1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // signal.c --
|
---|
8 | //
|
---|
9 | // Author : Thierry Delisle
|
---|
10 | // Created On : Mon Jun 5 14:20:42 2017
|
---|
11 | // Last Modified By : Peter A. Buhr
|
---|
12 | // Last Modified On : Mon Jan 9 08:42:59 2023
|
---|
13 | // Update Count : 60
|
---|
14 | //
|
---|
15 |
|
---|
16 | #define __cforall_thread__
|
---|
17 |
|
---|
18 | // #define __CFA_DEBUG_PRINT_PREEMPTION__
|
---|
19 |
|
---|
20 | #include "preemption.hfa"
|
---|
21 |
|
---|
22 | #include <assert.h>
|
---|
23 |
|
---|
24 | #include <errno.h>
|
---|
25 | #include <stdio.h>
|
---|
26 | #include <string.h>
|
---|
27 | #include <unistd.h>
|
---|
28 | #include <limits.h> // PTHREAD_STACK_MIN
|
---|
29 |
|
---|
30 | #include "bits/debug.hfa"
|
---|
31 | #include "bits/signal.hfa"
|
---|
32 | #include "kernel/private.hfa"
|
---|
33 |
|
---|
34 |
|
---|
35 | #if !defined(__CFA_DEFAULT_PREEMPTION__)
|
---|
36 | #define __CFA_DEFAULT_PREEMPTION__ 10`ms
|
---|
37 | #endif
|
---|
38 |
|
---|
39 | __attribute__((weak)) Duration default_preemption() libcfa_public {
|
---|
40 | const char * preempt_rate_s = getenv("CFA_DEFAULT_PREEMPTION");
|
---|
41 | if(!preempt_rate_s) {
|
---|
42 | __cfadbg_print_safe(preemption, "No CFA_DEFAULT_PREEMPTION in ENV\n");
|
---|
43 | return __CFA_DEFAULT_PREEMPTION__;
|
---|
44 | }
|
---|
45 |
|
---|
46 | char * endptr = 0p;
|
---|
47 | long int preempt_rate_l = strtol(preempt_rate_s, &endptr, 10);
|
---|
48 | if(preempt_rate_l < 0 || preempt_rate_l > 65535) {
|
---|
49 | __cfadbg_print_safe(preemption, "CFA_DEFAULT_PREEMPTION out of range : %ld\n", preempt_rate_l);
|
---|
50 | return __CFA_DEFAULT_PREEMPTION__;
|
---|
51 | }
|
---|
52 | if('\0' != *endptr) {
|
---|
53 | __cfadbg_print_safe(preemption, "CFA_DEFAULT_PREEMPTION not a decimal number : %s\n", preempt_rate_s);
|
---|
54 | return __CFA_DEFAULT_PREEMPTION__;
|
---|
55 | }
|
---|
56 |
|
---|
57 | return preempt_rate_l`ms;
|
---|
58 | }
|
---|
59 |
|
---|
60 | // FwdDeclarations : timeout handlers
|
---|
61 | static void preempt( processor * this );
|
---|
62 | static void timeout( thread$ * this );
|
---|
63 |
|
---|
64 | // FwdDeclarations : Signal handlers
|
---|
65 | static void sigHandler_ctxSwitch( __CFA_SIGPARMS__ );
|
---|
66 | static void sigHandler_alarm ( __CFA_SIGPARMS__ );
|
---|
67 | static void sigHandler_segv ( __CFA_SIGPARMS__ );
|
---|
68 | static void sigHandler_ill ( __CFA_SIGPARMS__ );
|
---|
69 | static void sigHandler_fpe ( __CFA_SIGPARMS__ );
|
---|
70 | static void sigHandler_abort ( __CFA_SIGPARMS__ );
|
---|
71 |
|
---|
72 | // FwdDeclarations : alarm thread main
|
---|
73 | static void * alarm_loop( __attribute__((unused)) void * args );
|
---|
74 |
|
---|
75 | // Machine specific register name
|
---|
76 | #if defined( __i386 )
|
---|
77 | #define CFA_REG_IP gregs[REG_EIP]
|
---|
78 | #elif defined( __x86_64 )
|
---|
79 | #define CFA_REG_IP gregs[REG_RIP]
|
---|
80 | #elif defined( __arm__ )
|
---|
81 | #define CFA_REG_IP arm_pc
|
---|
82 | #elif defined( __aarch64__ )
|
---|
83 | #define CFA_REG_IP pc
|
---|
84 | #else
|
---|
85 | #error unsupported hardware architecture
|
---|
86 | #endif
|
---|
87 |
|
---|
88 | KERNEL_STORAGE(event_kernel_t, event_kernel); // private storage for event kernel
|
---|
89 | event_kernel_t * event_kernel; // kernel public handle to even kernel
|
---|
90 | static pthread_t alarm_thread; // pthread handle to alarm thread
|
---|
91 | static void * alarm_stack; // pthread stack for alarm thread
|
---|
92 |
|
---|
93 | static void ?{}(event_kernel_t & this) with( this ) {
|
---|
94 | alarms{};
|
---|
95 | lock{};
|
---|
96 | }
|
---|
97 |
|
---|
98 | //=============================================================================================
|
---|
99 | // Kernel Preemption logic
|
---|
100 | //=============================================================================================
