source: libcfa/src/concurrency/preemption.cfa@ 8b95bab

ADT ast-experimental pthread-emulation
Last change on this file since 8b95bab was b443db0, checked in by Thierry Delisle <tdelisle@…>, 3 years ago

Change how no preempts zone are implemented. From begin/end tags to specific sections.

  • Property mode set to 100644
File size: 25.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// signal.c --
8//
9// Author : Thierry Delisle
10// Created On : Mon Jun 5 14:20:42 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Feb 17 11:18:57 2022
13// Update Count : 59
14//
15
16#define __cforall_thread__
17#define _GNU_SOURCE
18
19// #define __CFA_DEBUG_PRINT_PREEMPTION__
20
21#include "preemption.hfa"
22
23#include <assert.h>
24
25#include <errno.h>
26#include <stdio.h>
27#include <string.h>
28#include <unistd.h>
29#include <limits.h> // PTHREAD_STACK_MIN
30
31#include "bits/debug.hfa"
32#include "bits/signal.hfa"
33#include "kernel/private.hfa"
34
35
36#if !defined(__CFA_DEFAULT_PREEMPTION__)
37#define __CFA_DEFAULT_PREEMPTION__ 10`ms
38#endif
39
40__attribute__((weak)) Duration default_preemption() libcfa_public {
41 const char * preempt_rate_s = getenv("CFA_DEFAULT_PREEMPTION");
42 if(!preempt_rate_s) {
43 __cfadbg_print_safe(preemption, "No CFA_DEFAULT_PREEMPTION in ENV\n");
44 return __CFA_DEFAULT_PREEMPTION__;
45 }
46
47 char * endptr = 0p;
48 long int preempt_rate_l = strtol(preempt_rate_s, &endptr, 10);
49 if(preempt_rate_l < 0 || preempt_rate_l > 65535) {
50 __cfadbg_print_safe(preemption, "CFA_DEFAULT_PREEMPTION out of range : %ld\n", preempt_rate_l);
51 return __CFA_DEFAULT_PREEMPTION__;
52 }
53 if('\0' != *endptr) {
54 __cfadbg_print_safe(preemption, "CFA_DEFAULT_PREEMPTION not a decimal number : %s\n", preempt_rate_s);
55 return __CFA_DEFAULT_PREEMPTION__;
56 }
57
58 return preempt_rate_l`ms;
59}
60
61// FwdDeclarations : timeout handlers
62static void preempt( processor * this );
63static void timeout( thread$ * this );
64
65// FwdDeclarations : Signal handlers
66static void sigHandler_ctxSwitch( __CFA_SIGPARMS__ );
67static void sigHandler_alarm ( __CFA_SIGPARMS__ );
68static void sigHandler_segv ( __CFA_SIGPARMS__ );
69static void sigHandler_ill ( __CFA_SIGPARMS__ );
70static void sigHandler_fpe ( __CFA_SIGPARMS__ );
71static void sigHandler_abort ( __CFA_SIGPARMS__ );
72
73// FwdDeclarations : alarm thread main
74static void * alarm_loop( __attribute__((unused)) void * args );
75
76// Machine specific register name
77#if defined( __i386 )
78#define CFA_REG_IP gregs[REG_EIP]
79#elif defined( __x86_64 )
80#define CFA_REG_IP gregs[REG_RIP]
81#elif defined( __arm__ )
82#define CFA_REG_IP arm_pc
83#elif defined( __aarch64__ )
84#define CFA_REG_IP pc
85#else
86#error unsupported hardware architecture
87#endif
88
89KERNEL_STORAGE(event_kernel_t, event_kernel); // private storage for event kernel
90event_kernel_t * event_kernel; // kernel public handle to even kernel
91static pthread_t alarm_thread; // pthread handle to alarm thread
92static void * alarm_stack; // pthread stack for alarm thread
93
94static void ?{}(event_kernel_t & this) with( this ) {
95 alarms{};
96 lock{};
97}
98
99//=============================================================================================
100// Kernel Preemption logic
101//=============================================================================================
102
103// Get next expired node
104static inline alarm_node_t * get_expired( alarm_list_t * alarms, Time currtime ) {
105 if( ! & (*alarms)`first ) return 0p; // If no alarms return null
106 if( (*alarms)`first.timeval >= currtime ) return 0p; // If alarms head not expired return null
107 return pop(alarms); // Otherwise just pop head
108}
109
110// Tick one frame of the Discrete Event Simulation for alarms
111static void tick_preemption(void) {
112 alarm_node_t * node = 0p; // Used in the while loop but cannot be declared in the while condition
113 alarm_list_t * alarms = &event_kernel->alarms; // Local copy for ease of reading
114 Time currtime = __kernel_get_time(); // Check current time once so everything "happens at once"
