (ARMv6+) */
909                #else
910                #define RSEQ_SIG    0xe7f5def3      /* udf    #24035    ; 0x5de3 */
911                #endif
912        #endif
913
914        extern void __disable_interrupts_hard();
915        extern void __enable_interrupts_hard();
916
917        void __kernel_raw_rseq_register  (void) {
918                /* paranoid */ verify( __cfaabi_rseq.cpu_id == RSEQ_CPU_ID_UNINITIALIZED );
919
920                // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, (sigset_t *)0p, _NSIG / 8);
921                int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, RSEQ_SIG);
922                if(ret != 0) {
923                        int e = errno;
924                        switch(e) {
925                        case EINVAL: abort("KERNEL ERROR: rseq register invalid argument");
926                        case ENOSYS: abort("KERNEL ERROR: rseq register no supported");
927                        case EFAULT: abort("KERNEL ERROR: rseq register with invalid argument");
928                        case EBUSY : abort("KERNEL ERROR: rseq register already registered");
929                        case EPERM : abort("KERNEL ERROR: rseq register sig  argument  on unregistration does not match the signature received on registration");
930                        default: abort("KERNEL ERROR: rseq register unexpected return %d", e);
931                        }
932                }
933        }
934
935        void __kernel_raw_rseq_unregister(void) {
936                /* paranoid */ verify( __cfaabi_rseq.cpu_id >= 0 );
937
938                // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, (sigset_t *)0p, _NSIG / 8);
939                int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, RSEQ_SIG);
940                if(ret != 0) {
941                        int e = errno;
942                        switch(e) {
943                        case EINVAL: abort("KERNEL ERROR: rseq unregister invalid argument");
944                        case ENOSYS: abort("KERNEL ERROR: rseq unregister no supported");
945                        case EFAULT: abort("KERNEL ERROR: rseq unregister with invalid argument");
946                        case EBUSY : abort("KERNEL ERROR: rseq unregister already registered");
947                        case EPERM : abort("KERNEL ERROR: rseq unregister sig  argument  on unregistration does not match the signature received on registration");
948                        default: abort("KERNEL ERROR: rseq unregisteunexpected return %d", e);
949                        }
950                }
951        }
952#else
953        // No definition needed
954#endif
Note: See TracBrowser for help on using the repository browser.