|
---|
101 |
|
---|
102 | // Get next expired node
|
---|
103 | static inline alarm_node_t * get_expired( alarm_list_t * alarms, Time currtime ) {
|
---|
104 | if( ! & (*alarms)`first ) return 0p; // If no alarms return null
|
---|
105 | if( (*alarms)`first.deadline >= currtime ) return 0p; // If alarms head not expired return null
|
---|
106 | return pop(alarms); // Otherwise just pop head
|
---|
107 | }
|
---|
108 |
|
---|
109 | // Tick one frame of the Discrete Event Simulation for alarms
|
---|
110 | static void tick_preemption(void) {
|
---|
111 | alarm_node_t * node = 0p; // Used in the while loop but cannot be declared in the while condition
|
---|
112 | alarm_list_t * alarms = &event_kernel->alarms; // Local copy for ease of reading
|
---|
113 | Time currtime = __kernel_get_time(); // Check current time once so everything "happens at once"
|
---|
114 |
|
---|
115 | //Loop throught every thing expired
|
---|
116 | while( node = get_expired( alarms, currtime ) ) {
|
---|
117 | __cfadbg_print_buffer_decl( preemption, " KERNEL: preemption tick %lu\n", currtime.tn);
|
---|
118 | Duration period = node->period;
|
---|
119 | if( period == 0 ) {
|
---|
120 | node->set = false; // Node is one-shot, just mark it as not pending
|
---|
121 | }
|
---|
122 |
|
---|
123 | __cfadbg_print_buffer_local( preemption, " KERNEL: alarm ticking node %p.\n", node );
|
---|
124 |
|
---|
125 |
|
---|
126 | // Check if this is a kernel
|
---|
127 | if( node->type == Kernel ) {
|
---|
128 | preempt( node->proc );
|
---|
129 | }
|
---|
130 | else if( node->type == User ) {
|
---|
131 | __cfadbg_print_buffer_local( preemption, " KERNEL: alarm unparking %p.\n", node->thrd );
|
---|
132 | timeout( node->thrd );
|
---|
133 | }
|
---|
134 | else {
|
---|
135 | node->callback(*node);
|
---|
136 | }
|
---|
137 |
|
---|
138 | // Check if this is a periodic alarm
|
---|
139 | if( period > 0 ) {
|
---|
140 | __cfadbg_print_buffer_local( preemption, " KERNEL: alarm period is %lu.\n", period`ns );
|
---|
141 | node->deadline = currtime + period; // Alarm is periodic, add currtime to it (used cached current time)
|
---|
142 | insert( alarms, node ); // Reinsert the node for the next time it triggers
|
---|
143 | }
|
---|
144 | }
|
---|
145 |
|
---|
146 | // If there are still alarms pending, reset the timer
|
---|
147 | if( & (*alarms)`first ) {
|
---|
148 | Duration delta = (*alarms)`first.deadline - currtime;
|
---|
149 | __kernel_set_timer( delta );
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | // Update the preemption of a processor and notify interested parties
|
---|
154 | void update_preemption( processor * this, Duration duration ) {
|
---|
155 | alarm_node_t * alarm = this->preemption_alarm;
|
---|
156 |
|
---|
157 | // Alarms need to be enabled
|
---|
158 | if ( duration > 0 && ! alarm->set ) {
|
---|
159 | alarm->initial = duration;
|
---|
160 | alarm->period = duration;
|
---|
161 | register_self( alarm );
|
---|
162 | }
|
---|
163 | // Zero duration but alarm is set
|
---|
164 | else if ( duration == 0 && alarm->set ) {
|
---|
165 | unregister_self( alarm );
|
---|
166 | alarm->initial = 0;
|
---|
167 | alarm->period = 0;
|
---|
168 | }
|
---|
169 | // If alarm is different from previous, change it
|
---|
170 | else if ( duration > 0 && alarm->period != duration ) {
|
---|
171 | unregister_self( alarm );
|
---|
172 | alarm->initial = duration;
|
---|
173 | alarm->period = duration;
|
---|
174 | register_self( alarm );
|
---|
175 | }
|
---|
176 | }
|
---|
177 |
|
---|
178 | //=============================================================================================
|
---|
179 | // Kernel Signal Tools
|
---|
180 | //=============================================================================================
|
---|
181 | // In a user-level threading system, there are handful of thread-local variables where this problem occurs on the ARM.