115
116 //Loop throught every thing expired
117 while( node = get_expired( alarms, currtime ) ) {
118 __cfadbg_print_buffer_decl( preemption, " KERNEL: preemption tick %lu\n", currtime.tn);
119 Duration period = node->period;
120 if( period == 0) {
121 node->set = false; // Node is one-shot, just mark it as not pending
122 }
123
124 __cfadbg_print_buffer_local( preemption, " KERNEL: alarm ticking node %p.\n", node );
125
126
127 // Check if this is a kernel
128 if( node->type == Kernel ) {
129 preempt( node->proc );
130 }
131 else if( node->type == User ) {
132 __cfadbg_print_buffer_local( preemption, " KERNEL: alarm unparking %p.\n", node->thrd );
133 timeout( node->thrd );
134 }
135 else {
136 node->callback(*node);
137 }
138
139 // Check if this is a periodic alarm
140 if( period > 0 ) {
141 __cfadbg_print_buffer_local( preemption, " KERNEL: alarm period is %lu.\n", period`ns );
142 node->timeval = currtime + period; // Alarm is periodic, add currtime to it (used cached current time)
143 insert( alarms, node ); // Reinsert the node for the next time it triggers
144 }
145 }
146
147 // If there are still alarms pending, reset the timer
148 if( & (*alarms)`first ) {
149 Duration delta = (*alarms)`first.timeval - currtime;
150 __kernel_set_timer( delta );
151 }
152}
153
154// Update the preemption of a processor and notify interested parties
155void update_preemption( processor * this, Duration duration ) {
156 alarm_node_t * alarm = this->preemption_alarm;
157
158 // Alarms need to be enabled
159 if ( duration > 0 && ! alarm->set ) {
160 alarm->initial = duration;
161 alarm->period = duration;
162 register_self( alarm );
163 }
164 // Zero duration but alarm is set
165 else if ( duration == 0 && alarm->set ) {
166 unregister_self( alarm );
167 alarm->initial = 0;
168 alarm->period = 0;
169 }
170 // If alarm is different from previous, change it
171 else if ( duration > 0 && alarm->period != duration ) {
172 unregister_self( alarm );
173 alarm->initial = duration;
174 alarm->period = duration;
175 register_self( alarm );
176 }
177}
178
179//=============================================================================================
180// Kernel Signal Tools
181//=============================================================================================
182// In a user-level threading system, there are handful of thread-local variables where this problem occurs on the ARM.
183//
184// For each kernel thread running user-level threads, there is a flag variable to indicate if interrupts are
185// enabled/disabled for that kernel thread. Therefore, this variable is made thread local.
186//
187// For example, this code fragment sets the state of the "interrupt" variable in thread-local memory.
188//
189// _Thread_local volatile int interrupts;
190// int main() {
191// interrupts = 0; // disable interrupts }
192//
193// which generates the following code on the ARM
194//
195// (gdb) disassemble main
196// Dump of assembler code for function main:
197// 0x0000000000000610 <+0>: mrs x1, tpidr_el0
198// 0x0000000000000614 <+4>: mov w0, #0x0 // #0
199// 0x0000000000000618 <+8>: add x1, x1, #0x0, lsl #12
200// 0x000000000000061c <+12>: add x1, x1, #0x10
201// 0x0000000000000620 <+16>: str wzr, [x1]
202// 0x0000000000000624 <+20>: ret
203//
204// The mrs moves a pointer from coprocessor register tpidr_el0 into register x1. Register w0 is set to 0. The two adds
205// increase the TLS pointer with the displacement (offset) 0x10, which is the location in the TSL of variable
206// "interrupts". Finally, 0 is stored into "interrupts" through the pointer in register x1 that points into the
207// TSL. Now once x1 has the pointer to the location of the TSL for kernel thread N, it can be be preempted at a
208// user-level and the user thread is put on the user-level ready-queue. When the preempted thread gets to the front of
209// the user-level ready-queue it is run on kernel thread M. It now stores 0 into "interrupts" back on kernel thread N,
210// turning off interrupt on the wrong kernel thread.