|
---|
182 | //
|
---|
183 | // For each kernel thread running user-level threads, there is a flag variable to indicate if interrupts are
|
---|
184 | // enabled/disabled for that kernel thread. Therefore, this variable is made thread local.
|
---|
185 | //
|
---|
186 | // For example, this code fragment sets the state of the "interrupt" variable in thread-local memory.
|
---|
187 | //
|
---|
188 | // _Thread_local volatile int interrupts;
|
---|
189 | // int main() {
|
---|
190 | // interrupts = 0; // disable interrupts }
|
---|
191 | //
|
---|
192 | // which generates the following code on the ARM
|
---|
193 | //
|
---|
194 | // (gdb) disassemble main
|
---|
195 | // Dump of assembler code for function main:
|
---|
196 | // 0x0000000000000610 <+0>: mrs x1, tpidr_el0
|
---|
197 | // 0x0000000000000614 <+4>: mov w0, #0x0 // #0
|
---|
198 | // 0x0000000000000618 <+8>: add x1, x1, #0x0, lsl #12
|
---|
199 | // 0x000000000000061c <+12>: add x1, x1, #0x10
|
---|
200 | // 0x0000000000000620 <+16>: str wzr, [x1]
|
---|
201 | // 0x0000000000000624 <+20>: ret
|
---|
202 | //
|
---|
203 | // The mrs moves a pointer from coprocessor register tpidr_el0 into register x1. Register w0 is set to 0. The two adds
|
---|
204 | // increase the TLS pointer with the displacement (offset) 0x10, which is the location in the TSL of variable
|
---|
205 | // "interrupts". Finally, 0 is stored into "interrupts" through the pointer in register x1 that points into the
|
---|
206 | // TSL. Now once x1 has the pointer to the location of the TSL for kernel thread N, it can be be preempted at a
|
---|
207 | // user-level and the user thread is put on the user-level ready-queue. When the preempted thread gets to the front of
|
---|
208 | // the user-level ready-queue it is run on kernel thread M. It now stores 0 into "interrupts" back on kernel thread N,
|
---|
209 | // turning off interrupt on the wrong kernel thread.
|
---|
210 | //
|
---|
211 | // On the x86, the following code is generated for the same code fragment.
|
---|
212 | //
|
---|
213 | // (gdb) disassemble main
|
---|
214 | // Dump of assembler code for function main:
|
---|
215 | // 0x0000000000400420 <+0>: movl $0x0,%fs:0xfffffffffffffffc
|
---|
216 | // 0x000000000040042c <+12>: xor %eax,%eax
|
---|
217 | // 0x000000000040042e <+14>: retq
|
---|
218 | //
|
---|
219 | // and there is base-displacement addressing used to atomically reset variable "interrupts" off of the TSL pointer in
|
---|
220 | // register "fs".
|
---|
221 | //
|
---|
222 | // Hence, the ARM has base-displacement address for the general purpose registers, BUT not to the coprocessor
|
---|
223 | // registers. As a result, generating the address for the write into variable "interrupts" is no longer atomic.
|
---|
224 | //
|
---|
225 | // Note this problem does NOT occur when just using multiple kernel threads because the preemption ALWAYS restarts the
|
---|
226 | // thread on the same kernel thread.
|
---|
227 | //
|
---|
228 | // The obvious question is why does ARM use a coprocessor register to store the TSL pointer given that coprocessor
|
---|
229 | // registers are second-class registers with respect to the instruction set. One possible answer is that they did not
|
---|
230 | // want to dedicate one of the general registers to hold the TLS pointer and there was a free coprocessor register
|
---|
231 | // available.
|
---|
232 |
|
---|
233 | //----------
|
---|
234 | // special case for preemption since used often
|
---|
235 | bool __preemption_enabled() libcfa_nopreempt libcfa_public {
|
---|
236 | // access tls as normal
|
---|
237 | return __cfaabi_tls.preemption_state.enabled;
|
---|
238 | }
|
---|
239 |
|
---|
240 | extern "C" {
|
---|
241 | __attribute__((visibility("hidden"))) extern void * const __start_cfatext_nopreempt;
|
---|
242 | __attribute__((visibility("hidden"))) extern void * const __stop_cfatext_nopreempt;
|
---|
243 |
|
---|
244 | extern const __cfa_nopreempt_region __libcfa_nopreempt;
|
---|
245 | __attribute__((visibility("protected"))) const __cfa_nopreempt_region __libcfathrd_nopreempt @= {
|
---|
246 | (void * const)&__start_cfatext_nopreempt,
|
---|
247 | (void * const)&__stop_cfatext_nopreempt
|
---|
248 | };
|
---|
249 | }
|
---|
250 |
|
---|
251 | static inline bool __cfaabi_in( void * const ip, const struct __cfa_nopreempt_region & const region ) {
|
---|
252 | return ip >= region.start && ip <= region.stop;
|
---|
253 | }
|
---|
254 |
|
---|
255 |
|
---|
256 | //----------
|
---|
257 | // Get data from the TLS block
|
---|
258 | // struct asm_region __cfaasm_get;
|
---|
259 | uintptr_t __cfatls_get( unsigned long int offset ) libcfa_nopreempt libcfa_public; //no inline to avoid problems
|
---|
260 | uintptr_t __cfatls_get( unsigned long int offset ) {
|
---|
261 | // access tls as normal (except for pointer arithmetic)
|
---|
262 | uintptr_t val = *(uintptr_t*)((uintptr_t)&__cfaabi_tls + offset);
|
---|
263 |
|
---|
264 | // This is used everywhere, to avoid cost, we DO NOT poll pending preemption
|
---|
265 | return val;
|
---|
266 | }
|
---|
267 |
|
---|
268 | extern "C" {
|
---|
269 | // Disable interrupts by incrementing the counter
|
---|
270 | void disable_interrupts() libcfa_nopreempt libcfa_public with( __cfaabi_tls.preemption_state ) {
|
---|
271 | #if GCC_VERSION > 50000
|
---|
272 | static_assert(__atomic_always_lock_free(sizeof(enabled), &enabled), "Must be lock-free");
|
---|
273 | #endif
|
---|
274 |
|
---|
275 | // Set enabled flag to false
|
---|
276 | // should be atomic to avoid preemption in the middle of the operation.
|
---|
277 | // use memory order RELAXED since there is no inter-thread on this variable requirements
|
---|
278 | __atomic_store_n(&enabled, false, __ATOMIC_RELAXED);
|
---|
279 |
|
---|
280 | // Signal the compiler that a fence is needed but only for signal handlers
|
---|
281 | __atomic_signal_fence(__ATOMIC_ACQUIRE);
|
---|
282 |
|
---|
283 | __attribute__((unused)) unsigned short new_val = disable_count + 1;
|
---|
284 | disable_count = new_val;
|
---|
285 | verify( new_val < 65_000u ); // If this triggers someone is disabling interrupts without enabling them
|
---|
286 | }
|
---|
287 |
|
---|
288 | // Enable interrupts by decrementing the counter
|
---|
289 | // If counter reaches 0, execute any pending __cfactx_switch
|
---|
290 | void enable_interrupts( bool poll ) libcfa_nopreempt libcfa_public {
|
---|
291 | // Cache the processor now since interrupts can start happening after the atomic store
|
---|
292 | processor * proc = __cfaabi_tls.this_processor;
|
---|
293 | /* paranoid */ verify( !poll || proc );
|
---|
294 |
|
---|
295 | with( __cfaabi_tls.preemption_state ){
|
---|
296 | unsigned short prev = disable_count;
|
---|
297 | disable_count -= 1;
|
---|
298 |
|
---|
299 | // If this triggers someone is enabled already enabled interruptsverify( prev != 0u );
|
---|
300 | /* paranoid */ verify( prev != 0u );
|
---|
301 |
|
---|
302 | // Check if we need to prempt the thread because an interrupt was missed
|
---|
303 | if( prev == 1 ) {
|
---|
304 | #if GCC_VERSION > 50000
|
---|
305 | static_assert(__atomic_always_lock_free(sizeof(enabled), &enabled), "Must be lock-free");
|
---|
306 | #endif
|
---|
307 |
|
---|
308 | // Set enabled flag to true
|
---|
309 | // should be atomic to avoid preemption in the middle of the operation.
|
---|
310 | // use memory order RELAXED since there is no inter-thread on this variable requirements
|
---|
311 | __atomic_store_n(&enabled, true, __ATOMIC_RELAXED);
|
---|
312 |
|
---|
313 | // Signal the compiler that a fence is needed but only for signal handlers
|
---|
314 | __atomic_signal_fence(__ATOMIC_RELEASE);
|
---|
315 | if( poll && proc->pending_preemption ) {
|
---|
316 | proc->pending_preemption = false;
|
---|
317 | force_yield( __POLL_PREEMPTION );
|
---|
318 | }
|
---|
319 | }
|
---|
320 | }
|
---|
321 | }
|
---|
322 |
|
---|
323 | // Check whether or not there is pending preemption
|
---|
324 | // force_yield( __POLL_PREEMPTION ) if appropriate
|
---|
325 | // return true if the thread was in an interruptable state
|
---|
326 | // i.e. on a real processor and not in the kernel
|
---|
327 | // (can return true even if no preemption was pending)
|
---|
328 | bool poll_interrupts() libcfa_nopreempt libcfa_public {
|
---|
329 | // Cache the processor now since interrupts can start happening after the atomic store
|
---|
330 | processor * proc = __cfaabi_tls.this_processor;
|
---|
331 | if ( ! proc ) return false;
|
---|
332 | if ( ! __cfaabi_tls.preemption_state.enabled ) return false;
|
---|
333 |
|
---|
334 | // Signal the compiler that a fence is needed but only for signal handlers
|
---|
335 | __atomic_signal_fence(__ATOMIC_RELEASE);
|
---|
336 | if( unlikely( proc->pending_preemption ) ) {
|
---|
337 | proc->pending_preemption = false;
|
---|
338 | force_yield( __POLL_PREEMPTION );
|
---|
339 | }
|
---|
340 |
|
---|
341 | return true;
|
---|
342 | }
|
---|
343 | }
|
---|
344 |
|
---|
345 | //-----------------------------------------------------------------------------
|
---|
346 | // Kernel Signal Debug
|
---|