211//
212// On the x86, the following code is generated for the same code fragment.
213//
214// (gdb) disassemble main
215// Dump of assembler code for function main:
216// 0x0000000000400420 <+0>: movl $0x0,%fs:0xfffffffffffffffc
217// 0x000000000040042c <+12>: xor %eax,%eax
218// 0x000000000040042e <+14>: retq
219//
220// and there is base-displacement addressing used to atomically reset variable "interrupts" off of the TSL pointer in
221// register "fs".
222//
223// Hence, the ARM has base-displacement address for the general purpose registers, BUT not to the coprocessor
224// registers. As a result, generating the address for the write into variable "interrupts" is no longer atomic.
225//
226// Note this problem does NOT occur when just using multiple kernel threads because the preemption ALWAYS restarts the
227// thread on the same kernel thread.
228//
229// The obvious question is why does ARM use a coprocessor register to store the TSL pointer given that coprocessor
230// registers are second-class registers with respect to the instruction set. One possible answer is that they did not
231// want to dedicate one of the general registers to hold the TLS pointer and there was a free coprocessor register
232// available.
233
234//-----------------------------------------------------------------------------
235// Some assembly required
236#define __cfaasm_label(label, when) when: asm volatile goto(".global __cfaasm_" #label "_" #when "\n" "__cfaasm_" #label "_" #when ":":::"memory":when)
237
238//----------
239// special case for preemption since used often
240__attribute__((optimize("no-reorder-blocks"))) bool __preemption_enabled() libcfa_nopreempt libcfa_public {
241 // create a assembler label before
242 // marked as clobber all to avoid movement
243 __cfaasm_label(check, before);
244
245 // access tls as normal
246 bool enabled = __cfaabi_tls.preemption_state.enabled;
247
248 // Check if there is a pending preemption
249 processor * proc = __cfaabi_tls.this_processor;
250 bool pending = proc ? proc->pending_preemption : false;
251 if( enabled && pending ) proc->pending_preemption = false;
252
253 // create a assembler label after
254 // marked as clobber all to avoid movement
255 __cfaasm_label(check, after);
256
257 // If we can preempt and there is a pending one
258 // this is a good time to yield
259 if( enabled && pending ) {
260 force_yield( __POLL_PREEMPTION );
261 }
262 return enabled;
263}
264
265struct asm_region {
266 void * before;
267 void * after;
268};
269
270static inline bool __cfaasm_in( void * ip, struct asm_region & region ) {
271 return ip >= region.before && ip <= region.after;
272}
273
274extern "C" {
275 __attribute__((visibility("hidden"))) extern void * const __start_cfatext_nopreempt;
276 __attribute__((visibility("hidden"))) extern void * const __stop_cfatext_nopreempt;
277
278 extern const __cfa_nopreempt_region __libcfa_nopreempt;
279 __attribute__((visibility("protected"))) const __cfa_nopreempt_region __libcfathrd_nopreempt @= {
280 (void * const)&__start_cfatext_nopreempt,
281 (void * const)&__stop_cfatext_nopreempt
282 };
283}
284
285static inline bool __cfaabi_in( void * const ip, const struct __cfa_nopreempt_region & const region ) {
286 return ip >= region.start && ip <= region.stop;
287}
288
289
290//----------
291// Get data from the TLS block
292// struct asm_region __cfaasm_get;
293uintptr_t __cfatls_get( unsigned long int offset ) libcfa_nopreempt libcfa_public; //no inline to avoid problems
294uintptr_t __cfatls_get( unsigned long int offset ) {
295 // create a assembler label before
296 // marked as clobber all to avoid movement
297 __cfaasm_label(get, before);
298
299 // access tls as normal (except for pointer arithmetic)
300 uintptr_t val = *(uintptr_t*)((uintptr_t)&__cfaabi_tls + offset);
301
302 // create a assembler label after
303 // marked as clobber all to avoid movement
304 __cfaasm_label(get, after);
305
306 // This is used everywhere, to avoid cost, we DO NOT poll pending preemption
307 return val;
308}
309
310extern "C" {
311 // Disable interrupts by incrementing the counter
312 void disable_interrupts() libcfa_nopreempt libcfa_public {
313 // create a assembler label before
314 // marked as clobber all to avoid movement
315 __cfaasm_label(dsable, before);
316
317 with( __cfaabi_tls.preemption_state ) {
318 #if GCC_VERSION > 50000
319 static_assert(__atomic_always_lock_free(sizeof(enabled), &enabled), "Must be lock-free");
320 #endif
321
322 // Set enabled flag to false
323 // should be atomic to avoid preemption in the middle of the operation.