347 | void __cfaabi_check_preemption() libcfa_public {
|
---|
348 | bool ready = __preemption_enabled();
|
---|
349 | if(!ready) { abort("Preemption should be ready"); }
|
---|
350 |
|
---|
351 | sigset_t oldset;
|
---|
352 | int ret;
|
---|
353 | ret = __cfaabi_pthread_sigmask(0, ( const sigset_t * ) 0p, &oldset); // workaround trac#208: cast should be unnecessary
|
---|
354 | if(ret != 0) { abort("ERROR sigprocmask returned %d", ret); }
|
---|
355 |
|
---|
356 | ret = sigismember(&oldset, SIGUSR1);
|
---|
357 | if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
|
---|
358 | if(ret == 1) { abort("ERROR SIGUSR1 is disabled"); }
|
---|
359 |
|
---|
360 | ret = sigismember(&oldset, SIGALRM);
|
---|
361 | if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
|
---|
362 | if(ret == 0) { abort("ERROR SIGALRM is enabled"); }
|
---|
363 |
|
---|
364 | ret = sigismember(&oldset, SIGTERM);
|
---|
365 | if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
|
---|
366 | if(ret == 1) { abort("ERROR SIGTERM is disabled"); }
|
---|
367 | }
|
---|
368 |
|
---|
369 | #ifdef __CFA_WITH_VERIFY__
|
---|
370 | bool __cfaabi_dbg_in_kernel() {
|
---|
371 | return !__preemption_enabled();
|
---|
372 | }
|
---|
373 | #endif
|
---|
374 |
|
---|
375 | #undef __cfaasm_label
|
---|
376 |
|
---|
377 | //-----------------------------------------------------------------------------
|
---|
378 | // Signal handling
|
---|
379 |
|
---|
380 | // sigprocmask wrapper : unblock a single signal
|
---|
381 | static inline void signal_unblock( int sig ) {
|
---|
382 | sigset_t mask;
|
---|
383 | sigemptyset( &mask );
|
---|
384 | sigaddset( &mask, sig );
|
---|
385 |
|
---|
386 | if ( __cfaabi_pthread_sigmask( SIG_UNBLOCK, &mask, 0p ) == -1 ) {
|
---|
387 | abort( "internal error, pthread_sigmask" );
|
---|
388 | }
|
---|
389 | }
|
---|
390 |
|
---|
391 | // sigprocmask wrapper : block a single signal
|
---|
392 | static inline void signal_block( int sig ) {
|
---|
393 | sigset_t mask;
|
---|
394 | sigemptyset( &mask );
|
---|
395 | sigaddset( &mask, sig );
|
---|
396 |
|
---|
397 | if ( __cfaabi_pthread_sigmask( SIG_BLOCK, &mask, 0p ) == -1 ) {
|
---|
398 | abort( "internal error, pthread_sigmask" );
|
---|
399 | }
|
---|
400 | }
|
---|
401 |
|
---|
402 | // kill wrapper : signal a processor
|
---|
403 | static void preempt( processor * this ) {
|
---|
404 | sigval_t value = { PREEMPT_NORMAL };
|
---|
405 | __cfaabi_pthread_sigqueue( this->kernel_thread, SIGUSR1, value );
|
---|
406 | }
|
---|
407 |
|
---|
408 | // reserved for future use
|
---|
409 | static void timeout( thread$ * this ) {
|
---|
410 | unpark( this );
|
---|
411 | }
|
---|
412 |
|
---|
413 | void __disable_interrupts_hard() {
|
---|
414 | sigset_t oldset;
|
---|
415 | int ret;
|
---|
416 | ret = __cfaabi_pthread_sigmask(0, ( const sigset_t * ) 0p, &oldset); // workaround trac#208: cast should be unnecessary
|
---|
417 | if(ret != 0) { abort("ERROR sigprocmask returned %d", ret); }
|
---|
418 |
|
---|
419 | ret = sigismember(&oldset, SIGUSR1);
|
---|
420 | if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
|
---|
421 | if(ret == 1) { abort("ERROR SIGUSR1 is disabled"); }
|
---|
422 |
|
---|
423 | ret = sigismember(&oldset, SIGALRM);
|
---|
424 | if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
|
---|
425 | if(ret == 0) { abort("ERROR SIGALRM is enabled"); }
|
---|
426 |
|
---|
427 | signal_block( SIGUSR1 );
|
---|
428 | }
|
---|
429 |
|
---|
430 | void __enable_interrupts_hard() {
|
---|
431 | signal_unblock( SIGUSR1 );