324 // use memory order RELAXED since there is no inter-thread on this variable requirements
325 __atomic_store_n(&enabled, false, __ATOMIC_RELAXED);
326
327 // Signal the compiler that a fence is needed but only for signal handlers
328 __atomic_signal_fence(__ATOMIC_ACQUIRE);
329
330 __attribute__((unused)) unsigned short new_val = disable_count + 1;
331 disable_count = new_val;
332 verify( new_val < 65_000u ); // If this triggers someone is disabling interrupts without enabling them
333 }
334
335 // create a assembler label after
336 // marked as clobber all to avoid movement
337 __cfaasm_label(dsable, after);
338
339 }
340
341 // Enable interrupts by decrementing the counter
342 // If counter reaches 0, execute any pending __cfactx_switch
343 void enable_interrupts( bool poll ) libcfa_nopreempt libcfa_public {
344 // Cache the processor now since interrupts can start happening after the atomic store
345 processor * proc = __cfaabi_tls.this_processor;
346 /* paranoid */ verify( !poll || proc );
347
348 with( __cfaabi_tls.preemption_state ){
349 unsigned short prev = disable_count;
350 disable_count -= 1;
351
352 // If this triggers someone is enabled already enabled interruptsverify( prev != 0u );
353 /* paranoid */ verify( prev != 0u );
354
355 // Check if we need to prempt the thread because an interrupt was missed
356 if( prev == 1 ) {
357 #if GCC_VERSION > 50000
358 static_assert(__atomic_always_lock_free(sizeof(enabled), &enabled), "Must be lock-free");
359 #endif
360
361 // Set enabled flag to true
362 // should be atomic to avoid preemption in the middle of the operation.
363 // use memory order RELAXED since there is no inter-thread on this variable requirements
364 __atomic_store_n(&enabled, true, __ATOMIC_RELAXED);
365
366 // Signal the compiler that a fence is needed but only for signal handlers
367 __atomic_signal_fence(__ATOMIC_RELEASE);
368 if( poll && proc->pending_preemption ) {
369 proc->pending_preemption = false;
370 force_yield( __POLL_PREEMPTION );
371 }
372 }
373 }
374 }
375
376 // Check whether or not there is pending preemption
377 // force_yield( __POLL_PREEMPTION ) if appropriate
378 // return true if the thread was in an interruptable state
379 // i.e. on a real processor and not in the kernel
380 // (can return true even if no preemption was pending)
381 bool poll_interrupts() libcfa_public {
382 // Cache the processor now since interrupts can start happening after the atomic store
383 processor * proc = publicTLS_get( this_processor );
384 if ( ! proc ) return false;
385 if ( ! __preemption_enabled() ) return false;
386
387 with( __cfaabi_tls.preemption_state ){
388 // Signal the compiler that a fence is needed but only for signal handlers
389 __atomic_signal_fence(__ATOMIC_RELEASE);
390 if( proc->pending_preemption ) {
391 proc->pending_preemption = false;
392 force_yield( __POLL_PREEMPTION );
393 }
394 }
395
396 return true;
397 }
398}
399
400//-----------------------------------------------------------------------------
401// Kernel Signal Debug
402void __cfaabi_check_preemption() libcfa_public {
403 bool ready = __preemption_enabled();
404 if(!ready) { abort("Preemption should be ready"); }
405
406 sigset_t oldset;
407 int ret;
408 ret = pthread_sigmask(0, ( const sigset_t * ) 0p, &oldset); // workaround trac#208: cast should be unnecessary
409 if(ret != 0) { abort("ERROR sigprocmask returned %d", ret); }
410
411 ret = sigismember(&oldset, SIGUSR1);
412 if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
413 if(ret == 1) { abort("ERROR SIGUSR1 is disabled"); }
414
415 ret = sigismember(&oldset, SIGALRM);
416 if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
417 if(ret == 0) { abort("ERROR SIGALRM is enabled"); }
418
419 ret = sigismember(&oldset, SIGTERM);
420 if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
421 if(ret == 1) { abort("ERROR SIGTERM is disabled"); }
422}
423
424#ifdef __CFA_WITH_VERIFY__
425bool __cfaabi_dbg_in_kernel() {
426 return !__preemption_enabled();
427}
428#endif
429
430#undef __cfaasm_label
431
432//-----------------------------------------------------------------------------
433// Signal handling
434
435// sigprocmask wrapper : unblock a single signal
436static inline void signal_unblock( int sig ) {
437 sigset_t mask;
438 sigemptyset( &mask );
439 sigaddset( &mask, sig );
440
441 if ( pthread_sigmask( SIG_UNBLOCK, &mask, 0p ) == -1 ) {
442 abort( "internal error, pthread_sigmask" );
443 }
444}
445
446// sigprocmask wrapper : block a single signal
447static inline void signal_block( int sig ) {
448 sigset_t mask;
449 sigemptyset( &mask );
450 sigaddset( &mask, sig );
451
452 if ( pthread_sigmask( SIG_BLOCK, &mask, 0p ) == -1 ) {
453 abort( "internal error, pthread_sigmask" );
454 }
455}
456
457// kill wrapper : signal a processor
458static void preempt( processor * this ) {
459 sigval_t value = { PREEMPT_NORMAL };
460 pthread_sigqueue( this->kernel_thread, SIGUSR1, value );
461}
462
463// reserved for future use
464static void timeout( thread$ * this ) {
465 unpark( this );
466}
467
468void __disable_interrupts_hard() {
469 sigset_t oldset;
470 int ret;
471 ret = pthread_sigmask(0, ( const sigset_t * ) 0p, &oldset); // workaround trac#208: cast should be unnecessary
472 if(ret != 0) { abort("ERROR sigprocmask returned %d", ret); }
473
474 ret = sigismember(&oldset, SIGUSR1);
475 if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
476 if(ret == 1) { abort("ERROR SIGUSR1 is disabled"); }
477
478 ret = sigismember(&oldset, SIGALRM);
479 if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
480 if(ret == 0) { abort("ERROR SIGALRM is enabled"); }
481
482 signal_block( SIGUSR1 );
483}
484
485void __enable_interrupts_hard() {
486 signal_unblock( SIGUSR1 );
487
488 sigset_t oldset;
489 int ret;
490 ret = pthread_sigmask(0, ( const sigset_t * ) 0p, &oldset); // workaround trac#208: cast should be unnecessary
491 if(ret != 0) { abort("ERROR sigprocmask returned %d", ret); }
492
493 ret = sigismember(&oldset, SIGUSR1);
494 if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
495 if(ret == 1) { abort("ERROR SIGUSR1 is disabled"); }
496
497 ret = sigismember(&oldset, SIGALRM);
498 if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
499 if(ret == 0) { abort("ERROR SIGALRM is enabled"); }
500}
501
502//-----------------------------------------------------------------------------
503// KERNEL ONLY
504// Check if a __cfactx_switch signal handler shoud defer
505// If true : preemption is safe
506// If false : preemption is unsafe and marked as pending
507static inline bool preemption_ready( void * ip ) {
508 // Check if preemption is safe
509 bool ready = true;
510 if( __cfaabi_in( ip, __libcfa_nopreempt ) ) { ready = false; goto EXIT; };
511 if( __cfaabi_in( ip, __libcfathrd_nopreempt ) ) { ready = false; goto EXIT; };
512
513 if( !__cfaabi_tls.preemption_state.enabled) { ready = false; goto EXIT; };
514 if( __cfaabi_tls.preemption_state.in_progress ) { ready = false; goto EXIT; };
515
516EXIT:
517 // Adjust the pending flag accordingly
518 __cfaabi_tls.this_processor->pending_preemption = !ready;
519 return ready;
520}
521
522//=============================================================================================
523// Kernel Signal Startup/Shutdown logic
524//=============================================================================================
525
526// Startup routine to activate preemption
527// Called from kernel_startup
528void __kernel_alarm_startup() {
529 __cfaabi_dbg_print_safe( "Kernel : Starting preemption\n" );
530
531 // Start with preemption disabled until ready