|
---|
432 |
|
---|
433 | sigset_t oldset;
|
---|
434 | int ret;
|
---|
435 | ret = __cfaabi_pthread_sigmask(0, ( const sigset_t * ) 0p, &oldset); // workaround trac#208: cast should be unnecessary
|
---|
436 | if(ret != 0) { abort("ERROR sigprocmask returned %d", ret); }
|
---|
437 |
|
---|
438 | ret = sigismember(&oldset, SIGUSR1);
|
---|
439 | if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
|
---|
440 | if(ret == 1) { abort("ERROR SIGUSR1 is disabled"); }
|
---|
441 |
|
---|
442 | ret = sigismember(&oldset, SIGALRM);
|
---|
443 | if(ret < 0) { abort("ERROR sigismember returned %d", ret); }
|
---|
444 | if(ret == 0) { abort("ERROR SIGALRM is enabled"); }
|
---|
445 | }
|
---|
446 |
|
---|
447 | //-----------------------------------------------------------------------------
|
---|
448 | // KERNEL ONLY
|
---|
449 | // Check if a __cfactx_switch signal handler shoud defer
|
---|
450 | // If true : preemption is safe
|
---|
451 | // If false : preemption is unsafe and marked as pending
|
---|
452 | static inline bool preemption_ready( void * ip ) {
|
---|
453 | // Check if preemption is safe
|
---|
454 | bool ready = true;
|
---|
455 | if( __cfaabi_in( ip, __libcfa_nopreempt ) ) { ready = false; goto EXIT; };
|
---|
456 | if( __cfaabi_in( ip, __libcfathrd_nopreempt ) ) { ready = false; goto EXIT; };
|
---|
457 |
|
---|
458 | if( !__cfaabi_tls.preemption_state.enabled) { ready = false; goto EXIT; };
|
---|
459 | if( __cfaabi_tls.preemption_state.in_progress ) { ready = false; goto EXIT; };
|
---|
460 |
|
---|
461 | EXIT:
|
---|
462 | // Adjust the pending flag accordingly
|
---|
463 | __cfaabi_tls.this_processor->pending_preemption = !ready;
|
---|
464 | return ready;
|
---|
465 | }
|
---|
466 |
|
---|
467 | //=============================================================================================
|
---|
468 | // Kernel Signal Startup/Shutdown logic
|
---|
469 | //=============================================================================================
|
---|
470 |
|
---|
471 | // Startup routine to activate preemption
|
---|
472 | // Called from kernel_startup
|
---|
473 | void __kernel_alarm_startup() {
|
---|
474 | __cfaabi_dbg_print_safe( "Kernel : Starting preemption\n" );
|
---|
475 |
|
---|
476 | // Start with preemption disabled until ready
|
---|
477 | __cfaabi_tls.preemption_state.enabled = false;
|
---|
478 | __cfaabi_tls.preemption_state.disable_count = 1;
|
---|
479 |
|
---|
480 | // Initialize the event kernel
|
---|
481 | event_kernel = (event_kernel_t *)&storage_event_kernel;
|
---|
482 | (*event_kernel){};
|
---|
483 |
|
---|
484 | // Setup proper signal handlers
|
---|
485 | __cfaabi_sigaction( SIGUSR1, sigHandler_ctxSwitch, SA_SIGINFO ); // __cfactx_switch handler
|
---|
486 | __cfaabi_sigaction( SIGALRM, sigHandler_alarm , SA_SIGINFO ); // debug handler
|
---|
487 |
|
---|
488 | signal_block( SIGALRM );
|
---|
489 |
|
---|
490 | alarm_stack = __create_pthread( &alarm_thread, alarm_loop, 0p );
|
---|
491 | }
|
---|
492 |
|
---|
493 | // Shutdown routine to deactivate preemption
|
---|
494 | // Called from kernel_shutdown
|
---|
495 | void __kernel_alarm_shutdown() {
|
---|
496 | __cfaabi_dbg_print_safe( "Kernel : Preemption stopping\n" );
|
---|
497 |
|
---|
498 | // Block all signals since we are already shutting down
|
---|
499 | sigset_t mask;
|
---|
500 | sigfillset( &mask );
|
---|
501 | sigprocmask( SIG_BLOCK, &mask, 0p );
|
---|
502 |
|
---|
503 | // Notify the alarm thread of the shutdown
|
---|
504 | sigval val;
|
---|