532 __cfaabi_tls.preemption_state.enabled = false;
533 __cfaabi_tls.preemption_state.disable_count = 1;
534
535 // Initialize the event kernel
536 event_kernel = (event_kernel_t *)&storage_event_kernel;
537 (*event_kernel){};
538
539 // Setup proper signal handlers
540 __cfaabi_sigaction( SIGUSR1, sigHandler_ctxSwitch, SA_SIGINFO ); // __cfactx_switch handler
541 __cfaabi_sigaction( SIGALRM, sigHandler_alarm , SA_SIGINFO ); // debug handler
542
543 signal_block( SIGALRM );
544
545 alarm_stack = __create_pthread( &alarm_thread, alarm_loop, 0p );
546}
547
548// Shutdown routine to deactivate preemption
549// Called from kernel_shutdown
550void __kernel_alarm_shutdown() {
551 __cfaabi_dbg_print_safe( "Kernel : Preemption stopping\n" );
552
553 // Block all signals since we are already shutting down
554 sigset_t mask;
555 sigfillset( &mask );
556 sigprocmask( SIG_BLOCK, &mask, 0p );
557
558 // Notify the alarm thread of the shutdown
559 sigval val;
560 val.sival_int = 0;
561 pthread_sigqueue( alarm_thread, SIGALRM, val );
562
563 // Wait for the preemption thread to finish
564
565 __destroy_pthread( alarm_thread, alarm_stack, 0p );
566
567 // Preemption is now fully stopped
568
569 __cfaabi_dbg_print_safe( "Kernel : Preemption stopped\n" );
570}
571
572// Prevent preemption since we are about to start terminating things
573void __kernel_abort_lock(void) {
574 signal_block( SIGUSR1 );
575}
576
577// Raii ctor/dtor for the preemption_scope
578// Used by thread to control when they want to receive preemption signals
579void ?{}( preemption_scope & this, processor * proc ) {
580 (this.alarm){ proc, 0`s, 0`s };
581 this.proc = proc;
582 this.proc->preemption_alarm = &this.alarm;
583
584 update_preemption( this.proc, this.proc->cltr->preemption_rate );
585}
586
587void ^?{}( preemption_scope & this ) {
588 disable_interrupts();
589
590 update_preemption( this.proc, 0`s );
591}
592
593//=============================================================================================
594// Kernel Signal Handlers
595//=============================================================================================
596__cfaabi_dbg_debug_do( static __thread void * last_interrupt = 0; )
597
598// Context switch signal handler
599// Receives SIGUSR1 signal and causes the current thread to yield
600static void sigHandler_ctxSwitch( __CFA_SIGPARMS__ ) {
601 void * ip = (void *)(cxt->uc_mcontext.CFA_REG_IP);
602 __cfaabi_dbg_debug_do( last_interrupt = ip; )
603
604 // SKULLDUGGERY: if a thread creates a processor and the immediately deletes it,
605 // the interrupt that is supposed to force the kernel thread to preempt might arrive
606 // before the kernel thread has even started running. When that happens, an interrupt
607 // with a null 'this_processor' will be caught, just ignore it.
608 if(! __cfaabi_tls.this_processor ) return;
609
610 choose(sfp->si_value.sival_int) {
611 case PREEMPT_NORMAL : ;// Normal case, nothing to do here
612 case PREEMPT_IO : ;// I/O asked to stop spinning, nothing to do here
613 case PREEMPT_TERMINATE: verify( __atomic_load_n( &__cfaabi_tls.this_processor->do_terminate, __ATOMIC_SEQ_CST ) );
614 default:
615 abort( "internal error, signal value is %d", sfp->si_value.sival_int );
616 }
617
618 // Check if it is safe to preempt here
619 if( !preemption_ready( ip ) ) {
620 #if !defined(__CFA_NO_STATISTICS__)
621 __cfaabi_tls.this_stats->ready.threads.preempt.rllfwd++;
622 #endif
623 return;
624 }
625
626 __cfaabi_dbg_print_buffer_decl( " KERNEL: preempting core %p (%p @ %p).\n", __cfaabi_tls.this_processor, __cfaabi_tls.this_thread, (void *)(cxt->uc_mcontext.CFA_REG_IP) );
627
628 // Sync flag : prevent recursive calls to the signal handler
629 __cfaabi_tls.preemption_state.in_progress = true;
630
631 // Clear sighandler mask before context switching.