505 | val.sival_int = 0;
|
---|
506 | __cfaabi_pthread_sigqueue( alarm_thread, SIGALRM, val );
|
---|
507 |
|
---|
508 | // Wait for the preemption thread to finish
|
---|
509 |
|
---|
510 | __destroy_pthread( alarm_thread, alarm_stack, 0p );
|
---|
511 |
|
---|
512 | // Preemption is now fully stopped
|
---|
513 |
|
---|
514 | __cfaabi_dbg_print_safe( "Kernel : Preemption stopped\n" );
|
---|
515 | }
|
---|
516 |
|
---|
517 | // Prevent preemption since we are about to start terminating things
|
---|
518 | void __kernel_abort_lock(void) {
|
---|
519 | signal_block( SIGUSR1 );
|
---|
520 | }
|
---|
521 |
|
---|
522 | // Raii ctor/dtor for the preemption_scope
|
---|
523 | // Used by thread to control when they want to receive preemption signals
|
---|
524 | void ?{}( preemption_scope & this, processor * proc ) {
|
---|
525 | (this.alarm){ proc, 0`s, 0`s };
|
---|
526 | this.proc = proc;
|
---|
527 | this.proc->preemption_alarm = &this.alarm;
|
---|
528 |
|
---|
529 | update_preemption( this.proc, this.proc->cltr->preemption_rate );
|
---|
530 | }
|
---|
531 |
|
---|
532 | void ^?{}( preemption_scope & this ) {
|
---|
533 | disable_interrupts();
|
---|
534 |
|
---|
535 | update_preemption( this.proc, 0`s );
|
---|
536 | }
|
---|
537 |
|
---|
538 | //=============================================================================================
|
---|
539 | // Kernel Signal Handlers
|
---|
540 | //=============================================================================================
|
---|
541 | __cfaabi_dbg_debug_do( static __thread void * last_interrupt = 0; )
|
---|
542 |
|
---|
543 | // Context switch signal handler
|
---|
544 | // Receives SIGUSR1 signal and causes the current thread to yield
|
---|
545 | static void sigHandler_ctxSwitch( __CFA_SIGPARMS__ ) {
|
---|
546 | void * ip = (void *)(cxt->uc_mcontext.CFA_REG_IP);
|
---|
547 | __cfaabi_dbg_debug_do( last_interrupt = ip; )
|
---|
548 |
|
---|
549 | // SKULLDUGGERY: if a thread creates a processor and the immediately deletes it,
|
---|
550 | // the interrupt that is supposed to force the kernel thread to preempt might arrive
|
---|
551 | // before the kernel thread has even started running. When that happens, an interrupt
|
---|
552 | // with a null 'this_processor' will be caught, just ignore it.
|
---|
553 | if(! __cfaabi_tls.this_processor ) return;
|
---|
554 |
|
---|
555 | choose(sfp->si_value.sival_int) {
|
---|
556 | case PREEMPT_NORMAL : ;// Normal case, nothing to do here
|
---|
557 | case PREEMPT_IO : ;// I/O asked to stop spinning, nothing to do here
|
---|
558 | case PREEMPT_TERMINATE: verify( __atomic_load_n( &__cfaabi_tls.this_processor->do_terminate, __ATOMIC_SEQ_CST ) );
|
---|
559 | default:
|
---|
560 | abort( "internal error, signal value is %d", sfp->si_value.sival_int );
|
---|
561 | }
|
---|
562 |
|
---|
563 | // Check if it is safe to preempt here
|
---|
564 | if( !preemption_ready( ip ) ) {
|
---|
565 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
566 | __cfaabi_tls.this_stats->ready.threads.preempt.rllfwd++;
|
---|
567 | #endif
|
---|
568 | return;
|
---|
569 | }
|
---|
570 |
|
---|
571 | __cfaabi_dbg_print_buffer_decl( " KERNEL: preempting core %p (%p @ %p).\n", __cfaabi_tls.this_processor, __cfaabi_tls.this_thread, (void *)(cxt->uc_mcontext.CFA_REG_IP) );
|
---|
572 |
|
---|
573 | // Sync flag : prevent recursive calls to the signal handler
|
---|
574 | __cfaabi_tls.preemption_state.in_progress = true;
|
---|
575 |
|
---|
576 | // Clear sighandler mask before context switching.
|
---|
577 | #if GCC_VERSION > 50000
|
---|
578 | static_assert( sizeof( sigset_t ) == sizeof( cxt->uc_sigmask ), "Expected cxt->uc_sigmask to be of sigset_t" );
|
---|
579 | #endif
|
---|
580 | if ( __cfaabi_pthread_sigmask( SIG_SETMASK, (sigset_t *)&(cxt->uc_sigmask), 0p ) == -1 ) {
|
---|
581 | abort( "internal error, sigprocmask" );
|
---|
582 | }
|
---|
583 |
|
---|
584 | // Clear the in progress flag
|
---|
585 | __cfaabi_tls.preemption_state.in_progress = false;
|
---|
586 |
|
---|
587 | // Preemption can occur here
|
---|
588 |
|
---|
589 | #if !defined(__CFA_NO_STATISTICS__)
|
---|
590 | __cfaabi_tls.this_stats->ready.threads.preempt.yield++;
|
---|
591 | #endif
|
---|
592 |
|
---|
593 | force_yield( __ALARM_PREEMPTION ); // Do the actual __cfactx_switch
|
---|
594 | }
|
---|
595 |
|
---|
596 | static void sigHandler_alarm( __CFA_SIGPARMS__ ) {
|
---|
597 | abort("SIGALRM should never reach the signal handler");
|
---|
598 | }
|
---|
599 |
|
---|
600 | // Main of the alarm thread
|
---|
601 | // Waits on SIGALRM and send SIGUSR1 to whom ever needs it
|
---|
602 | static void * alarm_loop( __attribute__((unused)) void * args ) {
|
---|
603 | unsigned id = register_proc_id();
|
---|
604 |
|
---|
605 | // Block sigalrms to control when they arrive
|
---|
606 | sigset_t mask;
|
---|
607 | sigfillset(&mask);
|
---|
608 | if ( __cfaabi_pthread_sigmask( SIG_BLOCK, &mask, 0p ) == -1 ) {
|
---|
609 | abort( "internal error, pthread_sigmask" );
|
---|
610 | }
|
---|
611 |
|
---|
612 | sigemptyset( &mask );
|
---|
613 | sigaddset( &mask, SIGALRM );
|
---|
614 |
|
---|
615 | // Main loop
|
---|
616 | while( true ) {
|
---|
617 | // Wait for a sigalrm
|
---|
618 | siginfo_t info;
|
---|
619 | int sig = sigwaitinfo( &mask, &info );
|
---|
620 |
|
---|
621 | __cfadbg_print_buffer_decl ( preemption, " KERNEL: sigwaitinfo returned %d, c: %d, v: %d\n", sig, info.si_code, info.si_value.sival_int );
|
---|
622 | __cfadbg_print_buffer_local( preemption, " KERNEL: SI_QUEUE %d, SI_TIMER %d, SI_KERNEL %d\n", SI_QUEUE, SI_TIMER, SI_KERNEL );
|
---|
623 |
|
---|
624 | if( sig < 0 ) {
|
---|
625 | //Error!
|
---|
626 | int err = errno;
|
---|
627 | switch( err ) {
|
---|
628 | case EAGAIN :
|
---|
629 | case EINTR :
|
---|
630 | {__cfadbg_print_buffer_local( preemption, " KERNEL: Spurious wakeup %d.\n", err );}
|
---|
631 | continue;
|
---|
632 | case EINVAL :
|
---|
633 | abort( "Timeout was invalid." );
|
---|
634 | default:
|
---|
635 | abort( "Unhandled error %d", err);
|
---|
636 | }
|
---|
637 | }
|
---|
638 |
|
---|
639 | // If another signal arrived something went wrong
|
---|
640 | assertf(sig == SIGALRM, "Kernel Internal Error, sigwait: Unexpected signal %d (%d : %d)\n", sig, info.si_code, info.si_value.sival_int);
|
---|
641 |
|
---|
642 | // Switch on the code (a.k.a. the sender) to
|
---|
643 | switch( info.si_code )
|
---|
644 | {
|
---|
645 | // Signal was not sent by the kernel but by an other thread
|
---|
646 | case SI_QUEUE:
|
---|
647 | // other threads may signal the alarm thread to shut it down
|
---|
648 | // or to manual cause the preemption tick
|
---|
649 | // use info.si_value and handle the case here
|
---|
650 | switch( info.si_value.sival_int ) {
|
---|
651 | case 0:
|
---|
652 | goto EXIT;
|
---|
653 | default:
|
---|
654 | abort( "SI_QUEUE with val %d", info.si_value.sival_int);
|
---|
655 | }
|
---|
656 | // fallthrough
|
---|
657 | // Timers can apparently be marked as sent for the kernel
|
---|
658 | // In either case, tick preemption
|
---|
659 | case SI_TIMER:
|
---|
660 | case SI_KERNEL:
|
---|
661 | // __cfaabi_dbg_print_safe( "Kernel : Preemption thread tick\n" );
|
---|
662 | lock( event_kernel->lock __cfaabi_dbg_ctx2 );
|
---|
663 | tick_preemption();
|
---|
664 | unlock( event_kernel->lock );
|
---|
665 | break;
|
---|
666 | }
|
---|
667 | }
|
---|
668 |
|
---|
669 | EXIT:
|
---|
670 | __cfaabi_dbg_print_safe( "Kernel : Preemption thread stopping\n" );
|
---|
671 | unregister_proc_id(id);
|
---|
672 |
|
---|
673 | return 0p;
|
---|
674 | }
|
---|
675 |
|
---|
676 | // Local Variables: //
|
---|
677 | // mode: c //
|
---|
678 | // tab-width: 4 //
|
---|
679 | // End: //
|
---|