632 #if GCC_VERSION > 50000
633 static_assert( sizeof( sigset_t ) == sizeof( cxt->uc_sigmask ), "Expected cxt->uc_sigmask to be of sigset_t" );
634 #endif
635 if ( pthread_sigmask( SIG_SETMASK, (sigset_t *)&(cxt->uc_sigmask), 0p ) == -1 ) {
636 abort( "internal error, sigprocmask" );
637 }
638
639 // Clear the in progress flag
640 __cfaabi_tls.preemption_state.in_progress = false;
641
642 // Preemption can occur here
643
644 #if !defined(__CFA_NO_STATISTICS__)
645 __cfaabi_tls.this_stats->ready.threads.preempt.yield++;
646 #endif
647
648 force_yield( __ALARM_PREEMPTION ); // Do the actual __cfactx_switch
649}
650
651static void sigHandler_alarm( __CFA_SIGPARMS__ ) {
652 abort("SIGALRM should never reach the signal handler");
653}
654
655// Main of the alarm thread
656// Waits on SIGALRM and send SIGUSR1 to whom ever needs it
657static void * alarm_loop( __attribute__((unused)) void * args ) {
658 unsigned id = register_proc_id();
659
660 // Block sigalrms to control when they arrive
661 sigset_t mask;
662 sigfillset(&mask);
663 if ( pthread_sigmask( SIG_BLOCK, &mask, 0p ) == -1 ) {
664 abort( "internal error, pthread_sigmask" );
665 }
666
667 sigemptyset( &mask );
668 sigaddset( &mask, SIGALRM );
669
670 // Main loop
671 while( true ) {
672 // Wait for a sigalrm
673 siginfo_t info;
674 int sig = sigwaitinfo( &mask, &info );
675
676 __cfadbg_print_buffer_decl ( preemption, " KERNEL: sigwaitinfo returned %d, c: %d, v: %d\n", sig, info.si_code, info.si_value.sival_int );
677 __cfadbg_print_buffer_local( preemption, " KERNEL: SI_QUEUE %d, SI_TIMER %d, SI_KERNEL %d\n", SI_QUEUE, SI_TIMER, SI_KERNEL );
678
679 if( sig < 0 ) {
680 //Error!
681 int err = errno;
682 switch( err ) {
683 case EAGAIN :
684 case EINTR :
685 {__cfadbg_print_buffer_local( preemption, " KERNEL: Spurious wakeup %d.\n", err );}
686 continue;
687 case EINVAL :
688 abort( "Timeout was invalid." );
689 default:
690 abort( "Unhandled error %d", err);
691 }
692 }
693
694 // If another signal arrived something went wrong
695 assertf(sig == SIGALRM, "Kernel Internal Error, sigwait: Unexpected signal %d (%d : %d)\n", sig, info.si_code, info.si_value.sival_int);
696
697 // Switch on the code (a.k.a. the sender) to
698 switch( info.si_code )
699 {
700 // Signal was not sent by the kernel but by an other thread
701 case SI_QUEUE:
702 // other threads may signal the alarm thread to shut it down
703 // or to manual cause the preemption tick
704 // use info.si_value and handle the case here
705 switch( info.si_value.sival_int ) {
706 case 0:
707 goto EXIT;
708 default:
709 abort( "SI_QUEUE with val %d", info.si_value.sival_int);
710 }
711 // fallthrough
712 // Timers can apparently be marked as sent for the kernel
713 // In either case, tick preemption
714 case SI_TIMER:
715 case SI_KERNEL:
716 // __cfaabi_dbg_print_safe( "Kernel : Preemption thread tick\n" );
717 lock( event_kernel->lock __cfaabi_dbg_ctx2 );
718 tick_preemption();
719 unlock( event_kernel->lock );
720 break;
721 }
722 }
723
724EXIT:
725 __cfaabi_dbg_print_safe( "Kernel : Preemption thread stopping\n" );
726 unregister_proc_id(id);
727
728 return 0p;
729}
730
731// Local Variables: //
732// mode: c //
733// tab-width: 4 //
734// End: //
Note: See TracBrowser for help on using the repository browser.